
Mathematica Bohemica

Jan Seidler
Da Prato-Zabczyk’s maximal inequality revisited. I.

Mathematica Bohemica, Vol. 118 (1993), No. 1, 67–106

Persistent URL: http://dml.cz/dmlcz/126013

Terms of use:
© Institute of Mathematics AS CR, 1993

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/126013
http://dml.cz


118 (1993) MATHEMATICA BOHEMICA No. 1, 67-106 

DA PRATO-ZABCZYK'S MAXIMAL INEQUALITY REVISITED I 

JAN SEIDLER, Praha 

(Received December 24, 1991) 

Summary. Existence, uniqueness and regularity of mild solutions to semilinear non-
autonomous stochastic parabolic equations with locally lipschitzian nonlinear terms is in­
vestigated. The adopted approach is based on the factorization method due to Da Prato, 
Kwapieii and Zabczyk. 
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0 . INTRODUCTION AND PRELIMINARIES 

In their seminal paper [7] G. Da Prato and J . Zabczyk proved that any mild 
solution of a stochastic semilinear evolution equation 

dt = Atdt + f(t,S)dt + g(t,t)dw, «0) = fc 

in a Hilbert space H has almost surely continuous sample paths in H under minimal 
restrictions: A is an infinitesimal generator of a strongly continuous semigroup, £n 
measurable and independent with an infinite-dimensional Brownian motion tv, / and 
g Lipschitz continuous on H. The result is not only important by itself, providing 
an answer to a problem opened for a long time, but maybe even more significant is 
its proof, based on the factorization method, introduced in the paper [5] to solve the 
same problem for linear equations. In [5] the method was also modified for sectorial 
operators A and the continuity of paths in some interpolation spaces between H and 
Dom(A) was established. 

This text stemmed out from my effort to understand the strength of the factor­
ization technique. It turned out that we can extend Da Prato and Zabczyk's results 
in three ways: 
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(i) Non-autonomous problems of the form 

d{ = A(t)£dt + f(t,£)dt + g(t,t)dw 

will be considered; in particular, we replace semigroups in the definition of a mild 
solution by two-parameter evolution systems. 

(ii) In the parabolic case, we will establish existence and regularity of solutions 
to equations whose nonlinear terms are defined and lipschitzian only on a Banach 
space E embedded continuously into H. Such a problem has been thouroughly 
investigated if the noise is additive, i.e. for the diffusion coefficient g constant, but 
we aim at treating the case of a state-dependent noise. 

(iii) We will prove existence of (possibly exploding) solutions to equations the 
coefficients of which are Lipschitz only on bounded sets in E. 

The theorems presented here are anything but suprising and some of them may 
be even known (at least in the autonomous case). I find it interesting, nonetheless, 
that all the results can be infered in a unified manner, based on the factorization 
method and various local uniqueness statements. 

In order to be able to state our results let us introduce some notation and assump­
tions which will be used in the sequel. 

(A) Let (£},-./*, ( ^ ) j P) be a stochastic basis, H, Y real separable Hilbert spaces, w(t) a 

Y-valued (possibly cylindrical) Wiener process with a covarince operator Q G £(Y), 
Q>0. 

Hereafter £(V, Z) denotes the space of all continuous linear operators from a Ba­
nach space V into a Banach space Z\ if there is a danger of confusion, we will denote 
its norm by ||.||v->z. If G € C(YrH), then we set \\G\\2

Q = tr{GQG*}, that is, \\G\\Q 

is the Hilbert-Schmidt norm of the operator GQlf2. If (V, ||.||*) is a Banach space, 
r ^ 1, then ||.||r,* stands for the norm in the space Lr(fl; V) of V-valued Bochner r-
integrable functions. In the particular case V = R, however, we will use the notation 
|.| r. The space of A-H61der continuous V-valued functions on a metric space U will 
be denoted by C0)X(U] V), C(U\ V) will stand for the space of continuous V-valued 
functions. 

Now let us make precise the meaning of the notion of an evolution system. Setting 
A(T) = {(s,t) G [0,T],s t$ i}, we say that an operator-valued function U on A(T) 
is an evolution system (or an abstract fundamental solution) provided the following 
hypothesis is fulfilled: 

(E) Let U: A(T) —• £(/7) be a mapping such that 

(i) Vs€[0 ,T] U(s,s) = I; 

(ii) V«, t, u e [0, T], s ^ u ^ t, U(t, u)U(u, s) = U(t, s); 
(iii) Vc € H U(.,-)x: A(T) —• H is continuous. 
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Occasionally we will use the notation ||U||oo = sup{||l7(M)||> (s,t) G -4(T)}. Let 
A(t): Dom(A(t)) —• II be closed linear operators in H. If 

DxU(t,s)v = A(t)U(tys)v, D2U(t,s)v = -U(t,s)A(S)v 

for 0 ^ s < t ^ T and any v G Zy where Z is a linear subspace contained in 
each D07n(_4(£)), then we say that U is an evolution system for {A(t),0 ^ t ^ T} 
(with a regularity subspace .Z). We denote by D\U, D2U the derivatives of U(.,.) 
with respect to the first and second variable, respectively. Let us note that any 
Co-semigroup is a particular case of an evolution system satisfying (E). 

If one supposes that some "parabolicity" assumptions are fulfilled for the operators 
{-4(0}te[o,T]> t n e n much more regular evolution systems can be constructed. We 
summarize the assumptions we will use in the following hypothesis. 

(P) 1) -4(0 : Dom(A(t)) —• II, 0 ^ t <̂  T, are closed densely defined operators 
and Dom(A(t)) = Dom(A(0))y O^t^T. 

2) 3M ^ 1 VA G C, Re A ^ 0, V* G [0, T] AI - A(t) is invertible and 

| | (A/-X(0rMl^i^|-

3)3L*J>0 3«?€]0,1] VM,rG[0,T] 

\\[A(t)-A(8)]A(T)-l\\$L*\t-8\<. 

4)VaG]0,l[ 3La>0 V* G [0,T] Vx G Dom((-A(0))a) 

Dom((-A(t))a) = Dom((-A(0))a), 

and 

i>?\\{-M0))a*\\ < 11(^(0)^11 ^ La\\(-A(o)yx\\. 

As is well known (see e.g. [27], Th. 5.6.1), under the assumptions (P1)-(P3) there 
exists a unique evolution system U: A(T) —• £(II) such that 

(0.1) \\U(t,s)\\^C, Q^s^t^T; 

U(.,s)£C1(]s,T];C(H)), 0 <. s < T, oiU(.,s) = A(t)U(t,s), and 

(0-2) \\A(t)U(t,s)\\^-£-, 0^s<t^T; 
t — s 
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U(t,. )x € CҶ[0, <[; H), 0 < Ң Г , i Є Dom(A(0)), and 

(0.3) D2U(t, s)x = -U(t, s)A(s)x, 0 <. s < t <, T; 

(0.4) \\A(t)U(t,s)A(s)-l\\^C, O^s^t^T, 

for some constant C (which may differ in various estimates). The assumption (P2) 

also implies that the fractional powers (—A(t))a, a G R, are well defined, hence (P4) 

makes sense. Set Ha(t) = Dom((—A(t))a) and endow Ha(t) with the graph norm. 

The assumption (P4) is weaker than the supposition 

(0.5) [Ha(t),H0(t)]e = Ha{1„e)+pe(t), 0 ^ a < / ? < C l , ge]0,l[, te[0,T\ 

where [., ]e denotes the usual complex interpolation functor. (Indeed, Hi(0 = IIi(O) 

by (PI), Ho(0 = H,0 ^.t ^.T, and (P3) implies the existence of a constant L\ > 0 

such that 

for any x G Hi(0) and t G [0,T].) Theorem 3.3 in [1] states that (0.5) is valid (for 

any a, (3 G R, a < j3) provided 

(0.6) Vte[0,T] 3s > 0 sup \\(-A(t))iT\\H^H < oo. 
^e[-e,£] 

The estimate (0.6) holds, in particular, for self-adjoint operators A(t); in that case, 

however, (P4) can be proved directly (cf. [13], Th. 1.3). Other conditions for the 

validity of (0.6) will be mentioned in Example 6.1. 

It should be remarked that if an operator A: Dom(A) —• H gives rise to an 

analytic semigroup on H, then the operator A — (31 satisfies (P) for some /3 G R. 

For simplicity we set Ha = Ha(0), | |x| |a = ||(-_4(0))az||. (Sometimes we will use 

the symbols Ho, ||.||o for the original space H and its norm, respectively.) 

In [31], Th. 2, it is established that under (P1)-(P3) one has 

W(*> *)l|jW.)-tf.<t) ^ C\t - sf~a, 0 ^ (3 ^ a ^ 1, 

||U(* + v,s)~ U(t, S)\\H${S)^HQ{0) ^ CvP-o, O^a^p^l. 

Since we assume in (P4) that the spaces Ha are independent of t we get three useful 

estimates (which are well-known for analytic semigroups, cf. e.g. [27], Th. 2.6.13 or 

[14], Th. 1.4.3): 

.(0.7) J 1 ^ ( M ) I I * . ~ ^ (< _^,_0 
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for 0 ̂  s <t ^ T, 0 ̂  a < 7 ^ 1; 

(0.8) \\U(t,8)-I\\H.^He^C(t-8)° 

for <$G[0,1[, a €]0,1 - «[; and 

(0.9) s u p { | | U ( M ) | | ^ / / « ; ( M ) 6 A(T)} ^ C6 < oo, 

0 ^ 8 r̂  1. If (0.5) holds, then these estimates can be easily derived by interpolation. 
Indeed, let us realize that (0.2) means ||U(M)H1Io->J-'i ^ C(t-s)"1

i which together 
with (0.1) implies 

l|t!(^)||[ff„,//„Wtf„,tfl]M = l | l l ( M ) l l i . w , ^ C(t-8)-", 

/x €]0,1[. By (0.4), IM*, , ) . !* . - .* . ^ C, hence 

\\u(t,s)\\[HotHl]^lHliMl]a = \\u(t,.)\\a^Hll_a)lt+K ^at-.)-^1-^ 

for a G]0,1[. If 7 G]a, 1] then one can set \i = (7 - a)/(I - a) to obtain (0.7). 
Further, one obviously has \\U(t, s) - I\\H-+H ^ C. Fix 0 G [0,1[ and x G Hi, then 

||C/(<,*)x-a?||*= / D 2 l / ( t , r ) sd r = / U(t,r)A(r)xdr 

= I / (-A{0))$U(t,r)A(r)xdrj ^ f Ce(t - r)-6\\A(r)x\\dr 

^ const, ( ^ - s ) 1 " ^ ^ ! ! ! 

by (0.3) and (0.7), that is 

\\U(t,s) - I\\HI->H, ^ C(t-s)l~e, O^s^t^T. 

