Mathematic Bohemia

Ladislav Nebeský
 A matching and a Hamiltonian cycle of the fourth power of a connected graph

Mathematic Bohemica, Vol. 118 (1993), No. 1, 43-52

Persistent URL: http: //dml.cz/dmlcz/126012

Terms of use:

(C) Institute of Mathematics AS CR, 1993

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

A MATCHING AND A HAMILTONIAN CYCLE OF THE FOURTH POWER OF A CONNECTED GRAPH

Ladislav Nebeský, Praha

(Received July 27, 1991)

Summary. The following result is proved: Let G be a connected graph of order $\geqslant 4$. Then for every matching M in G^{4} there exists a hamiltonian cycle C of G^{4} such that $E(C) \cap M=\emptyset$.

Keywords: power of a graph, matching, hamiltonian cycle
AMS classification: 05C70, 05C45

Let G be a graph (in the sense of the book [1], for example) with a vertex set $V(G)$ and an edge set $E(G)$; note that the number $|V(G)|$ is referred to as the order of G. If n is a positive integer, then by the n-th power G^{n} of G we mean the graph G^{\prime} such that $V\left(G^{\prime}\right)=V(G)$ and vertices u and v are adjacent in G^{\prime} if and only if $1 \leqslant d_{G}(u, v) \leqslant n$, where d_{G} denotes the distance in G.

Chartrand, Polimeni and Stewart [2] and Sumner [6] have provd that if G is a connected graph of an even order, then G^{2} has a 1-factor. As follows from Sekanina's paper [5], if G is a connected graph of order $\geqslant 3$, then G^{3} has a hamiltonian cycle. The existence of 1 -factors and/or a hamiltonian cycle of the fourth power of a connected graph was investigated in [3], [7], [4] and [8].

Let G be a connected graph of an even order $\geqslant 4$. The present author [3] proved that G^{4} has a 3 -factor each component of which is K_{4} or $K_{2} \times K_{3}$, where \times denotes the cartesian product of graphs. Consequently, G^{4} has tree mutually edge-disjoint 1-factors. Wisztová [7] proved that there exist a hamiltonian cycle C of G^{3} and a 1 -factor F of G^{4} such that $E(F) \cap E(C)=\emptyset$. This result was improved by the present author [4] as follows: for any factor H of G^{3} such that H contains no triangle and the maximum degree of H does not exceed 2, there exists a 1-factor F of G^{4} such that $E(F) \cap E(H)=\emptyset$. Consequently, for every hamiltonian cycle C of G^{3} there exists a 1-factor F of G^{4} such that $E(F) \cap E(C)=\emptyset$.

Recently, Wisztová [8] has proved that if G is a connected graph of an order $\geqslant 4$ and M is a matching in G, then there exists a hamiltonian cycle C of G^{4} such that $E(C) \cap M=\emptyset$. In the present paper the result obtained in [8] will be improved as follows: if G is a connected graph of an order $\geqslant 4$ and M is a matching in G^{4}, then there exists a hamiltonian cycle C of G^{4} such that $E(C) \cap M=\emptyset$.

Before proving the main result of the paper we shall introduce some auxiliary notions and prove three lemmas.

If F_{1} and F_{2} are graphs, then we denote by $F_{1} \cup F_{2}$ the graph F^{\prime} with $V\left(F^{\prime}\right)=$ $V\left(F_{1}\right) \cup V\left(F_{2}\right)$ and $E\left(F^{\prime}\right)=E\left(F_{1}\right) \cup E\left(F_{2}\right)$. If F is a graph and u and v are distinct vertices, then we denote by $F+u v$ the graph $F^{\prime \prime}$ with $V\left(F^{\prime \prime}\right)=V(F) \cup\{u, v\}$ and $E\left(F^{\prime \prime}\right)=E(F) \cup\{u v\}$. If H is a graph and W is a nonempty subset of $V(H)$, then we denote by $\langle W\rangle_{\boldsymbol{H}}$ the subgraph of H induced by W.

An ordered pair (T, v), where T is a tree and $v \in V(T)$ will be referred to as a rooted tree. We say that rooted trees $\left(T_{1}, v_{1}\right)$ and $\left(T_{2}, v_{2}\right)$ are isomorphic if there exists an isomorphism f of T_{1} onto T_{2} such that $f\left(v_{1}\right)=v_{2}$.

Now, let $k \geqslant 1$ and $m \geqslant 1$ be integers, and let $u_{0}, \ldots, u_{k}, w_{1}, \ldots, w_{m}$ be mutually distinct vertices. We shall generalize some constructions used in [8]. By a Y_{m}-tree $(m \geqslant 5)$ we mean a tree T such that

$$
\begin{aligned}
& V(T)=\left\{w_{1}, \ldots, w_{m}\right\} \\
& \left\{w_{j} w_{j+1} ; 1 \leqslant j \leqslant m-2\right\} \subseteq E(T), \text { and } \\
& \text { either } w_{m-2} w_{m} \in E(T) \text { or } w_{m-1} w_{m} \in E(T)
\end{aligned}
$$

By a Y_{m}^{*}-tree $(m \geqslant 5)$ we mean a tree isomorphic to a Y_{m}-tree. By an X_{m}-tree $(m \geqslant 5)$ we mean a tree T^{\prime} such that

$$
\begin{aligned}
& V\left(T^{\prime}\right)=\left\{w_{1}, \ldots, w_{m}\right\}, \\
& \left\{w_{j} w_{j+1} ; 2 \leqslant j \leqslant m-2\right\} \subseteq E\left(T^{\prime}\right) \\
& \text { either } w_{1} w_{2} \in E\left(T^{\prime}\right) \text { or } w_{1} w_{3} \in E\left(T^{\prime}\right), \text { and } \\
& \text { either } w_{m-2} w_{m} \in E\left(T^{\prime}\right) \text { or } w_{m-1} w_{m} \in E\left(T^{\prime}\right) .
\end{aligned}
$$