Using again the complex interpolation, we obtain (0 < x < 1) 

\\U(t,s) - I\\lH0tH1]„-+lHQtH.U = II^CM) - I\\H„-+H.„ < C(t - B^-'K 

Now let 8 G [0,1[, a G]0,1 - <5[ be arbitrary, set x = a + 6, 0 = 8/(a + 6), and (0.8) 
follows. The formulae (0.1) and (0.4) show that [/(.,.) is bounded on A(T) as an 
C(H)- and £(Hi)-valued function, respectively, so (0.5) implies the validity of (0.9) 
as well. 

Finally, let us note that by [2] (Th. 7.2 and Remark 9.l)yU(t,s) restricted to H6 

is an evolution system in H6 if 0 ^ 8 < £, where Q is the constant which appears in 
(P3). Hence, in particular, 
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(0.10) lim \\U(t, s)x - x\\6 = 0, x e Hs, 6 < g. 

The paper is organized as follows. In the next section, we state the main theorems. 
In Section 2 we quote four auxiliary propositions which will be needed frequently in 
the sequel. Section 3 is devoted to proofs of maximal inequalities for stochastic con­
volutions. Section 4 contains the proofs of theorems on mild solutions to semilinear 
stochastic evolution equations with globally Lipschitz continuous nonlinearities; in 
Section 5 the case of locally lipschitzian nonlinearities is treated. In the sixth section 
two illustrative examples are discussed. 

Acknowledgement . B. Maslowski and I. Vrkoc read various drafts of this paper 
and offered valuable comments. 

1. MAIN RESULTS 

First, we can state the maximal inequality 

Theorem 1.1. Let the assumptions (A) and (P) be fulfilled. Let p > 2, 6 E 
[0, \ - i [ . Let %l>: [0, T\ x Q —• £(Y, H) be an (^-adapted measurable stochastic 
process such that 

E J \ms)\\p
Qds<oo. 

Then T 

I Ms)\\\ 
Jo 

E sup II / U(t,sW(s)dw(s)\P ^CE f Ms)\\p
Qds, 

0 ^ . ^ T » J 0 U JO 

where C depends only on p, 6, T and U. Moreover, the process 

['u(.lS)iP(s)dw(s) 
Jo 

has a modification with almost all sample paths \-Holder continuous in H$ with any 

A € [ 0 , | - l - * [ . 

Note that the assumptions of the theorem imply f0 E\\^P(S)\\Q ds < oo, hence the 
stochastic integral investigated is well defined. The proof of Theorem 1.1 (which is 
presented in the third section) yields also the estimate 

:( sui 
V0<г,ť 

|| ji U(t, s)rj,(s) dw(s) - /0
r U(r, S)TP(S) dw(s)\\6 y 

^C(\)EÍTMs%ds 
JO 

S U P . т | . - r | -
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for any p > 2, 6 G [0, | — ^[, A £]0, ~ — £ - 6[, with a constant C(A) dependent only 
on p, T, 8, A and U. 

Further, tracing the proof of Theorem 1.1 one can check easily that it is not 
necessary to use the consequences of (P) if 6 = 0, hence we have also 

Theorem 1.2. Let the assumptions (A) and (E) be fulfilled. Let p > 2. Let ip: 
[0, T] x Q -+ C(Y, H) be an (Tt)-adapted measurablem stochastic process such that 

J0 
E / U(s)\fQAs<<x>. 

Then 

E sup / U(t,s)iP(s)dw(s) " ^CE f \ms)\\p
Qds, 

O^t^T JO JO 

where C depends only on p,T and ||U||oo- Moreover, the process 

J U(.,s)xl>(s)dw(s) 
Jo 

has a modification with almost all sample paths continuous in H. 

Now, let us turn to the problem of solvability of the semilinear stochastic evolution 
equation 

(1.2) d*(0 = [A(t)x(t) + f(t, x(t))] dt + <r(t, x(t)) dw(t), 

(1.3) x(0) = ip, 

in H, where the operators A(t) give rise to an evolution system U in H satisfying 
(E), and the nonlinear terms / , c are defined on appropriate subspaces of H and are 
in a sense regular compared with A(t). About the initial condition <p let us assume 

(1) Let <p: CI — • H be an ^-measurable random variable. 

Definition 1.1. An H-valued (/"^-adapted measurable stochastic process {x(t), 
0^t^T}\s called a mild solution to the problem (1.2), (1.3) on [0,7], if 

(i) almost surely, f(t,x(t)) and a(t,x(t)) are well defined for almost all t £ [0,T] 
and 

(1.4) / | | / («,*(*)) | |od«<oo, / | |<r(S)x(S))||2?ds<oo; 
JO Jo 

(ii) for any t E [0,-T] the equality 

(1.5) x(t) = U(t,0)<P+ f U(t,s)f(s,x(s))ds+ f U(t,s)<r(s,x(s))dw(s) 
Jo Jo 
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holds almost surely. 
Note that the assumption (1.4) implies the existence of the integrals in (1.5). 
First, let us adopt the following hypothesis. 

(U) Let S € [0, §[, let f: [0,T] x Hs —» H, a: [0,T] x Hs —+ C(Y, H) be measurable 
mappings such that 

3K,K*<oo Vx,yeHs V<€[0,T] 

\\f(t, x) - f(t, y)\\0 + \\a(t, x) - a(t, y)\\Q < K\\x ~ y\\s, 

\\f(t,x)\\0 + \\<r(t,x)\\Q^IC(l + \\x\\6). 

Then the theorem on the existence of mild solutions reads as follows. (Recall that 
Q > 0 is the parameter introduced in the assumption (P3).) 

Theorem 1.3. Let the assumptions (A), (P), (I), (L6) be fulfilled. Then there 
exists a mild solution of the problem (1.2), (1.3). Moreover: 

(i) The mild solution is unique — up to a modification — within the class of stochas­
tic processes with sample paths in L2([0,T],H6). 

(ii) Let <p be Ha-valued almost surely for some a £ [0, \[. Then the mild solution 
has a modification x such that x(.,u>) £ C([Q,T];Hfs) D C°>A([a,T]; HH) for almost 
every u £ Q for any a > 0, x £ [0, \[, X £ [0, \ - x[, and 0 £ [0, a[. If, moreover, 
a < Q, then x(.,u) £ C([0,T]; Ha) almost surely. 

(iii) If<p£ LP(£l; Ha), p > 2, a £ [0,6], then x £ C(]0, T); LP(ti; H6)) and 

sup ^ ° | k ( 0 l k ^ C * ( l - f | M U ) . 
0<t^T 

Furthermore, x £ C([0,T]; LP(Q; Hp)) n C°^([a,T]; LP(Q;H6)) for any a > 0, p £ 
[0, \ - 6[, and /? £ [0, a[. If a < Q, then x £ C([0, T]; L?(Q; Ha)) as well. 

(iv) If, moreover, p > 2 and <p £ LP(Q; H6), then for arbitrary 7 £ [0, \ - i[7 7 ^ 6, 
one has 

sup \\x(t)\\A ^C+(1 + |M|,,*). 

For any 7 £ [0, (\ - ±) A <$[, ar belongs to the space L^(Q.;C([0,T];H1)); the same 

assertion holds for 7 = 6 provided 6 < (\ — -) A 0. 
TAe constants C* and C + depend only on K*} T, p, 6, and U. 

R e m a r k . If the assumption (L6) is fulfilled, then (L#) holds for any fl ^ 6, thus 
we may replace S by an arbitrary fl £ [6, \[ in all statements of Theorem 1.3. 
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As in the case of Theorem 1.1, one can easily observe that no regularity of the 
evolution system is needed if 6 = 0. So we will virtually prove also the following 
theorem. 

T h e o r e m 1.4. Let the assumptions (A), (E), (I), (Lo) be fulfilled. Then there 
exists a mild solution of the equation (1.2), (1.3), which is unique — up to a modifi­
cation — within the class of stochastic processes with sample paths in L2([0, T], H). 
This mild solution has a modification x such that x(., u>) G C([0, T]; H) almost surely. 
Iftpe LP(Q; H), p > 2, then x G C([0, T]; Z7(Q; H)) and 

sup | | x ( 0 | | p , o ^ ^ ( l + |H|p ,0) 

with a constant C* which depends only on K*, T, p, and ||U||oo-
If, moreover, p>2 then x G Lp(Q;C([0,T];H)) and 

I sup IKOHo ^ C + ( 1 + |H|P)0) 

for a constant C+ which depends only on the same set of parameters as C*. 

The next step consists in weakening the quite restrictive global Lipschitz continuity 
assumption (La). We will assume that the nonlinear terms in (1.2) are lipschitzian 
only on bounded sets, that is, we adopt the following hypothesis: 

(LL*) Let be [0,\[, let f: [0,T]xH6 —• H, <r: [0,T]xH6—>C(Y,H) be measur­
able functions and 

ViVGN. 3 A N < o o V*G[0,T] V*,y G H6, \\x\\6, \\y\\6 ^ N 

||/(«, x) - f(t, y)\\0 + \\<r(t, x) - a(t, y)\\Q ^ KN\\x - y\\6. 

Hitherto, we could work with solutions which were defined on the whole (a priori 
fixed) interval [0,T]. It is well-known that even for ordinary differential equations 
the local lipschitzianity of the right-hand side of the equation is not sufficient for the 
existence of global solutions, so we have to generalize our concept of solution (cf. e.g. 
[26], Def. 34.4). 

Definition 1.2. A pair (x,e), where e is a ]0,T]-valued stopping time and 
{x(t),0 -̂  t < e} an ( .^-adapted //^-valued measurable stochastic process, is called 
a local mild solution to (1.2), (1.3) in H6 with an explosion time e provided 

(a) limsup||a:(*,u;)|| = +oo on the set {u;e(u) < T}; 
t-*e(o;) 
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(b) there exists a sequence {e(n)}£°=1 of s topping t imes growing to e such t h a t 

re ( n )(w) re{n){u) 
[ " \\f(t,x(t,u>))\\0dt<cx,, f " IKMÍť.^l^dí 

JO Jo 
< oo 

for any n ^ N a lmost surely, 
(c) for any t G [0,-T] a n d every 71 G N t h e equality 

>Ve(»> 

x(* A ř ( n > ) = U(t A e ( n \ 0)v? + / U(* A e(n\s)f(s, x(s)) dá 
Jo 

+ / U(t A e ( n ) , 5)(T(S, z(s)) div(s) 
Jo 

holds almost surely. 

The uniqueness of a local mild solution will be understood in the following sense: 
we say that there exists at most one local mild solution to the problem (1.2), (1.3) 
with paths continuous in Hs, provided for any two local solutions (x,e), (y, 77) satis­
fying x(.,u) G C([0,e(v)[;Hs), 2/(.,u>) G C([0,r)(u))[; H6) for almost every u G fi one 
has e = i] almost surely and x(t) = y(t) holds almost surely on the set {a;; t < e(u>)} 
for each*G [0,T]. 

If it is necessary to distinguish the two notions, we will call the solutions in the 
sense of Definition 1.1 global solutions. The analogy with a finite-dimensional case 
leads to the conjecture that global mild solutions exist if the assumption (LLs) is 
combined with the linear growth hypothesis 

(LG«) 3/C < 00 V*G[0,r| VxeHs 

\\f(t,x)\\0 + \\a(t,x)\\Q <^ K*(l + \\x\\6). 

We are not able to prove, however, that Theorem 1.3 remains valid with the 
assumptions (LLs) and (LGs) replacing (Ls); we have in addition to require the 
initial data to be such that any solution is continuous in Hs as t —> 0 + . 

Theorem 1.5. Let the assumptions (A), (P), (I), and (LLs) be fulfilled. Assume 
either that (p is Hs-valued and 6 < Q, or that ip is H^-valued for some C > 6. Suppose 

(1.6) sup | | /(*,0) | |o+ sup | | < T ( < , 0 ) | | Q < O O . 

Then there exists a local mild solution of the problem (1.2), (1.3). Moreover, 
(i) This mild solution has a modification (x,e) such that x(. ,UJ) G C([Q,e(u))[; Hs) 

C\C°'X(F;HX) for almost all w 6 D, any compact set F in ]Q,e(u))[7 and for any 
* € [ 0 , i [ , A € [ 0 , i - x [ . 
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(ii) A local mild solution is unique within the class of stochastic processes having 
a modification with trajectories continuous in H&. 

Furthermore, let the hypothesis (LC5) hold. Then 
(iii) The solution x is global, x(. ,w) G C([0,T]; H6) O C°'A([a,T]; HH) for almost 

all LJ G ft and any a > 0, x € [0, \[, A G [0, \ - x[. 
(iv)If<peLP(n]H6),p^2, then 

(1.7) sup I W 0 l k ^ c * ( i + |M|M), 

and if, moreover, p > 2 and 6 G [0, ^ — i[ , then 

(1.8) sup IKOII. <C+(1 + |M|P,«), 

wJiere C*, C+ are the constants introduced in Theorem 1.3. 

R e m a r k , a) An example of the ordinary differential equation x = £(t), f a 
measurable nonintegrable function, shows that it is inevitable to adopt some condi­
tion like (V6). (Recall that Definition 1.2 requires the explosion time to be strictly 
positive almost surely.) 

b) Like Theorems 1.1 and 1.3 the above result has its "non-parabolic" version 
which one gets by replacing the assumption (P) with (E) and setting 6 = x = A = 0. 

R e m a r k . Only for the sake of a more lucid arrangement we have investigated 
the equation (1.2) assuming that the coefficients / and cr are nonrandom. Theorems 
1.3, 1.4 and 1.5, however, remain valid (and their proofs unchanged), i f / : [0,T] x 
Hs x ft —• H, <r: [0,T] x ^ x S l —• C(Y, H) are measurable mappings such that 

(i) / ( . , # , . ) and <r(.,x,.) are (./^-adapted measurable stochastic processes for 
any x G H$, and 

(ii) / ( . , . , a ; ) , <J(., . ,U>) fulfil the estimates in (L,§) (or (LL.5), (LC5)) for every 
u G ft with constants K, K* (or KOv) independent of u>. 

R e m a r k on previous research. We would like to mention here a few papers 
related to some of the topics treated in this paper. 

a) The factorization method was introduced in the paper [5] and applied to semi-
linear problems in [7]. Theorems 1 and 2 from the paper [7] correspond to The­
orems 1.2 and 1.4 of the present paper, respectively, with the only difference that 
Co-semigroups are used in [7] instead of evolution systems. 

b) A weak-type maximal inequality for stochastic convolution integrals with expo­
nentially bounded evolution systems was proved in [18]. Maximal inequalities related 
to the one stated in Theorem 1.2 appeared in [19] for p = 2 and in [34] for p ^ 2, in 
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both cases for contraction semigroups (or contraction type evolution systems). We 
must emphasize that the estimates obtained in [34] are more precise than ours. The 
results from [34] were further extended in [16], again for contraction type semigroups. 

Maximal inequality in the spaces Ha was proved in [20] in the case p = 2. All the 
above mentioned results have immediate consequences for the continuity (or Holder 
continuity) of paths of stochastic integrals. 

c) The regularity of paths of solutions to linear stochastic parabolic problems was 
established by the factorization method in [5], for alternative proofs see [20] or [11] 
(cf. also [12]). The existence of solutions continuous in space and time to equations 
with fairly general drift terms, but with additive noise was discussed e.g. in [23], [24], 
[25] using random fields and in [6], [8] in the infinite dimensional setting. 

Results closely related to our Theorem 1.3 for equations with scalar Wiener process 
and with A generating a contractive holomorphic semigroup can be found in [4]. 
(Cf. also the paper [35] where the non-autonomous case is mentioned.) Theorems 
on regularity of a different type were recently established in [10]. 

d) Local solutions for stochastic equations in Hilbert spaces with bounded coeffi­
cients were treated in [26] and [22], for stochastic evolution equations e.g. in [15] and 
[19] in the "non-parabolic case", and in [4] in the situation described above. 

2. FOUR AUXILIARY PROPOSITIONS 

In the course of proofs we will need repeatedly the following results. 

Lemma 2.1. (i) Let U be an evolution system satisfying the assumption (E), let 
a G ] 0 , l ] , p € ] l , o o ] , a > i . Let 0 ^ a ^ 6 <$ T. For any f G Ip([a,6];/Y) define 

(ña/XO = / . ( < - *Г_1Í!(<, *)/(*) dí 
——-—"" Jа 

а < t < b. 

Then Ra is a bounded linear mapping from Lp([a, 6]; H) into C([a, 6]; H). 

(ii) If, moreover, the hypothesis (P) holds, 6 G [0,1[ and A* = a — - — 6 > 0, then 

Ra G C(L*>([a, 6]; //), C°>x([a, 6]; H6)) for arbitrary A G [0, A*[. 

The first assertion of this lemma and the Holder continuity of Raf were proved by 
Da Prato, Kwapieri and Zabczyk ([5], Lemma 1 and 3, respectively) under the addi­
tional hypothesis U(t,s) =- T(t — s), T(t) being a strongly continuous (holomorphic, 
resp.) semigroup in //, but one can repeat their proof literally if one considers the 
fact that the assumption (P) implies the estimates (0.7), (0.8). The fact that under 
the assumptions of the assertion (ii), Ra G C(Lp([a,b]\H),C([a,b]]Hs)) holds, can 
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be established by the following simple argument: By (0.7) and the Holder inequality 
we have 

\\Raf(t)\U š Ct Ґ(t-S 
Ja 

a - ó - l ll/(«)llod« 

AP-V/P 

Š 

šCs(£\\f(sW0dsy,P(£~av("-t-WP-Vdv) 

Cs((ap -Sp- í)/(p - l))l">-l(b - a)"-6-1/? ( I " \\f(s)\\p
0 ds) 

i / p 

for any t E [a, b]. 
Further, we will need an estimate for stochastic integrals that is a very particular 

case of the Burkholder-Davis-Gundy inequality, the Hilbert space version of which 
follows from [17], Th. 3.1. 

Lemma 2.2. Let the assumption (A) be fulfilled. Then for any p G [l5oo[ there 
exists a constant Cp > 0 such that for any (Tt)-adapted measurable stochastic pro­
cess G: [0,T] x ft —• C(Y,H) satisfying /Q

T
 | |G(0HQ dt < oo almost surely one 

has _ 
i P / 2 

E sup 
0<ť<T 

Iť \p / fT \; 
J^ G(s)dw(s)\ <CpE[jo \\G(s)fQds) 

The next result is a useful generalization of Gronwall's inequality; its proof is given 
in [3], Corollary 8.11 (cf. also Lemma 7.LI in [14]). 

Lemma 2.3. Let g E L1([01T\)J h G Lq([0,T\) be nonnegative functions, q G 
[l,oo]. Let fe L^lO.T]) be such that 

f(t) Ś ңt) + f 9(t~ 
Jo 

s)f(s) ds,. O^t^T. 

Then 

f(t) ś f^(Gnh)(t), QţtšT, 
n = 0 

where G is the Volterra operator given by Gh(t) = fQ g(t — s)h(s)ds, G° = I, and the 
series on the right-hand side converges in L9([0,T]). There exists a constant L > 0, 
dependent only on the function g, such that 

EG"h 
L«([0,T]) 

^ L\ЫLЯ([0,T])-

In particular, if h = 0, then / = 0. 
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Finally, let us quote Theorem 3 from [7], which is a stochastic version of the Fubini 
theorem and enables us to interchange stochastic and Bochner integrals. 

Theorem 2.4. Let (A) be fulfilled, let (G, Q, /i) be a measure space, let h: [0, T] x 
fixG —• C(Y, H) be a B([0, T\) ® T ® (7-measuraMe mapping such that h(.,., x) 
is an (T%)-adapted stochastic process for each x £ G and 

1/2 
< oo. j f^jf E\\h{t,x)\\%dt)X * dp(x) 

Then 

J (J h(t,X)dw(tj)dp(x) = J (J h(t,x)dii(xj)dw(t) 

P-almost surely. 