By an X_{m}^{*}-tree $(m \geqslant 5)$ we mean a tree isomorphic to X_{m}-tree. By a $U_{k, m}$-tree we mean a rooted tree ($T^{\prime \prime}, u_{0}$) such that

$$
\begin{aligned}
& V\left(T^{\prime \prime}\right)=\left\{u_{k}, \ldots, u_{0}, w_{1}, \ldots, w_{m}\right\}, \\
& \left\{u_{i+1} u_{i} ; 1 \leqslant i \leqslant k-2\right\} \cup\left\{u_{1} u_{0}, u_{0} w_{1}\right\} \cup\left\{w_{j} w_{j+1} ; 1 \leqslant j \leqslant m-2\right\} \subseteq E\left(T^{\prime \prime}\right) \text {; } \\
& \text { if } k=2 \text {, then } u_{2} u_{1} \in E\left(T^{\prime \prime}\right), \\
& \text { if } k \geqslant 3 \text {, then either } u_{k} u_{k-1} \in E\left(T^{\prime \prime}\right) \text { or } u_{k} u_{k-2} \in E\left(T^{\prime \prime}\right) \text {, } \\
& \text { if } m=2 \text {, then } w_{1} w_{2} \in E\left(T^{\prime \prime}\right) \text {, and } \\
& \text { if } m \geqslant 3 \text {, then either } w_{m-2} w_{m} \in E\left(T^{\prime \prime}\right) \text { or } w_{m-1} w_{m} \in E\left(T^{\prime \prime}\right) \text {. }
\end{aligned}
$$

Finally, by a $U_{k, m}^{*}$-tree we mean a rooted tree isomorphic to $U_{k, m}$.
Lemma 1. Let $m \geqslant 5$ be an integer, let T be a Y_{m}-tree, and let M be a matching in T^{3}. Then there exists a hamiltonian $w_{1}-w_{2}$ path P of T^{3} such that $E(P) \cap M=\emptyset$.

Proof. We shall construct a hamiltonian $w_{1}-w_{2}$ path P of T^{3} such that $E(P) \cap M=\emptyset$.

First, let $m=5$. We put

$$
\begin{aligned}
& E(P)=\left\{w_{1} w_{3}, w_{3} w_{4} w_{4} w_{5}, w_{5} w_{2}\right\} \text { if } w_{3} w_{5} \in M \\
& E(P)=\left\{w_{1} w_{4}, w_{4} w_{3} w_{3} w_{5}, w_{5} w_{2}\right\} \text { if } w_{4} w_{5} \in M \\
& E(P)=\left\{w_{1} w_{3}, w_{3} w_{5} w_{5} w_{4}, w_{4} w_{2}\right\} \text { if }\left(w_{3} w_{5}, w_{4} w_{5} \notin M, w_{2} w_{3} \in M\right) \\
& \quad \text { or }\left(w_{2} w_{3}, w_{3} w_{5}, w_{4} w_{5} \notin M, w_{1} w_{4} \in M\right), \text { and }
\end{aligned} \quad \begin{array}{r}
E(P)=\left\{w_{1} w_{4}, w_{4} w_{5} w_{5} w_{3}, w_{3} w_{2}\right\} \text { if } w_{1} w_{4}, w_{2} w_{3}, w_{3} w_{5}, w_{4} w_{5} \notin M .
\end{array}
$$

Now let $m=6$. We put

$$
\begin{aligned}
& E(P)=\left\{w_{1} w_{3}, w_{3} w_{6}, w_{6} w_{5}, w_{5} w_{4}, w_{4} w_{2}\right\} \text { if } w_{2} w_{3}, w_{4} w_{6} \in M, \\
& E(P)=\left\{w_{1} w_{4}, w_{4} w_{5}, w_{5} w_{6}, w_{6} w_{3}, w_{3}, w_{2}\right\} \text { if } w_{2} w_{3} \notin M, w_{4} w_{6} \in M, \\
& E(P)=\left\{w_{1} w_{3}, w_{3} w_{6}, w_{6} w_{4}, w_{4} w_{5}, w_{5} w_{2}\right\} \text { if }\left(w_{2} w_{3} \in M, w_{4} w_{6} \notin M,\right. \\
& \left.w_{5} w_{6} \in M\right) \text { or }\left(w_{2} w_{3}, w_{4} w_{6} \notin M, w_{1} w_{4}, w_{3} w_{5} \in M\right) \text { or } \\
& \left(w_{2} w_{3}, w_{4} w_{6} \notin M, w_{1} w_{4} \in M, w_{3} w_{5} \notin M, w_{5} w_{6} \in M\right), \\
& E(P)=\left\{w_{1} w_{3}, w_{3} w_{4}, w_{4} w_{6}, w_{6} w_{5}, w_{5} w_{2}\right\} \text { if }\left(w_{2} w_{3} \in M, w_{4} w_{6} \notin M,\right. \\
& \left.w_{5} w_{6} \notin M, w_{1} w_{4} \in M\right) \text { or }\left(w_{2} w_{3}, w_{4} w_{6} \notin M,\right. \\
& \left.w_{1} w_{4} \notin M, w_{3} w_{5} \in M\right), \\
& E(P)=\left\{w_{1} w_{4}, w_{4} w_{3}, w_{3} w_{6}, w_{6} w_{5}, w_{5} w_{2}\right\} \text { if } w_{2} w_{3} \in M, w_{4} w_{6} \notin M, \\
& w_{5} w_{6}, w_{1} w_{4} \notin M, \\
& E(P)=\left\{w_{1} w_{3}, w_{3} w_{5}, w_{5} w_{6}, w_{6} w_{4}, w_{4} w_{2}\right\} \text { if } w_{2} w_{3}, w_{4} w_{6} \notin M, \\
& w_{1} w_{4} \in M, w_{3} w_{5}, w_{5} w_{6} \notin M, \\
& E(P)=\left\{w_{1} w_{4}, w_{4} w_{6}, w_{6} w_{3}, w_{3} w_{5}, w_{5} w_{2}\right\} \text { if } w_{2} w_{3}, w_{4} w_{6} \notin M, \\
& w_{1} w_{4}, w_{3} w_{5} \notin M, w_{5} w_{6} \in M \text {, and } \\
& E(P)=\left\{w_{1} w_{4}, w_{4} w_{6}, w_{6} w_{5}, w_{5} w_{3}, w_{3} w_{2}\right\} \text { if } w_{2} w_{3}, w_{4} w_{6} \notin M, \\
& w_{1} w_{4}, w_{3} w_{5}, w_{5} w_{6} \notin M .
\end{aligned}
$$