3. PROOF OF THEOREM 1.1 

Let us choose A E [0, | — - — 8[, fix a € ] ~ + 6 + A, | [ and set 

(3.1) V(*)= [ {s-r)-aU(s)r)^(r)dw(r)) 

Jo 

0 ^ 5 $ T. Since 

f E||(s - r ) -«I / ( , f r)^(r)||2Q dr <C \\U\\l f\s - r)-2-E| |^(r) | |2
Q dr 

Jo • Jo 

and the right-hand side is finite for almost all s € [0,T] as a convolution of two L1-
functions, the stochastic integral (3.1) is defined for almost every s, which is sufficient 
in what follows. First we will check that 

El|y|IWo,ntf) = E/T |lyWHPd<<00-

Indeed, by Lemma 2.2 

E||V(*)||p < Cp E( J* \\(s - r)-°U(s,r)1>(r)\\l dr) 

<Cp\\U\\P^{J\s-r)-2aMr)fQdr) 

P/2 

p/2 
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so in virtue of the Young inequality for convolutions we obtain 

E £ \\Y(S)\\r dS ^ CP\\U\\^ E £ ( £ ( , - r)-2a\\Hr)\\Q dr)"* ds 

T T 

CP\\U\\^(JQ s-^dsy^J E||V(r)||£dr) 
T 

= Cp\\U\\U^-2a)-"l2V^^(J E|Mr)||£dr). 

^ „ , . , . . .. 

V J O ' V J 0 

f 
/o 

Hence, in particular, Y G Lp([0,T]; H) almost surely. 
We will complete the proof using the identity 

(3.2) / f / ( / , r ) ^ ( r ) d 4 ) = — [ i ? a y ] ( 0 a.s. 
Jo K 

valid for any t G [0,T], where 

(RaY)(t) = / {t-s)°-lU(t,8)Y{8)&s, 
Jo 

i.e. Ra is the generalized Riemann-Liouville operator introduced in Lemma 2.1. The 
use of the representation (3.2) is the very core of the factorization method as treated 
in [5] and [7]. Note that the formula (3.2) follows easily from Therem 2.4 in which 
we set (for t G [0,T] arbitrary fixed) 

/i(r, «) = ( * - s)"-l(8 - r)-X[ot.](r)U{tt r)+(r). 

By Lemma 2.1 we know that # a y( . , u ; ) G C°'A([0,T]; H6) for almost all u G ft. 
Finally, 

I Ґ цp 
E sup / U(t,s)ф(s)dw(s)\\ 

0 < < ^ T ' Jo "i 

J ^ ) ' t ш, ЦR.YЏЙS 

= ( ! І ^ ) P

E | | Ä a У | | W í ) 

(^)P | | |ß«ГE||У|ГL, ( [ 0 ) T ] ; Я ) 

( f ! ^ ) P Cp\\\Ra\Г\\U\Ul - 2a)-P^~^(£ Щ\ф(r)\\Q dr), 
/0 

where, obviously, \\\Ra\\\ denotes the norm of Ra in the space £(LP([0,T];H), 
C([0,T\;H6)). D 
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4. PROOF OF THEOREM 1.3 

We aim at proving Theorem 1.3; as the first step we will treat the case of integrable 
initial conditions. Then the proof can be based on the Banach fixed point principle 
and is quite standard. 

Proposition 4.1. Let the assumptions (A), (P), (L^) and (I) be fulfilled. 
(i) Let p ^ 2, a G [0,6], <p G Lp(ft; HQ)- Then there exists a unique mild solution 

x of the equation (1.2), (1.3) in C(]0,T];Lp(Q;H6)) such that 

(4.1) sup t6^\\x(t)\\P)6^C*(l + M\Pia), 

for a constant C* dependent only on p,6,T,K* and U. Furthermore, x G C([0,T]; 
Lp(Q; Hp)) HC°^([a,T\; U>(Q; H6)) for any a > 0, p e [0, £ - « [ , / ? € [0, a[. Ifa<g, 
then x G C([0, T\; Lp(Sl; Ha)) as well. 

(ii) Assume, in addition, that p > 2 and (p G LP(Q; Hs); let 7 G [0, \ - M, 7 ^ 6, 
be arbitrary. Then there exists a constant C+, dependent only on p,6,T,K*, and 
U, such that 

(4-2) sup \)x(t)\\A < o+(l + IMU). 

For 7 G [0, (^ — M A»5[ the mild solution x has continuous sample paths in H1 and lies 
in LP(Q; C([0, T]; Hy)); the same assertion is true for 7 = 6 provided 6 < (^ — M A g. 

P r o o f . As mentioned above, we will prove Proposition 4.1 using a standard 
fixed-point argument. In what follows, constants depending only on p, 6, T, K, K* 
and U will be denoted by D, . We set for brevity 6 — a = v. Denote 

S = {h G C(]0, T\\ Lp(tt; H6)), h(t) ^-measurable, O^t^T, 

| | % = SUp t»\\h(t)\\Pt6< OO}. 

Obviously, the space S equipped with the norm \\.\\e is a Banach space. Let us define 

&h(t) = U(t,0)<p+ f U(t,s)f(s,h(s))ds+ J U(t,s)a(s,h(s))dw(s), 
Jo Jo 

0 -̂  t ^ T, h G S. We want to prove that Rh G S. As a first step, we check that 
Rh(t) G 1^(0,; Hs) for each t > 0; in so doing we establish estimates ensuring the 
existence of integrals in the definition of &. We have 

mmWr.s < \\U{t,0M,,* + J f U(t,*)/(«,h(s))ds|p t 

+ \ f U(t,s)<r(s,h(s))dw(s)\\ =Il + l2 + I3. 
1 Jo «p,t 
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Now 
A < l lvM)|U„_ . / , . |MU < Cst-"\\<p\\p,a 

by (0.7), and further 

h £. I \\U(t, s)f(s, h(s))\\p>i ds^Cs I (t- s)-s\\f(s, h(s))\\p<0 ds 
Jo Jo 

^CSK' f (t-s)-s(l + \\h(s)\\Pi,)ds 
Jo 

^ CsK*(l + V) f (t - S)~ V ( l + s"\\h(s)\\Pi() ds 
Jo 

^ Dx(l + \\h\\e)J (t - s)-ssa-s ds = D,(l + \\h\\£)t
1+a-2S B(l -6,1-u) 

^D,(l + \\h\\£), 

where B is the Euler Beta function. Using Lemma 2.2 we obtain 

< Cp (J* C2
s(t - s)-2S\\a(s, h(s))\\lQ ds)' 

^ CpCsK*(j\t - s)~2S(l + \\h(s)\\p,sý ds)1/2 

^ o3(l + \\h\\e){f(t - s)-2Ss-2"ds)''2 

= D3(l + \\h\\£)(t
i+2a~iSB(l -26,1- 2v)ý12 

^ D3(l + | | % )TX'2-S(B(1 -26,1- 2i/))1/2 t—'. 

Consequently, 
sup г"||ЛЛ(0llp,í < oo. 

0<í<T 

To proceed further we have to prove 

lim M(t + z) = Ah(t) in LP(Q; H6) 

for any 0 < t ^ T; in fact, we can prove much more. Towards this end, let us fix 
a > 0 and choose ut v £ [a, T] arbitrary, for definiteness let us assume u < v. Then 

Sth(v) - fih(u) = [U(vt 0) - U(ut 0)]<p + f\u(vt s) - U(ut s)]f(Sy h(s)) ds 
Jo 

+ fU[U(vts)-U(uts)](r(sth(s))dw(s)+ fVU(vts)f(sth(s))ds 
JO Ju 

+ / U(vts)a(sth(s))dw(s) = Zi+... + Z5. 
Ju 
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Relying on the estimate (0.8), we obtain 

\\Zx||-,< < \\[U(v,«) - I]U(u, 0MP<S ^ C\v - «|"||U(tt, 0M\P,S+Ii 

< c«+pa«o-*-"ikiip,aiv - «r < D4«-"-"IMIP,<.|V - u\" 

for 6 + /J. < 1; further 

llz4||P,« ^ f \\U(v, s)f(s, h(s))\\Pii ds < CsK* f(v - s)-*(l + ||A(S)||p,«) dS 
JU JU 

^C6K*(I + sup \\h(s)\\pA( T Ur-Ur)^csK
ma-,'(i + \\h\\e)\v-u\l-°, 

X a^t^T ' VJ0 ' 

and 

Hzsllp,* < CPCsK*[f(v - s)~26(\ + ||A(S)||M)2 d S ) 1 / 2 

<D 5 a-"( l + ||A||£)|v-«|1l2-<. 

Invoking again (0.8) we can estimate 

Hz2||P,« ^ f \\[U(v,«) - 7]U(«, S)/(S , A(S))||Pl< dS 
Jo 

^ C\v - «|" f \\U(u, s)f(s, h(s))\\Pt6+, ds 
JO 

^ D6|v - «|" f (« - S)-(*+")(l + ||A(S)||Pl<) dS 
Jo 

^ D6(l + T")(l + ||A||f) ( f(u - s ) - ( { + ") s -" dS) |v - «|" 

^ D6(l + T")(l + ||A||f )B(1 -S-(i,l- !/)Ta-^+"+")|v - «|" 

provided 6 + n < 1. Analogously 

/ tu \ 1/2 

iiz3nP,4 ^ D 7 | V - « r ( i + n % ) ( y (« - S)-^+") s-
2"dS) 

^ D7(l + | |%)(B(1 - 26 - 2n, 1 - 2*/))1/2T1l2a-(*+"+">|v - w|" 

provided 6 + f* < \. So we have established the inequality 

||^A(v) - £A(ti)||P), ^ F(\ + | | % )|v - «|" 

valid for any 0 ^ // < £ — £, a > 0, with a constant F dependent on /j and a, but 
independent of u} v and ft. 
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Hence we see that & maps £ into itself, since it is obvious that Rh is (.FtJ-adapted. 
In order to prove contractivity of .ft we endow £ with an equivalent norm 

|||/.«|- sup e-«««lft(OI|p,«, 
Ot^t^T 

where q > 0 will be specified later. Let us choose h,g G £ and estimate (t > 0) 

||*A(0 -fig(t)\\PtS < || J* U(t, s)[f(s, h(s)) - / ( . , , («)) ] d s | | p , 

+ || J U(t, s)[cr(s, h(s)) - <r(s, g(s))] dw(s)\\pS =Jt + J2. 

The assumption (Ls) yields 

h ^ C6K J (t- s)~b\\h(s) - g(s)\\Pt6 d. 
Jo 

and 

J2^CP(jo C2(t - S)-2S\\<T(S,h(s)) - <-(-,g(s))\\lQ ds)^ 

^Ds(Jo(t~.s)-
2i\\h(s)-g(s)\\l6dsy/2, 

that is 

\\fih(t) - fig(t)\\ls ^ D9 f(t - s)-2S\\h(s) - g(s)\\2
pi6 ds. 