Finally, let $m \geqslant 7$. We assume that for $m-2$ the statement of the lemma is proved. Denote $T_{0}=T-w_{1}-w_{2}$ and $M_{0}=M \cap E\left(\left(T_{0}\right)^{3}\right)$. According to our assumption, there exists a hamiltonian $w_{3}-w_{4}$ path P_{0} of $\left(T_{0}\right)^{3}$ such that $E\left(P_{0}\right) \cap M_{0}=\emptyset$. We
put

$$
\begin{array}{ll}
P+P_{0}+w_{1} w_{4}+w_{2} w_{3} & \text { if } w_{1} w_{3} \in M \text { or } w_{2} w_{4} \in M, \text { and } \\
P+P_{0}+w_{1} w_{3}+w_{2} w_{4} & \text { if } w_{1} w_{3}, w_{2} w_{4} \notin M .
\end{array}
$$

Thus, the proof of the lemma is complete.
As immediately follows from Lemma 1 , if $m \geqslant 5$ is an integer, T is a Y_{m}-tree, and M is a matching in T^{4}, then there exists a hamiltonian $w_{1}-w_{2}$ path P of T^{4} such that $E(P) \cap M=\emptyset$.

In the proof of the next lemma an idea from the proof of Lemma 3 in [8] will be used.

Lemma 2. Let $m \geqslant 5$ be an integer, let T be an X_{m}-tree, and let M be a matching in T^{4}. Then there exists a hamiltonian cycle C of T^{4} such that $E(C) \cap M=\emptyset$.

Proof. Obviously, if $m=5$ then $T^{4}=K_{5}$, and if $m=6$ then $T^{4}=K_{6}-e$ or K_{6}. Thus, we can see that if $m=5$ or 6 , the statement of the lemma holds.

Let $m \geqslant 7$. Denote $T_{0}=T-w_{1}-w_{2}$. Clearly, T_{0} is a Y_{m-2}^{*}-tree. According to Lemma 1, there exists a hamiltonian $w_{3}-w_{4}$ path P_{0} of $\left(T_{0}\right)^{3}$ such that $E\left(P_{0}\right) \cap$ $m=\emptyset$.

First, let $w_{1} w_{2} \in M$. Obviously, there exists $w \in V\left(T_{0}-w_{3}\right)$ such that $w_{3} w \in$ $E\left(P_{0}\right)$. We put

$$
C=P_{0}-w w_{3}+w w_{2}+w_{2} w_{3}+w_{3} w_{1}+w_{1} w_{4}
$$

Now let $w_{1} w_{2} \notin M$. We put

$$
\begin{array}{ll}
C=P_{0}+w_{3} w_{1}+w_{1} w_{2}+w_{2} w_{4} & \text { if } w_{1} w_{4} \in M \text { or } w_{2} w_{3} \in M, \text { and } \\
C=P_{0}+w_{3} w_{2}+w_{2} w_{1}+w_{1} w_{4} & \text { if } w_{1} w_{4}, w_{2} w_{3} \notin M .
\end{array}
$$

We can see that C is a hamiltonian cycle of T^{4} such that $E(C) \cap M=\emptyset$. Thus, the proof of the lemma is complete.

Lemma 3. Let T be a tree of an order $n \geqslant 4$, and let M be a matching in T^{4}. Then there exists a hamiltonian cycle C of T^{4} such that $E(C) \cap M=\emptyset$.

Proof. We proceed by induction on n. If the diameter of T does not exceed four, then T^{4} is a complete graph and thus the statement of the lemma holds. If T is an X_{n}^{*}-tree, then-according to Lemma 2-the statement of the lemma holds, too. We shall assume that the diameter of T is at least five and T is not a X_{n}^{*}-tree. This implies that $n \geqslant 7$. We distinguish the following cases and subcases:

1. Assume that there exist mutually distinct vertices v, v_{1}, v_{2}, v_{3} such that $v v_{1}$, $\boldsymbol{v} v_{2}, v_{3} \in E(T)$ and v_{1}, v_{2} and v_{3} are vertices of degree one in T. Obviously, there
exist distinct $g, h \in\{1,2,3\}$ such that $v_{g} v_{h} \notin M$. Without loss of generality, let $v_{2} v_{3} \notin M$. Denote $T_{0}=T-v_{2}-v_{3}$. Since $\left|V\left(T_{0}\right)\right|=n-2 \geqslant 5$, it follows from the induction hypothesis that there exists a hamiltonian cycle C_{0} of $\left(T_{0}\right)^{4}$ such that $E\left(C_{0}\right) \cap\left(M-\left\{v v_{2}, v v_{3}\right\}\right)=\emptyset$. Since v_{1} is a vertex of degree one in T_{0}, there exists $v_{0} \in V\left(T_{0}-v_{1}\right)$ such that $v_{0} v_{1} \in E\left(C_{0}\right)$ and $d_{T}\left(v, v_{0}\right) \leqslant 3$. We put

$$
\begin{array}{ll}
C=C_{0}-v_{0} v_{1}+v_{0} v_{2}+v_{2} v_{3}+v_{3} v_{1} & \text { if } v_{1} v_{2} \in M \text { or } v_{0} v_{3} \in M \\
C=C_{0}-v_{0} v_{1}+v_{0} v_{3}+v_{3} v_{2}+v_{2} v_{1} & \text { if } v_{1} v_{2}, v_{0} v_{3} \notin M .
\end{array}
$$

Obviously, C is a hamiltonian cycle of T^{4} and $E(C) \cap M=\emptyset$.
2. Assume that for every vertex v of T, at most two vertices adjacent to v have degree one. It is not difficult to see that there exist positive integers k and m, a vertex u of a degree $\geqslant 3$ in T and a subtree T^{\prime} of T with the properties that $3 \leqslant k+m \leqslant n-4, u \in V\left(T^{\prime}\right)$, the degree of u^{\prime} in T^{\prime} is equal to the degree of u^{\prime} in T for each $u^{\prime} \in V\left(T^{\prime}-u\right)$, and (T^{\prime}, u) is a $U_{k, m}^{*}$-tree.

For the sake of simplicity we shall assume that $\left(T^{\prime}, u\right)$ is a $U_{k, m}$-tree. Thus $u=u_{0}$ and $V\left(T_{0}\right)=\left\{u_{k}, \ldots, u_{0}, w_{1}, \ldots, w_{m}\right\}$. Without loss of generality we assume that
$k \geqslant 2$; if $m=2$, then $k \leqslant 3$; if $m=3$, then $k=3 ;$
if $m=4$, then $k \leqslant 4$.

Denote $T_{0}=T-w_{1}-\ldots-w_{m}$ and $M_{0}=M \cap E\left(\left(T_{0}\right)^{4}\right)$. Since $5 \leqslant\left|V\left(T_{0}\right)\right| \leqslant n-1$, it follows from the induction hypothesis that there exists a hamiltonian cycle C_{0} of $\left(T_{0}\right)^{4}$ such that $E\left(C_{0}\right) \cap M_{0}=\emptyset$. We shall construct a hamiltonian cycle C of T^{4} such that $E(C) \cap M=\emptyset$.
2.1. Let $m \neq 2,3,4$.
2.1.1. Assume that

> there exist mutually distinct $v_{11}, v_{12}, v_{21}, v_{22} \in V(T)$
> such that $v_{i 1} v_{i 2} \in E\left(C_{0}\right), d_{T}\left(u_{0}, v_{i 1}\right) \leqslant d_{T}\left(u_{0}, v_{i 2}\right) \leqslant 3$
> and $d_{T}\left(u_{0}, v_{i 1}\right)+d_{T}\left(u_{0}, v_{i 2}\right) \leqslant 4$ for $i=1$ and 2

Without loss of generality we assume that $v_{12} w_{1}, v_{12} w_{1} \notin M$.
2.1.1.1. Let $m=1$. We put

$$
C=C_{0}-v_{11} v_{12}+v_{11} w_{1}+w_{1} v_{12} .
$$

2.1.1.2. Let $m \geqslant 5$. Obviously, $v_{11} w_{2}, v_{12} w_{1} \in E\left(T^{4}\right)$ and if $d_{T}\left(v_{11}, w_{2}\right)=4$, then $d_{T}\left(v_{12}, w_{2}\right)=4$.
2.1.1.2.1. Assume that $v_{11} w_{2} \notin M$ or $d_{T}\left(v_{11}, w_{2}\right)=4$. According to Lemma 1 there exists a hamiltonian $w_{1}-w_{2}$ path P of $\left(\left\langle\left\{w_{1}, \ldots, w_{m}\right\}\right\rangle_{T}\right)^{4}$. We put

$$
\begin{aligned}
& C=\left(C_{0}-v_{11} v_{12}\right) \cup P+v_{11} w_{2}+w_{1} v_{12} \text { if } v_{11} w_{2} \notin M, \text { and } \\
& C=\left(C_{0}-v_{11} v_{12}\right) \cup P+v_{11} w_{1}+w_{2} v_{12} \text { if } v_{11} w_{2} \in M \text { and } d_{T}\left(v_{11}, w_{2}\right)=4 .
\end{aligned}
$$

2.1.1.2.2. Assume that $v_{11} w_{2} \in M$ and $d_{T}\left(v_{11}, w_{2}\right) \leqslant 3$. Then $v_{11} w_{3} \in E\left(T^{4}\right)-M$. Moreover, $w_{1} w_{2}, w_{2} w_{3} \notin M$.