JO 

This implies 

^ D ^ I *-*«-\t ~ s)-2is-2*(e-2<»s2>\\h(s) - g(s)\\2
p>6) ds 

< D9\\\h ~ j / | | | 2«i-^ i' e-2i'(i-«)(i _ v)-uv-*» dw> 

jo 

so 

Since 

\\\M - fig\\\ ó #10 ( sup f 1-2' i ' e-2« ť"(l - v)-2"v-26 dv) l ' \ h - <,|||. 
°^»<T jo ' 

, !& oSír ( < 1 _ 2 4 / ' ^ í 1 " ^~2"v~26 d v ) 1 / 2 = °' «/o 
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we can ensure the contractivity of A by choosing q > 0 sufficiently large. 
Since mild solutions to (1.2), (1.3) in £ are precisely the fixed points of £, we see 

that there exists a unique x £ £ being the mild solution to (1.2), (1.3). Above we 
have actually derived an estimate 

\\x(t)\\lf < D u r 2 1 < a + Du f(t - s)-"(l + \\x(s)\\ls)ds. 
JO 

Straightforward calculations based on Lemma 2.3 now yield 

IKOIIM<D12ta~ s(i + |M|P)<o, o<t^T, 

and (4.1) follows. Moreover, take /? £ [0,a] arbitrary, then 

IK*) - <p\\v,f> < Htl(~> 0)<P - dip,, + || f U(z, r)/(r, x(r)) dr||Pi/J 
JO 

II f* II 
+ / U(z,r)<T(r,x(r))dw(r)\\ =J3 + J4 + J<>. 

" Jo "p./5 

We can easily estimate 

J^C„( j f C|(- - r)-2l«r(r,«(r))||» iQ d r ) 1 / 2 

* Di3Uo{Z " r)" 2^ r 2 a" 2*( 1 + '"' | |x(r)||p,,)2dr)1/2 

^ oi3(l + ||x||f)(B(l - 20,1 - 2«,))1l2T°-*Vl2-* - 0, ^ - 0+; 

analogously J4 —• 0, 2: —• 0+. Further, if a < £, then 

^lim ||tt(z,0Mw)-v»(w)||a=-0 

for almost all u; € ft by (0.10), as tp is almost surely #<*-valued. On the other hand, 
if g ^ a, then for any /? < a we have 

||{/(2,0Mw)-V>MIU ^ Cr«-^||^(u;)|U 

by (0.8). In both cases the dominated convergence theorem applies and we conclude 
that x £ C([0,71; 1^(0; Hp)) for 0 ^ /? .$ a (or for 0 ^ 0 < a, respectively). 

Let us turn to the proof of the statement (ii). In order to prove it let us assume 
that (p £ Lp(il\ #$), p > 2. Note that the estimate (4.1) now implies 

sup IWt)||p,^c*(i + |H|p,,), 
Ot^t^T 



thus 

[T E\\<T{r,x(r))\\>>Q dr ^ 2 '-1( /T)P / (1 + | |x(r)| |^)dr 
JO Jo 

^ V-\K* f{\ + cT(1 + \\<p\\P,6)pT < oo, 

so 
/ " [/(., s)*(a, x(s)) dw(s) e C°'A([0, T]; H7) 

Jo 
almost surely for any 7 G [0, \ - M, A G [0, £ - i - 7[ according to Theorem 1.1. 
Analogously, 

/ ' [/(.,«)/(,, *(*)) ds G C°'A([0,71; H7) 
Jo 

almost surely (with the same 7, A). Furthermore, fix 7 G [0, \ - £[, 7 -̂  S arbitrarily, 
then 

sup | |x(ť)||J d sup ||í/(<,0V||7 | +1 sup II / t/(M)/(s,s(s))dJ I 
)^<^T IP IO<t<T IP lO^ť^TlIJo "T1 

/ U(t,s)a(s,x{s))dw(s)\\ 
ljo " 

+ sup 

Obviously we have 

by (0.9), and further 

M2 ^ C7A'* 

= Mi + M2 + M3. 

Mi ^ C*;iM|Pl7 < 0...IMI-,. 

SUp f (t-s)-T(l + \\x(S)\\S)ds 

Oř* \(P-I)/P f ft x 

f (< _ a ) - 7 P / ( ř - l ) d s / (1 + | |X (S) | | 4 ) " dfi 
o / \Jo / 

< o 1 5 Q T ( i + IKs)||p{)ds) P. 

I/Pl 

In view of Theorem 1.1 we have 

M^C{[ \ns,x(s))fpQdsy,P<D16(Jo {l + \\x(.)\fptt)ds) i/p 

Hence 

(4.3) E sup IKOHÍ; <$ D17\\<p\\;tS + D17 í (1 + E||x(S)||p) ds. 
0<<<T r JO 

87 



Using (4.1) to estimate the right-hand side of (4.3) we obtain the desired inequality 
(4.2) at once. 

We have already noted that U(.,Q)<p(u>) G C([0,T];H7) almost surely for any 
7 € [0) ̂ ] provided 6 < g, and for any 7 G [0, S[ in the opposite case. Hence under 
the restrictions on 7 adopted in Proposition the sample paths of the mild solution x 
are continuous in Hy almost surely, x(.,u>) G C([0,T];Hy). Thus, by the finiteness 
of the right-hand side of (4.3), x G Lp(fi;C([0,T];/I7)). The proof of Proposition 4.1 
is completed. • 

To extend the existence proof to more general initial conditions we will use the 
same procedure as applied in [7], which is based on the following local uniqueness 
lemma. Its proof is contained in the proof of Theorem 2 in [7]; we repeat the simple 
proof here for completeness. (Recall that XB stands for an indicator of the set B.) 

Lemma 4.2. Let the assumptions (A), (P) and (L$) be fulfilled. Let ip, ^ G 
L2(Q; H) be To-measurable. Let x,y G £ be mild solutions of the equation (1.2) with 
initial conditions x(0) = <p,y(0) = ip, respectively. Set £=:{&£ Q;<p(u)) = ip(w)}. 
Then Xsx(t) = Xi?2/(0 almost surely for any t G [0,T] fixed. 

P r o o f . By the definition of a mild solution, 

x(t)-y(t) = U(t,Q)[<p-iP]+ I U(t,r)[f(r,x(r))-f(r,y(r))]dr 
Jo 

-f / t/(^,r)[(T(r,x(r))-(T(r,t/(r))]dw;(r). 
Jo 

Let us realize that xs[<P — V>] = 0 and 

Xs / U(t,r)[<r(r,x(r))-<r(r,y(r))]dw(r) 
Jo 

= / U(t,r)xs[<r(r,x(r))-<T(r,y(r))]dw(r) 
Jo 

as xs is an .Fo-measurable random variable. Consequently 

\\Xs(x(t) - y(0) lhj ^ CsK I (t- r)-6\\xS(x(r) - y(r))\\2)S dr 
Jo 

+ Csl<(j\t - r)-^\\Xr(x(r) - j / ( r ) ) | | ^ d r ) ' 
/-

and Lemma 2.3 implies 

sup | | Ы * ( 0 - У(t))h,s = 0. 

D 
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Proposition 4.3. Let the assumptions (A), (P), (0 and (La) be fulfilled. Let <p 
be Ha-valued almost surely for some a G [0, \[. Then there exists a miJd solution x 
of the problem (1.2), (1.3) whose sample paths lie in C([0, T\; Hp) H CM([a, T\; Hx) 
almost surely for any a > 0, x G [0, \[, A G [0, \ - x[ and /? G [0, a[. If, moreover, 
a < Q, then x(., u) G C([0, Tj; //*) for aJmost aJJ u G ft as weJJ. 

R e m a r k . In Proposition 4.1 we have established the existence of a unique mild 
solution to (1.2), (1.3) if <p G LP(Q;H). Proposition 4.3 states, in particular, that 
this solution has a modification with continuous sample paths. 

P roof . For any N G N set QN = {a; G ft; IM^OIIa ^ N] and define 

u G fi/v í *>(->). 
U otherwise, 

thus v?/v G L°°(Q;.f7a). Let x̂ v be the mild solution of the problem 

dxN(t) = [i4(0*jv(0 + /(*. *-v(0)ld* + *(*> M O ) d™(0> 
XJV(O) = y?jv-

First, choose a > 0, x G [0, | [ , A G [0, | - x[ arbitrarily. We can find r G]2,oo[ 
such that K <\ — 7, A < ^ — £ — x. By the definition of a mild solution we have 

xN(t) = U(t,a)xN(a)+ I U(t,s)f(s,xN(s))ds 
(4.4) y* 

+ / U(^)(7(.S, £#($)) dw(0 
Ja 

for t G [a, T]. We will proceed as in the proof of Theorem 1.1 using the representation 

/ U(t)s)a(s1xN(s))dw(s)^ s^ii(RtAY){t), a^t^T, 

Ja fl 
. Y(s) = J (s -v)-"U(s, v)a(v,xN(v))dw(v), a^s^T, 

with ft G]£ + x , i [ . As ipN € LT(ii;H), we have xN € C([a,!T]; Ir(ft; Hi)) by 
Proposition 4.1(i), and this implies 

rp rp 

Eja ||V(«)|r<Ut$Cf.||ltireojf E ( | \ s - t ; ) ^ | | ( - ( V ) i - w ( v ) ) | ^ d t ; ) ' ' / 2 d , 

<Dl8(jo v-*>dvy'2 (j\l + \\xN(vWr>s)dv) 

^ Di9(l + sup ||arjv(t>)||r,«Y < oo 
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by Lemma 2.2 and the Young inequality. Thus almost every path of Y lies in 
Lr([atT\iH) and Lemma 2.1 can be used. The Bochner integral in (4.4) can be 
treated in a similar way, hence 

/ ' U(., *)/(*, xN(s)) d* + / * í /( . , s)c(s, xN(a)) dw(s) e Cd'A([a, T\; H> 
Ja Ja 

) 

almost surely. Now, let us take h £ H% 2a ^ s ^ t ^T arbitrary. Using (0.8) we 
obtain 

\\U(t,a)h - U(S%a)h\\„ = \\[U(t%s) - l]U(S%a)h\\x < C(t - S)x\\U(S%a)h\\x+M ^ 

< D20(t - s)x(s - a)-<A+*>||/i||o ^ D20a-(x+")\\h\\0\t - s\x. 