First, let $m=5$. We put

$$
\begin{gathered}
C=C_{0}-v_{11} v_{12}+v_{11} w_{3}+w_{3} w_{4}+w_{4} w_{2}+w_{2} w_{5}+w_{5} w_{1}+w_{1} v_{12} \\
\text { if } w_{4} w_{5} \in M, \\
C=C_{0}-v_{11} v_{12}+v_{11} w_{3}+w_{3} w_{2}+w_{2} w_{5}+w_{5} w_{4}+w_{4} w_{1}+w_{1} v_{12} \\
\text { if } w_{4} w_{5} \notin M, w_{1} w_{5} \in M, \text { and } \\
C=C_{0}-v_{11} v_{12}+v_{11} w_{3}+w_{3} w_{2}+w_{2} w_{4}+w_{4} w_{5}+w_{5} w_{1}+w_{1} v_{12} \\
\text { if } w_{4} w_{5}, w_{1} w_{5} \notin M .
\end{gathered}
$$

Now let $m \geqslant 6$. According to Lemma 1 there exists a hamiltonian $w_{2}-w_{3}$ path P^{\prime} of $\left(\left\langle\left\{w_{2}, \ldots, w_{m}\right\}\right\rangle_{T}\right)^{4}$. We put

$$
C=\left(C_{0}-v_{11} v_{12}\right) \cup P^{\prime}+v_{11} w_{3}+w_{2} w_{1}+w_{1} v_{12}
$$

2.1.2. Assume that (2) does not hold. According to (1), $k \geqslant 2$. It is not difficult to see that $k \geqslant 4$ and there exists $v \in V\left(T_{0}-u_{0}-\ldots-u_{k}\right)$ such that $d_{T}\left(u_{0}, v\right) \leqslant 3$ and $C_{0}-u_{1}-\therefore-u_{k}$ is an $u_{0}-v$ hamiltonian path of $\left(T_{0}-u_{1}-\ldots-u_{k}\right)^{4}$. Moreover, we can see that if $k=4$, then $u_{0} u_{4} \in E\left(C_{0}\right)$ and therefore $u_{0} u_{4} \notin M$.
2.1.2.1. Assume that $m=1$.
2.1.2.1.1. Let $v w_{1} \in M$. First, let $k=4$. Recall that $u_{0} u_{4} \notin M$. We put

$$
\begin{aligned}
C=\left(C_{0}-u_{1}-u_{2}-u_{3}-u_{4}\right) & +u_{0} u_{2}+u_{2} u_{4}+u_{4} u_{3}+u_{3} w_{1} \\
& +w_{1} u_{1}+u_{1} v \quad \text { if } u_{2} u_{3} \in M, \\
C=\left(C_{0}-u_{1}-u_{2}-u_{3}-u_{4}\right) & +u_{0} u_{4}+u_{4} u_{2}+u_{2} u_{3}+u_{3} w_{1} \\
& +w_{1} u_{1}+u_{1} v \quad \text { if } u_{3} u_{4} \in M, \text { and } \\
C=\left(C_{0}-u_{1}-u_{2}-u_{3}-u_{4}\right) & +u_{0} u_{4}+u_{4} u_{3}+u_{3} u_{2}+u_{2} w_{1} \\
& +w_{1} u_{1}+u_{1} v \quad \text { if } u_{2} u_{3}, u_{3} u_{4} \notin M .
\end{aligned}
$$

Now let $k \geqslant 5$. As follows from Lemma 1, there exists a hamiltonian $u_{1}-u_{2}$ path P of $\left(\left\langle\left\{u_{1}, \ldots, u_{k}\right\}\right\rangle_{T}\right)^{4}$. We put

$$
C=\left(C_{0}-u_{1}-\ldots-u_{k}\right) \cup P+u_{0} w_{1}+w_{1} u_{2}+u_{1} v
$$

2.1.2.1.2. Let $v w_{1} \notin M$. According to Lemma 1, there exists a hamiltonian $w_{1-}-u_{0}$ path P of $\left(\left\langle\left\{w_{1}, u_{0}, \ldots, u_{k}\right\}\right\rangle_{T}\right)^{4}$. We put

$$
C=\left(C_{0}-u_{1}-\ldots-u_{k}\right) \cup P+w_{1} v
$$

2.1.2.2. Assume that $m \geqslant 5$.

2.1.2.2.1. Let $k=4$. First, let $v w_{1} \in M$ or $u_{1} w_{2} \in M$. Then $v u_{1} \notin M$. There exists a hamiltonian $u_{0}-w_{1}$ path P of $\left(\left\langle\left\{u_{0}, w_{1}, \ldots, w_{m}\right\}\right\rangle_{T}\right)^{4}$. Clearly, $u_{1} u_{4} \notin M$ or $u_{3} w_{1} \notin M$. We put

$$
\begin{aligned}
& C=\left(C_{0}-u_{1}-u_{2}-u_{3}-u_{4}\right)+P+v u_{1}+u_{1} u_{3}+u_{3} u_{4}+u_{4} u_{2}+u_{2} w_{1} \\
& \text { if } u_{2} u_{3} \in M, \\
& C=\left(C_{0}-u_{1}-u_{2}-u_{3}-u_{4}\right)+P+v u_{1}+u_{1} u_{2}+u_{2} u_{4}+u_{4} u_{3}+u_{3} w_{1} \\
& \text { if } u_{2} u_{3}, u_{3} w_{1} \notin M, u_{1} u_{4} \in M, \\
& C=\left(C_{0}-u_{1}-u_{2}-u_{3}-u_{4}\right)+P+v u_{1}+u_{1} u_{4}+u_{4} u_{3}+u_{3} u_{2}+u_{2} w_{1} \\
& \\
& \text { if }\left(u_{2} u_{3}, u_{1} u_{4} \notin M, u_{3} w_{1} \in M\right) \\
& \quad \text { or }\left(u_{2} u_{3}, u_{1} u_{4}, u_{3} w_{1} \notin M, u_{2} u_{4} \in M\right), \text { and } \\
& C=\left(C_{0}-u_{1}-u_{2}-u_{3}-u_{4}\right)+P+v u_{1}+u_{1} u_{4}+u_{4} u_{2}+u_{2} u_{3}+u_{3} w_{1} \\
& \\
& \text { if } u_{2} u_{3}, u_{1} u_{4}, u_{3} w_{1}, u_{2} u_{4} \notin M .
\end{aligned}
$$

Now let $\cdot v w_{1}, u_{1} w_{2} \notin M$. According to Lemma 1 there exist a hamiltonian $u_{0}-u_{1}$ path P^{\prime} of $\left(\left\langle\left\{u_{0}, \ldots, u_{4}\right\}\right\rangle_{T}\right)^{4}$ and a hamiltonian $w_{1}-w_{2}$ path $P^{\prime \prime}$ of $\left(\left\langle\left\{w_{1}, \ldots, w_{m}\right\}\right\rangle_{T}\right)^{4}$. We put

$$
C=\left(C_{0}-u_{1}-u_{2}-u_{3}-u_{4}\right) \cup P^{\prime} \cup P^{\prime \prime}+v w_{1}+w_{2} u_{1}
$$

2.1.2.2.2. Let $k \geq 5$. According to Lemma 1 there exist hamiltonian $u_{1}-u_{2}$ path P of $\left(\left\langle\left\{u_{1}, \ldots, u_{k}\right\}\right\rangle_{T}\right)^{4}$ and a hamiltonian $w_{1}-w_{2}$ path P^{\prime} of $\left(\left\langle\left\{w_{1}, \ldots, w_{m}\right\}\right\rangle_{T}\right)^{4}$. Obviously, $v w_{1} \notin M$ or $v u_{1} \notin M$. Without loss of generality we assume that $v w_{1} \notin M$. We put

$$
\begin{gathered}
C=\left(C_{0}-u_{1}-\ldots-u_{k}\right) \cup P \cup P^{\prime}+u_{0} u_{1}+u_{2} w_{2}+w_{1} v \\
\text { if } u_{0} u_{2} \in M \text { or } u_{1} w_{2} \in M, \text { and } \\
C=\left(C_{0}-u_{1}-\ldots-u_{k}\right) \cup P \cup P^{\prime}+u_{0} u_{2}+u_{1} w_{2}+w_{1} v \\
\text { if } u_{0} u_{2}, u_{1} w_{2} \notin M .
\end{gathered}
$$

2.2. Let $m=2$. According to (1), $k=2$ or 3 . It is easy to see that there exist $u_{1}^{\prime}, u_{2}^{\prime} \in V\left(T_{0}\right)$ with the properties that $u_{1}^{\prime} \neq u_{1}, u_{2}^{\prime} \neq u_{2}, u_{1} u_{1}^{\prime}, u_{2} u_{2}^{\prime} \in E\left(C_{0}\right)$, $u_{1} u_{1}^{\prime} \neq u_{2} u_{2}^{\prime}, d_{T}\left(u_{0}, u_{1}^{\prime}\right) \leqslant 3$ and $d_{T}\left(u_{0}, u_{2}^{\prime}\right) \leqslant 2$. We put

$$
\begin{gathered}
C=C_{0}-u_{1} u_{1}^{\prime}-u_{2} u_{2}^{\prime}+u_{1} w_{1}+w_{1} u_{1}^{\prime}+u_{2} w_{2}+w_{2} u_{2}^{\prime} \quad \text { if } w_{1} w_{2} \in M, \\
C=C_{0}-u_{2} u_{2}^{\prime}+u_{2} w_{1}+w_{1} w_{2}+w_{2} u_{2}^{\prime} \text { if } w_{1} w_{2} \notin M \text { and }\left(u_{2}^{\prime} w_{1} \in M\right. \\
\text { or } \left.w_{2} u_{2} \in M\right), \text { and }
\end{gathered}
$$

$$
C=C_{0}-u_{2} u_{2}^{\prime}+u_{2}^{\prime} w_{1}+w_{1} w_{2}+w_{2} u_{2} \quad \text { if } w_{1} w_{2}, u_{2}^{\prime} w_{1}, w_{2} u_{2} \notin M
$$

2.3. Let $m=3$. According to (1), $k=3$.

2.3.1. Assume that

there exist $u_{1}^{\prime} \in V\left(T_{0}-u_{1}\right)$ such that $u_{1} u_{1}^{\prime} \in E\left(C_{0}\right)$ and $d_{T}\left(u_{0}, u_{1}^{\prime}\right) \leqslant 2$.

We put

$$
\begin{array}{r}
C=C_{0}-u_{1} u_{1}^{\prime}+u_{1} w_{3}+w_{3} w_{2}+w_{2} w_{1}+w_{1} u_{1}^{\prime} \quad \text { if } w_{1} w_{3} \in M, \\
C=C_{0}-u_{1} u_{1}^{\prime}+u_{1} w_{3}+w_{3} w_{1}+w_{1} w_{2}+w_{2} u_{1}^{\prime} \quad \text { if } w_{2} w_{3} \in M, \\
C=C_{0}-u_{1} u_{1}^{\prime}+u_{1} w_{1}+w_{1} w_{3}+w_{3} w_{2}+w_{2} u_{1}^{\prime} \quad \text { if } w_{1} w_{3}, w_{2} w_{3} \notin M, \\
\text { and }\left(u_{1} w_{2} \in M \text { or } w_{1} u_{1}^{\prime} \in M\right) \text {, and } \\
C=C_{0}-u_{1} u_{1}^{\prime}+u_{1} w_{2}+w_{2} w_{3}+w_{3} w_{1}+w_{1} u_{1}^{\prime} \\
\text { if } w_{1} w_{3}, w_{2} w_{3}, u_{1} w_{2}, w_{1} u_{1}^{\prime} \notin M .
\end{array}
$$