So xN € C°'x([2a%T\;H„) almost surely for any N € N and a > 0. 
Further, taking into account that <p (and hence also <pN) is Ha-valued we establish 

the desired continuity of paths of xN on the whole interval [0, T\% modifying slightly 
the argument used above. First, let us assume that a < 6 and take q £]2, oo[ such 
that 6 < a + j < 5. Again we will use the factorization 

(4.5) / ' 1/(., r)a(r% xN(r)) dw(r) = *-^RtiY% 

Jo * 

where r 

Y(r)= I (r-v)-*U(r,v)*(v,zN(v))Aw(v), 
Jo 

/i £]a -r - , | [ . By Lemma 2.1, the stochastic integral on the left-hand side of (4.5) 
has sample paths in C([Q,T\; Ha) provided Y(.,u) G Lq([Q% T\; H) almost surely. But 
using (4.1) and the fact that q(6 — a) < 1 we obtain in a similar manner as above 

rp rp 

Ej \\Y(t)\\<dt<D21(J (l + ||«,v(t>)|i;,,)dt>) 
T 

< Z)22(l + (^aup^I*"*H*jv(-)IU.«)') ( / r«<*-> d<) < 00. 

So we have proved that 

í U(., r)<т(r, xN(r)) dtв(r) Є C([0, Г|; Я a ) a.s. 

in the case a < 6; the same result for a ^ 6 has been already established in the proof 

of Proposition 4.1(H). One can obtain easily that 

/ ' {/(., r)f(r% xN(r%u>)) dr G C([0, T\% Ha) 
Jo 
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almost surely. Moreover, we know that If(., 0)pjv(w) € C([0>T];Hp) almost surely 
for /? < a (or for 0 .$ a, if a < #). 

So we see that the paths of the mild solution xs have the required regularity 
properties. Now we will use the processes xs to construct a solution of the problem 
(1.2), (1-3). 

Let N, M £ N, M ^ N. By Lemma 4.2, xs(0 = xhi(t) almost everywhere on Qs 
for any t] the continuity of trajectories implies 

sup sup \\XM(Í,V) - -Cjv(<,^)|| = 0 a.s. on íls-
M^NO^t^T 

Hence the limit 
*(.,<*>)= lim ;CЛÍ(.,W) 

Лf —*oo 

is well defined in C([0,T]; H) for almost all w £ f2^; in fact, xs = x almost surely 
on Qs> As P(fijv) —• 1,. -V —* oo, we obtain x as a stochastic process whose sample 
paths share all the continuity properties of the paths of xs- It can be seen easily 
that x is a mild solution to (1.2). (Recall that the equality <r(r, x(r)) = <r(r, xs(r)) 
a.s. on Qs implies 

/ U(t,r)*(r,x(r))dw(r)= I U(t,r)<r(r}xs(r))dw(r) 
Jo Jo 

almost surely on Q/v) • 

To complete the proof of Theorem 1.3 it remains to establish the uniqueness. 

Lemma 4.4. Let the assumptions (A). (P), (I). (Ls) be fulfilled. Then there 
exists — up to a modification — at most one mild solution of the problem (1.2), (1.3) 
within the class of processes with L2([0,T];Hs)-trajectories. 

P r o o f . Let x, y be two mild solutions of (1.2), (1.3) such that 

fT fT 

(4.6) / ||ar(0||2dl<oo, / \\y(t)\\]At < oo a.s.. 
Jo Jo 

(Note that (4.6) implies (1.4) from Definition 1.1.) For R £ N arbitrary set 

rR = inf{. € [0,71; / ' ||*(j)||> ds + / ' ||y(S)||| ds £ R} 
JO Jo 

(with the convention inf 0 = T). Let us have R fixed for the meantime and define 

( M ) = X[0frB(u/)](0- W e h a V e 

£(0(*(0 - y(0) = £(0 / u(*> *)[/(*> *«) - /(•> »«)]d* 
Jo 

+ *(0 / U(t,S)[cr(S)x(S)) - <r(S)y(S))]dw(S). 
Jo 
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ís\\ 
\\ó 

As £(t) ^ ((*) for t> s by definition, we obtain 

\\S(t)f U(tfs)[f(s,z(s)) - f(siV(s))]ds 

^ f t(*)\\u(t, *)[/(*, *(«)) - /(«, y(s))]\U ds 
Jo 

^ air (\t - ^-'ewii^w - y(«)iii ds. 
Jo 

Further, set ^(«) = U(tf s)[<r(s, X(S)) — <r(s, y(s))] for brevity. We want to prove that 

(4.7) \\^(t) j\(s)dw(s)\\f < J jf {(-)*(«) dw(«)|4 

holds almost surely. Indeed, put B = {u> E ft; £(*,u>) = 1}. On ft \ 5, the left-hand 
side of (4.7) is zero. On the other hand, £(s)ip(s) = xl>(s), 0 .$ s ^( , on 5, hence 

( (0 / t(>(s)dw(s) = / t(s)tl>(s) dw(s) a.s. on B. 
Jo Jo 

It follows that 

i(t)\\x(t) - y(t)\\s ^ CsK f(t - s)-^(s)\\x(s) - y(s)\\6 ds 
JO 

+ 1 y U(t,s)Z(s)[<T(s,x(s))-<j(s,y(s))]dw(s)\\6, 

therefore 

IK(')[*(0 " V(t)]\\h < °23 f\t - s)-™\\t(s)[x(s) - y(s)]\\ls ds. 
Jo 

By the definition of £, 

rT 

E / IKW(*W-W(«))||jd^2ii<oo> 
Jo 

so E||£(.)(x(.) - 2/(.))lli ^ a function in /^([OjT]) and the generalized Gronwall 
lemma implies 

IK(')[*(0-iK-)]ll-.« = o, ( K t ^ r . 
This means that x(t) = y(t) almost surely on the set {u>;t ^ TR(W)} and it suffices 
to realize that, by (4.6), TH—>T almost surely as R —• oo. D 

Combining the assertions of all propositions proved in this section we obtain The­
orem 1.3. 
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5. PROOF OF THEOREM 1.5 

Our procedure follows the finite-dimensional pattern of passing from lipschitzian 
to locally lipschitzian coefficients (see [9], §5.2) and so it is based on the following 
local uniqueness result. 

Proposition 5.1. Let the assumptions (A) and (P) be satisfied, let p > 2,5 £ 
i - I f 
2 pi 

[OĄ-Ц.Let 

/ . : [ 0 , : Г ] x Я 4 — • Я , ^ [ O . T J X Я Í — - * £ ( Y , Я ) , » = 1,2, 

be measurable functions such that both the pairs (f\, <T\) and (/2, #2) fulfil (L&). Let 
D C H6 be a domain such that 

f\ = / 2 , <n = <r2 on [0,7] x D. 

Let <p» G Lp(Q;Hs), i = 1,2, be To-measurable. Set S = {u> € £i;y?i(u;) e D or 

<P2(v) E £>} and assume 

(5.1) Xs^i = XS^2 almost surely. 

Let us denote by Xi the mild solutions to the problems 

dxi(t) = [A(t)xi(t) + fi(t, xi(t))) dt + n(t} Xi(t)) dw(t)} 

Xi(0) = <pit 

i = 1,2. Set n(u) = inf{* G [0,T];xi(t,uj) £ D} (with the conation inf 0 = T). 
Then 

P{u;;r1(a;) = r2(u;)} = l, 

and 

P{u; sup ||xi(t,o;) - a?2(^^)||^ ^ 0) =̂  L 

0<t^Ti(u;) J 
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Proof. Set £(t,u) = inf{xx>(a?iWu;)),0 $ * < < } . By the definition of a mild 
solution 

«0l*i(0 ~ «a(01 = tW(t,0)[Vi ~ to] 

•+«0 / ^,0l/ i(*,«iW)-/2(«, «!(•))]<!• 
Jo 

+ t(t) I U(t18)[f2(81Xl(8))-f2(S)X2(8))]d8 
JO 

+ ((t) I U(t,s)[(Tl(8,XX(8))^(T2(8yXl(8))]dw(8) 
JO 

+ W) I U(t, 8)1*2(8, Xi W) - <T2(«, X2W)] dtl/W 
JO 

= <;(<)£/(', 0)fe>i - y>2] + Mi + . . . + M4. 

We have £(t)[<p\ - y?2] = 0 almost surely by (5.1). Further, if £(*,u>) = 1, then 
/i(s,ari(s,u>)) = /2(s,-ci(s,u>)), 0 $ s ^ t, hence Mi = 0. If < < n(u;), then 
<ri(«,a?i(«,w)) = <r2(s,;Pi(.s,u/)), 0 ̂  s ^ *, hence 

/ U(t1s)(Ti(s,xi(s))dw(s)= / U(^,s)cT2(s,xiW)du;W 
Jo Jo 

almost surely on the set {ur,t < Ti(u;)}. But £(t) = 0 on {u;t ^ Ti(u;)}, hence 
Ms = 0 a.s.. The obvious fact £(t) ̂  £(s), £ ̂  s, implies 

HAfell* ^ CSK f (t- s)-sS(t)\\*i(s) -•*a(«)||« ds 
Jo 

^ C«/< / (t - s)-st(s)\\Xl(s) - x2(s)\\s ds 
Jo 

<D24(JoS(s)\\xi(s)-x2(s)\rfdsy MP 

by the Holder inequality. 

Further, proceeding as in the proof of formula (4.7) we obtain 

II f" II 
((OH \ U(t, S)[<T2(S, *,(«)) - <T2(S, «,(-))] dw(S)\\ 

II JO II* 

^ I J U(t, s)Z(s)[(T2(s, xi(a)) - <r2(s, x2(a))] dw(a) 
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6\p 

1/P 

By Theorem 1.1 we have 

sup II / U(t,s)Z(s)[c2(s,xi(s)) * a2(s,X2(s))]dw(s)\\ 
0<t<r » JO » 

< cl,PK{[ ms)[*i(s)-*2(s)]\\p
6ds)1/p. 