2.3.2. Assume that (2) does not hold. Then there exist mutually distinct $u_{1}^{\prime}, u_{1}^{\prime \prime}$, $u_{2}^{\prime} \in V\left(T_{0}-u_{1}-u_{2}\right)$ such that $u_{1} u_{1}^{\prime}, u_{1} u_{1}^{\prime \prime}, u_{2} u_{2}^{\prime} \in E\left(C_{0}\right)$ and $d_{T}\left(u_{0}, u_{2}^{\prime}\right) \leqslant 2$. Clearly, $d_{T}\left(u_{0}, u_{1}^{\prime}\right)=3=d_{T}\left(u_{0}, u_{1}^{\prime \prime}\right)$. Obviously, $u_{1}^{\prime} w_{1} \notin M$ or $u_{1}^{\prime \prime} w_{1} \notin M$. Without loss of generality we assume that $u_{1}^{\prime} w_{1} \notin M$. We put
$C=C_{0}-u_{1} u_{1}^{\prime}+u_{1} w_{3}+w_{3} w_{2}+w_{2} w_{1}+w_{1} u_{1}^{\prime} \quad$ if $w_{1} w_{3} \in M$,
$C=C_{0}-u_{1} u_{1}^{\prime}-u_{2} u_{2}^{\prime}+u_{1} w_{3}+w_{3} w_{1}+w_{1} u_{1}^{\prime}+u_{2} w_{2}+w_{2} u_{2}^{\prime}$ if $w_{2} w_{3} \in M$,
$C=C_{0}-u_{2} u_{2}^{\prime}+u_{2} w_{1}+w_{1} w_{3}+w_{3} w_{2}+w_{2} u_{2}^{\prime} \quad$ if $w_{1} w_{3}, w_{2} w_{3} \notin M$ and ($u_{2} w_{2} \in M$ or $u_{2}^{\prime} w_{1} \in M$), and
$C=C_{0}-u_{2} u_{2}^{\prime}+u_{2} w_{2}+w_{2} w_{3}+w_{3} w_{1}+w_{1} u_{2}^{\prime} \quad$ if $w_{1} w_{3}, w_{2} w_{3}, u_{2} w_{2}, u_{2}^{\prime} w_{1} \notin M$.
2.4. Let $m=4$. According to (1), $2 \leqslant k \leqslant 4$. Without loss of generality we assume that

$$
\begin{equation*}
\text { if } k=4 \text { and } w_{3} w_{4} \in M, \text { then } u_{3} u_{4} \in M \tag{4}
\end{equation*}
$$

2.4.1. Assume that

$$
\begin{align*}
& \text { there exist } v_{11}, v_{12}, v_{21}, v_{22} \in V\left(T_{0}\right) \text { such that } \tag{5}\\
& v_{12} \neq v_{22}, v_{11} \neq v_{12} \neq v_{21}, v_{11} \neq v_{22} \neq v_{21}, v_{11} v_{12} \\
& v_{21} v_{22} \in E(C 0), d_{T}\left(u_{0}, v_{11}\right) \leqslant 1, d_{T}\left(u_{0}, v_{12}\right) \leqslant 3 \\
& d_{T}\left(u_{0}, v_{21}\right) \leqslant 1 \text { and } d_{T}\left(u_{0}, v_{22}\right) \leqslant 3
\end{align*}
$$

Obviously, $v_{12} w_{1} \notin M$ or $v_{22} w_{1} \notin M$. Without loss of generality we assume that $v_{12} w_{1} \notin M$. We put

$$
\begin{aligned}
& C=C_{0}-v_{11} v_{12}+v_{11} w_{2}+w_{2} w_{3}+w_{3} w_{4}+w_{4} w_{1}+w_{1} v_{12} \\
& \text { if } w_{2} w_{4} \in M, \\
& C=C_{0}-v_{11} v_{12}+v_{11} w_{3}+w_{3} w_{2}+w_{2} w_{4}+w_{4} w_{1}+w_{1} v_{12} \\
& \\
& \text { if } w_{3} w_{4} \in M, \\
& C=C_{0}-v_{11} v_{12}+v_{11} w_{3}+w_{3} w_{4}+w_{4} w_{2}+w_{2} w_{1}+w_{1} v_{12} \\
& \\
& \text { if }\left(w_{2} w_{4}, w_{3} w_{4} \notin M, v_{11} w_{2} \in M\right) \\
& \\
& C=C \\
& \text { or }\left(v_{11} w_{2}, w_{2} w_{4}, w_{3} w_{4} \notin M, w_{1} w_{3} \in M\right) \text {, and } \\
&
\end{aligned}
$$

2.4.2. Assume that (5) does not hold. Then $k=4$ and $u_{1} u_{4} \in E\left(C_{0}\right)$ and $d_{T}\left(u_{0}, u_{4}\right)=4$.

We first assume that $u_{2} u_{3}, u_{2} u_{4} \in E\left(C_{0}\right)$. Then there exist $u_{1}^{\prime}, u_{3}^{\prime} \in V\left(T_{0}-u_{1}-u_{3}\right)$ such that $u_{1}^{\prime} \neq u_{3}^{\prime}, u_{1} u_{1}^{\prime}, u_{3} u_{3}^{\prime} \in E\left(C_{0}\right), d_{T}\left(u_{0}, u_{1}^{\prime}\right) \leqslant 3$ and $d_{T}\left(u_{0}, u_{3}^{\prime}\right) \leqslant 1$, which contradicts (5).