This implies 

E SUp * ( . ) | M 0 - * 2 ( 0 I I U £ > 2 5 / rE^(5)| |x1(«)-X2(S) | |JdS . 
Oe t̂̂ r JO 

The terms on boths sides of the above inequality are finite by Theorem 1.3, hence 
the Gronwall lemma yields 

sup £(0l l x i (0 ~~ £2(0115 = 0 almost surely, 

hence 
sup | |zi(0 ~ ^2(011* = 0 almost surely 

0<t<T ! 

and using the path continuity of x\,X2 we complete the proof. D 

Proposition 5.2. Let the assumptions (A), (P), (I), and (LL.5) be fulfilled. Let 
(1.6) hold and let <p G LP(Q; H6), p > 2, S G [0, \ - £[, and let either 6 < g, or let 
<p be H^-valued, £ > S. Then there exists a local mild solution (x,e) of the problem 
(1.2), (1.3) such that x(. ,w) G C([Q,e(u)[;H6) C\ C°>X(F;HX) for almost all u e Q, 
any compact set F in ]0, e(u)[, and any x G [0, | [ , A G [0, \ - x[. If, moreover, (LG.5) 
is fulfilled, then the solution x is global and x(. ,u;) G C([0,T\; H6) C\C°>x([a,T\; Hx) 
for almost allu £$l and any a > 0, x G [0, \[, A G [0, | — x[. 

P r o o f . For NGN arbitrary let us set 

fN(t,x) = < 

f / (« ,*) , - ** 0, ||«||, ^ iV 

f{t, x)(2 - \\x\\6/N), t*0,N< \\x\\, < 2N 

L 0, elsewhere, 

and 
<T(<,X), tž0,\\x\\s<,N 

<rN{t, x) = \ *(t, x)(2 - IWk/iV), < ^ 0, .V < llxll, ^ 2.V 

. 0, elsewhere. 
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Then the functions /yv,^N fulfil the assumption (hs) for each N € N, the linear 
growth being implied by (1.6). 

According to Theorem 1.3 there exists a unique mild solution XN of the problem 

(5.2) dxN(t) = [A(t)xN(t) + //v(<, xN(t))] dt + <rN(t, xN(t)) dw(t), 

* jv(0) = <p; 

this solution is such that xN € C([0,T]; H6) n C°>x([a,T]; HM) almost surely, a > 0, 
A < | — x. Define 

rN(u,) = inf{< G [0,T]; ||xN(<,u;)||, ^ N} (inf 0 = T). 

By Proposition 5.1 we have 

P{u> e ft; sup sup ||ZM(<,W) - xN(t,uj)\\6 = 0} = 1. 
M^N 0^.t^TN(u>) 

Note that {r^JgLj is an almost surely nondecreasing and eventually strictly positive 
sequence 

Setting 

sequence by the continuity of sample paths of XR in Hs. Set e(u)) = lim TR(UJ). 
K—*oo 

x(t,uj)= lim XN^^), 0 -̂  t < e(u))y 
TV—>oo 

we obtain a well-defined stochastic process with sample paths of the required regu­
larity. Let w G f i b e such that x(. ,UJ) is continuous and e(u) < T. As, by definition, 
\\x(TN(uj)yuj)\\s = \\XN(TN(V),U)\U = -V and TN(U>) -* S(UJ), we have 

limsup ||#(0ll* = +oo almost surely on {u)\e(ui) < T}, 

and e is the explosion time for x. We have to prove that a? is a local mild solution. 
By the definition of a (global) mild solution and the continuity of sample paths we 
can obtain a null-set f G / such that 

XN(t) = U(t,0)<p+ I U(tys)fN(syxN(s))ds+ I U(t,s)<TN(s,xN(s))dw(s) 
Jo Jo 

holds for any t £ [0, T] and u) £ F; thus also 

rtATN 

XN(tKTN) = U(t/\TN,0)(p+ / U(t ATN,s)fN(s,XN(s))ds 
Jo 

rtATN 

+ / U(t ATN,s)<TN(s,XN(s))dw(s) 
Jo 



for all t and u> £ F. Our construction yields that xN(s,u) = a,(s,i«;), fN(s,xN(s,w)) 

= /(s ,x(s ,w)) , (rIv(s,£/v(s,w)) = <x(s,x(s,u>)) for 0 ^ s ^ TAt(w), hence 

c(f ATAT) = U(tATN,0)<p+ / U(tATN,s)f(s,x(s))ds 
Jo 

+ / (/(/Arjv,s)<T(s,x(s))dti;(s) 
Jo 

for any N e N and < G [0, T] almost surely. 
Finally, let us assume that (LC5) is fulfilled. Then 

(5.3) sup sup [\\fN(t, x)\\0 + \\<rN(t, x)\\Q) ^ K*(l + ||z||,), 
-V€N *€[0,T] 

where K* is the constant introduced in (LGa). Set QN = {W;TN(<JJ) = T} . Using 
the estimate stated in Theorem 1.3(iv) we obtain 

P(fi\fijv) = P{"; sup \\xN(t,u)\\,^N}^N-'E sup \\xff(i,u)\ft 

^ .V-" (C + ) " (1 + E | M | ? ) ^ 0 , .V-><x, 

as the constant C+ is independent of N by (5.3). Hence it is easy to see that x solves 
(1.2) in the sense of Definition 1.1 and its sample paths have the required regularity. 

• 
The following uniqueness result will play now the same role as Lemma 4.2 plays 

in the proof of Theorem 1.3. 

Lemma 5.3. Let the assumptions (A), (P) and (LLs) be fulfilled. Let <p,il>: il —• 
Hs be pQ-measurable. Let (x,ex), (y,£y) be local mild solutions of the equation 
(1.2) with initial data x(0) = (p, y(0) = tp. Assume that x(. ,u) e C([Q,ex(u>)[; Hd), 
y(.,u) e C([0,ey(u))[, H6) for almost every u> e ft. Set E = {u E 0;̂ >(u>) = #*>)}. 
Then 

X£ex = XsSy almost surely 

and 

XzX[t<ex]x(t) = XsX[t<€y]y(t) almost surely 

for any t e [0, T\. In particular, ifx,y are global mild solutions to (1.2) with sample 
paths in C([0,T];H6)} then 

Xi7#(0 = Xsy(t) almost surely 

for any te [0,T]. 
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R e m a r k . In particular, under (A), (P) and (LIU) there exists—up to a 
modification—at most one mild solution to (1.2) with trajectories continuous in 
H* for any JVnreasurable initial condition tp: ft —• H&. 

P r o o f . For N E N let us define stopping times 

r£(u,) = inf{* e [Q,T\t\\*(t>v)\U > N}Aex
N\u), 

ifou) = inf{t e [o,T\Mt,<*)\U > *) A 4 N ) H , 

TN = T%fAT%r, 

where {ex
n }, {ty } are the sequences of stopping times the existence of which is 

postulated in Definition 1.2. (As usual, inf0 = T.) Fix N for a while and set 
t(t,u) = X[o,rAr(u;)](0- Using Definition 1.2(c) and the JFo-measurability of xs we 
obtain the equality 

Xitf(0(*(0 - 2/(0) = €(0 / U(t98)xs[f(8,x(*))-f(*,v{*))]A* 
Jo 

+ S(t) f U(t, S)XS[<T(8) X(S)) - <r(s, y(s))] dw(s). 
Jo 

Using again the same procedure as in the derivation of (4.7) we get 

\\xst(t)[*(t)-v(t)]\U < / \\U(t,8)xES(')lf(;x(»))-f(»M>))]\\tds 

Jo 

+ || J U(t, »)Xsi(')[<r(; x(s)) - a(s, y(s))] d« , ( S ) [ 

almost surely, hence 

Ilxitf(0l*(.)-»(.)]ll2,« 

^Cs I\t-s)-6\xSZ(s)\\f(s,x(s))-f(s,y(s))\\0\2ds 
Jo 

+ Cs(J\t- *)-" \xst(8)\W(>> *(»)) - *(«, V('))\\Q\\ <**)1/2. 

By the definition of r^v, if w € ft is such that £(*,u;) = 1, then 

| | / (s ,x(s,u)) - f(s}y(s}u))\\0 + |K« , z(*,u>)) - (7(5, y(s,u))\\Q 

^ KN\\x(8,u) - y(8,u>)\\6, 

thus 

Hxrí(*)[«(«) " iKOllla,.' ^ ->-«** /*( • - s)-2S\\X^(s)[x(s) - y(.)]| |». d«. 
JO 
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As ||£(s)[#(s) — 2/(«)]||2,c5 ^ 4N2, 0 ^ s ^.T, Lemma 2.3 may be applied and we have 

||x-rf(0[*(0 - rtOHk* = o 

for each t G [0,T]. Thus xsx(t) = X£2/(0 almost surely on the set {uj;t -̂  r/v} for 
arbitrary N, so by passing N —* oo we obtain 

(5.4) Xsx(t) = xsy(t) on {w, t < ex A ey) 

for any t G [0,T] almost surely. 

It remains to prove ex = ey a.s. on E. To this end, let us realize that there exists 
a null set F G T, P(F) = 0, such that the equality (5.4) holds for any u G £2 \ F 
and 0 ^ t < ex(uj) A ey(uj). Let us assume that UJ £ F is such that X(.,UJ) and 
y(. ,UJ) are continuous and ex(uj) < ey(uj). We can find R G N such that £*(£) < 
r&(u>). By (5.4), X(S,UJ) = y(s,Q) for 0 ^ s ^ rg+1(u>) = Tfc+i(u;) < £*(£). Thus 
R -f 1 = lk(^H+i(£0j£)||5 = ||2/(rH+i(^)>^)ll* ^ ^5 t n i s contradiction proves the 
desired equality. 

If x, y are global mild solutions, then (5.4) yields Xsx(t) = Xry(0 for any t G [0, T[ 
and UJ £ r. Now the continuity of sample paths implies X£X(T) = Xr2/(T) a.s. as 
well. • 

Further we can state a proposition on the existence of solutions to (1.2), (1.3) not 
assuming the integrability of initial data. 

Propos i t ion 5.4. Let the assumptions (A), (P), (I), (LL^) and (1.6) be fulfilled. 
Assume either that <p is Hs-valued and 6 < g, or that <p is H^-valued and £ > 
6. Then there exists a local mild solution (x,e) of the problem (1.2), (13) such 
that x(., UJ) G C([0, e(uj)[; H$) C\ C0,X(F; HH) almost surely for any compact set F in 
]0,e(uj)[, x g [ 0 , i [ and A G [0, ± - x[. 

If, moreover, the hypothesis (LG<,) holds, then x is a global mild solution and 
x(., 0) G C([0, T]; i/*) H C°'A([a, T]; / /„) a/most surely for any a > 0, x G [0, | [ and 
A G [0,1 - x[. 