Now we assume that $u_{2} u_{3} \notin E\left(C_{0}\right)$ or $u_{2} u_{4} \notin E\left(C_{0}\right)$. Then there exists $u_{2}^{\prime} \in$ $V\left(T_{0}-u_{2}\right)$ such that $u_{2} u_{2}^{\prime} \in E\left(C_{0}\right)$ and $d_{T}\left(u_{0}, u_{2}^{\prime}\right) \leqslant 2$.
2.4.2.1. Let $w_{3} w_{4} \notin M$. Obviously, $u_{2} w_{1} \notin M$ or $u_{2}^{\prime} w_{1} \notin M$. Without loss of generality we assume that $u_{2} w_{1} \notin M$. We put

$$
\begin{array}{r}
C=C_{0}-u_{2} u_{2}^{\prime}+u_{2} w_{1}+w_{1} w_{3}+w_{3} w_{4}+w_{4} w_{2}+w_{2} u_{2}^{\prime} \\
\text { if } w_{2} w_{3} \in M \text { or }\left(w_{1} w_{4} \in M, u_{2}^{\prime} w_{2} \notin M\right), \\
C=C_{0}-u_{2} u_{2}^{\prime}+u_{2} w_{2}+w_{2} w_{4}+w_{4} w_{3}+w_{3} w_{1}+w_{1} u_{2}^{\prime} \\
\text { if } u_{2}^{\prime} w_{2}, w_{1} w_{4} \in M, \\
C=C_{0}-u_{2} u_{2}^{\prime}+u_{2} w_{2}+w_{2} w_{3}+w_{3} w_{4}+w_{4} w_{1}+w_{1} u_{2}^{\prime} \\
\text { if } u_{2}^{\prime} w_{2} \in M, w_{1} w_{4} \notin M, \text { and } \\
C=C_{0}-u_{2} u_{2}^{\prime}+u_{2} w_{1}+w_{1} w_{4}+w_{4} w_{3}+w_{3} w_{2}+w_{2} u_{2}^{\prime} \\
\text { if } u_{2}^{\prime} w_{2}, w_{1} w_{4}, w_{2} w_{3} \notin M .
\end{array}
$$

2.4.2.2. Let $w_{3} w_{4} \in M$. According to (4), $u_{3} u_{4} \in M$. Therefore, $u_{3} u_{4} \notin E\left(C_{0}\right)$. There exists $u_{3}^{\prime \prime} \in V\left(T_{0}-u_{2}-u_{3}\right)$ such that $u_{3} u_{3}^{\prime \prime} \in E\left(C_{0}\right)$. Since $u_{3} u_{4} \notin E\left(C_{0}\right)$ and $d_{T}\left(u_{0}, u_{3}\right)=3$, we have $d_{T}\left(u_{0}, u_{3}^{\prime \prime}\right) \leqslant 1$. We put $v_{11}=u_{3}^{\prime \prime}$ and $v_{12}=u_{3}$. Since $u_{3} u_{4} \in M$, we have $v_{12} w_{1} \notin M$. Thus we can construct C in the same way as in 2.4.1.

The proof of the lemma is complete.
The following theorem is the main result of the present paper:

Theorem. Let G be a connected graph of an order $\leqslant 4$. Then for every matching M in G^{4} there exists a hamiltonian cycle C of G^{4} such that $E(C) \cap M=0$.

Proof. Consider an arbitrary spanning tree T of G. Denote $M_{0}=M \cap E\left(T^{4}\right)$. Obviously, M_{0} is a matching in T^{4}. According to Lemma 3, there exists a hamiltonian cycle C of T^{4} such that $E(C) \cap M_{0}=0$. Clearly, C is a hamiltonian cycle of G^{4}. Since $E(C) \subseteq E\left(T^{4}\right)$, we can see that $E(C) \cap M=\emptyset$, which completes the proof.

As follows from [2] and [5], if G is a connected graph of an even order, then G^{2} has a 1 -factor. Combining this result with our theorem, we get the following corollary:

Corollary. Let G be a connected graph of an even order $\geqslant 4$. Then there exist a 1-factor F of G^{2} and hamiltonian cycle C of G^{4} such that $E(C) \cap E(F)=\emptyset$.

References

[1] M. Behzad, G. Chartrand, and L. Lesniak-Foster: Graphs \& Digraphs, Prindle, Weber \& Schmidt, Boston, 1979.
[2] G. Chartrand, A. D. Polimeni, and M. J. Stewart: The existence of 1 -factors in line graphs, squares and total graphs, Indag. Math. 35 (1973), 228-232.
[3] L. Nebesky: On the existence of a 3 -factor in the fourth power of graph, Casopis pèst. mat. 105 (1980), 204-207.
[4] L. Nebeský: On a 1-factor of the fourth power of a connected graph, Casopis pěst. mat. 119 (1988), 415-420.
[5] M. Sekanina: On an ordering of the set of vertices of a connected graph, Publ. Sci. Univ. Brno 412 (1960), 137-142.
[6] D. P. Sumner: Graphs with 1-factors, Proc. Amer. Math. Soc. 42 (1974), 8-12.
[7] E. Wisztová: A hamiltonian cycle and a 1-factor on the fourth power of a graph, Časopis pèst. mat. 110 (1985), 403-412.
[8] E. Wisztová: On a hamiltonian cycle of the fourth power of a connected graph, Mathematica Bohemica 116 (1991), 385-390.

> Souhrn

PÁROVÁNf A HAMILTONOVSKÁ KRUŽNICE ČTVRTÉ MOCNINY SOUVISLÉHO GRAFU

Ladislav Nebeský

Necht G je souvislý graf s alespon ctyřmi uzly. V článku je dokázáno, že pro každé párování $M \vee$ grafu G^{4} existuje hamiltonovská kružnice grafu G^{4}, jejíz žádná hrana do M nepatifi.

Author's:address: Filosofická fakulta Univerzity Karlovy, nám. J. Palacha 2, 11638 Praha 1.