P r o o f . Lemma 5.3 being available, we can proceed similarly as in the proof of 
Proposition 4.3. Details are left to the reader. • 

The proof of Theorem 1.5 is almost completed, it remains only to establish the 
estimates (1.7), (1.8). The proof of (1.8) is straightforward. Let xjv be the solution 
of the problem (5.2), then 

sup \\xN(t)\\s < C+(l + |M|P,«) 
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by Theorem 1.3(iv); furthermore, we know that C+ does not depend on N G N. In 

the proof of Proposition 5.2 we established 

sup I M O I K — sup ||«(0IK, - V - o o , 

almost surely. So the application of the Fatou lemma yields 

E sup | |*(0 | |5 = E J im sup \\xN(t)\\p ^ l iminfE sup \\xN(t)\\p 

O^t^T M-+oo0^t^T At—oo o ^ t ^ T 

$[C+(I + \\<P\\P,*W. 

The proof of (1.7) uses only a slightly more complicated approximation procedure. 

Let us denote by x^N ' the mild solutions to the problems 

dxtf\t) = [A(t)x^\t) + fN(t, x^\t))) At + <rN(t, xtf\t)) dw(t), 

X^\0) = <pM, 

N, M 6 N, where the coefficients fNl <rN are the same as in the equation (5.2) and 

| |?(w)| | ( ^ M 

м-{Г* otherwise. 

As (pM G L°°(£l; Hs) we can use Proposition 5.1 in the same way as in the proof of 

Proposition 5.2 to obtain a $ ° ( 0 —• x(M\t),N -> oo, in H6 for each t G [0,7], 

where x(M) solves the equation (1.2) with the initial condition x(M\Q) = <PM- The­

orem 1.3(iii) implies 

II*!V°(0IIP,« ^ c*(i + II^IIP,*) ^ c-(i + lMiP,,), 

thus by passing N —* oo we obtain 

lk(M)(Ollp,«<c*(i + IMk«). o < . ^ r , 

by the Fatou lemma. Finally, x^M\t) —• x(t) almost surely in H$ by Lemma 5.3, 

so we can again apply the Fatou lemma to obtain (1.7). • 
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6. EXAMPLES 

E x ^m p 1 e 6.1. Let us discuss briefly a particular example in which our assump­
tions are fulfilled. Let G C R^ be a bounded domain with a boundary of class C2 m . 
Set 

•4(«, *,/>)= J2 a «^^(^) 
|a|^2m 

assuming 

(i) A is strongly elliptic uniformly in t £ [0,T], that is 
3c> 0 V* € [0,7] V* € G V£ € RN 

(-ir E ^o^r^^n2-, 
|a|=2m 

(ii) aa(t,.) € C(G) for |a | = 2m and 0 .$ t ^ T, aa(<,.) are bounded measurable 
functions for |a | < 2m, t G [0,T], 

(iii) there exist £ G]0,1] and L > 0 such that 

max sup \aa(t,x) — aa(5,ar)| ^ L|f — s\Q 

\<x\^2mX£C 

for a lU,5G [0,7]. 

Let { j5 i , . . . ,B m } be a normal system of boundary operators on dG (see [32], 
Def. 3.7.1) independent of t. Assume for simplicity that {Bj} is of Dirichlet type, 
i.e. Bj are of orders ay, u>i < . . . < um < m. Set Dom(,4(*)) = VV|m'2, -A(*)u = 
-A(t,.,D)u(.), where 

VV2m'2 = {y e VV2m>2(G), ^ y = 0 on 9G, j = 1 , . . . , m}, 

and PV2m,2(G) stands for the usual Sobolev space of L2-functions with distributive 
derivatives up to order 2m belonging to L2(G). Then the operators {A(t) — fc/, 0 ^ 
t ^ T} satisfy (P1)-(P3) for some k ^ 0 (see [32], §5.2, cf. also [27], §7.6). Without 
a loss of generality we will assume k = 0, i.e. ao(t,x) ^ 5, where a is a sufficiently 
large constant. As we mentioned in Section 1, the assumption (P4) is fulfilled e.g. if 
A(t) are self-adjoint on L2(G). More generally, by [29], Th. 1, (0.6) (and hence (P4)) 
holds if the above assumptions are fulfilled and dG is of class C°°, aa(<,.) € C°°(G)y 

and Bj have C°°-coefficients (cf. also the example in [1], §7). Further, according to 
[30], Th. 4.1, one has 

[L2(G),W2m>2]H = W2m*>2, x€ ]0 , l [ , 
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^2mx,2 being a subspace in W2m*>2(G) determined by some boundary conditions 

(dependent on x) ; in particular, 

Wlm"'2 = {y € W2m*>2(G),Bjy = 0 on 0G, j = l , . . . , m } , 

if x e](m - ^)/2m, 1[. By VV*>2(G), s = r + A, r G N, 0 < A < 1, we denote the 
Sobolev-Slobodeckii space (see [21], §83): 

wia> = {,6rtoy,w =,, JJJJ^f^pl^<4 
By [33], Th. 4.6.1, the space W2mx>2(G) is continuously imbedded into the space 
Ck,a(G) of functions with a-H61der continuous k-th derivative on G provided 2mx > 
k + a + N/2. 

So, let us investigate the stochastic parabolic problem, formally written as 

du 
(6.1) — (t, x) + A{t, x, D)u(t, x) = F(u(t, x)) + E(u(t, x))w(t, x), 

Bju(t,x) = 0 on 9G, j = 1,. . . ,m, 

u(0,x) = (p(x). 

Here A is the parabolic operator introduced above, F: R —• R and U: R —• R 
are Lipschitz continuous functions, E bounded, and w stands symbolically for a 
correlated space-time noise. We transform the equation (6.1) into the form (1.2) in 
the following straightforward way. Set H = Y = F2(G), let w(t) be an L2(G)~ valued 
Wiener process on a probability space Q, with a nuclear covariance operator. Let (p: 
Q —• L2(G) be a random variable independent of the process w. The definition of 
the operators A(t) is given above; suppose that the hypothesis (P4) holds. Finally, let 
us assume that 2m > N so that we can take 6 G [0, l/2[ such that 2m<5 > N/2. The 
space H6 is then continuously imbedded into C°'Q(G) (for some a G]0,2m8 — N/2[) 
and hence the mappings 

f:HB—>L2(G), /(y) = F(y(.)), l / G f t , 

a:H6 —>£(L2(G)), a(y)h = Z(y(.))h(.), y e H6, h e L2(G), 

satisfy the assumption (L^). Indeed, for / this is obvious. Since E is a bounded 
function, E(y(.)) G L°°(G) for any y G H and multiplication by an L°°-function is 
a continuous linear operator on L2(G). Furthermore, 

\W(y)h - er^hU2, = / \[S{y(0) - E(z(0)]h(0\2^ 
JG 

$ esssup|i;(2/(0)-£(2(0)|2 / \HOM 
f€G JG 

^ Lip(£)2 | |y - 4l-(G)\Mh(G) < const. \\h\\H\\y - z\\] • 
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for any yyz G H6, h G L2(G), as H6 is imbedded in C°'a(5), hence a fortiori in 
L°°(G). Moreover, we can choose 6 > 1/2 - l/4m, so that any function y G H6 may 
fulfil all the boundary conditions Bjy = 0, j = 1, ...., m, on dG. 

Applying Theorem 1.3 we obtain a unique mild solution x to (6.1) whose sample 
paths are continuous on ]0,F] as Wm~£>2(G) -valued functions for e > 0 arbitrarily 
small but positive and Bjx(t) = 0 on dG, j = 1, . . . , m, t > 0. In particular, let 
us investigate the problem (6.1) in one space dimension (N = 1), taking for A a 
differential operator of the second order with Dirichlet boundary data. The mild 
solution x then satisfies x G C0,A([r,T];C0'a"e(G)) almost surely for any r > 0 and 
0 < A < e < \ and can be viewed as a random field with Holder continuous sample 
paths. 

E x a m p l e 6.2. To give some idea of the scope of applicability of Theorem 1.4 
we will consider a stochastic symmetric hyperbolic system 

x G Rn, O^t^T, u(Q,x) = u0(x). 

Here w = ( u i , . . . , u/v)T is the unknown N-tuple of stochastic processes (the super­
script T denoting transposition), w(t) is a standard rf-dimensional Brownian motion, 
a,j(t,x), b(t,x) are N x N- matrices, a, Hermitian for any (t,x) G [0,T] x Rn. Let 
the functions a,j, 6 fulfil 

ajeC([0,ncl(nn;MNxN)), 6€C([0,T];C°(R";MiVx;v)), 

^ € Ct°([0, T] x Rn; MAfx )̂, j = 1,..., n, 

where we denote by MfcX. the set of all k x /-matrices and by C™ the Banach space 
of all functions whose derivatives up to the degree m are continuous and bounded. 
Moreover, let 

ft: [0,T] x Rn x R" — R", g: [0,7] x Rn x RN —- M*** 

be measurable functions such that for a function k € L°°(Rn) and every / € [0,T], 
z € R n , r,v€RN one has 

||ft(t, *, r) - h(t, x, v)\\ + \\g(t, x, r) - g(t, x, v)\\ < >(c)||r - v||, 

||ft(Z,x, 0)|| + \\g(t,x, 0 ) | |^ *(*). 

103 



We can easily transform (6.2) into the form (1.2). Set H = [L2(Rn)]N, and for any 
t£ [0,7] define 

(6.3) A(t)u = f^aj{tyX)^ + b{tiX)u 
j = l °X3 

(by our assumptions, the right-hand side of (6.3) makes sense as a distribution for 
each u G H), and 

Dom(A(t)) = {u e H,A(t)u € # } , A(t)u = A(t)u, u € Dom(,4(0). 

Then there exists an evolution operator U for {A(t), 0 ^ t ^. T} satisfying (E) (see 
[32], §4.6). Further, the mappings 

f:[0,T\xH-+H, (t,v)^h(t,.M))\ 

. *:[0,T\xH—*£(Rd,H), (t,<p)>—g(t,.M-)) 

fulfil the assumption (Lo)- Finally, suppose UQ £ H almost surely and let UQ, w(t) be 
independent. Then Theorem 1.4 gives us a unique mild solution to (6.2), the paths 
of which are continuous as [L2(Rn)]7V-valued functions. 

It should be remarked, however, that in the present case of a finite-dimensional 
noise much more regular solutions can be obtained by different methods, cf. e.g. [28], 
Prop. 3.2. 

Remark added in proof. This paper having been submitted I learned that a result 
closely related to our Theorem 1.3 was obtained independently by D. G^tarek (A 
note on nonlinear stochastic equations in Hilbert spaces, to appear). 
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