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Summary. In this paper the following theorem is proved: Let G be a connected graph of order
p= 4 and let M be a matching in G. Then there exists a hamiltonian cycle C of G* such that
EC)N\M=0.
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By a graph we will mean a finite undirected graph with no loops or multiple edges
(a graph in the sense of [1] and [2]). If G is a graph, then we denote by ¥(G), E(G),
and A(G) the vertex set, the edge set, and the maximum degree of G, respectively.
The number |V(G)| is called the order of G. If u, v, w e ¥(G), then the degree of u
in G and the distance between v and w in G will be denoted by degg u and dg(v, w),
respectively.

If G is a graph and »n is a positive integer, then the n-th power G" of G is the graph
defined as follows: ¥(G") = V(G) and E(G") = {uv; u,ve V(G) and 1 < dg(u, v) <
< n}.

We say that a graph F is a 1-factor of a graph G if F is a regular graph of degree
one, and at the same time a spanning subgraph of G. A set M < E(G) is called
a matching in G if no two edges in M are incident with the same vertex.

We now mention some results concerning regular factors and hamiltonian pro-
perties of the fourth power of a connected graph.

Theorem A [3].1If G is a connected graph of even order 24, then G* has a 3-factor
F such that each component of F is a copy of K, or K5 X K.

Theorem B [4]. For every connected graph G of even order =4, G* has three
mutually edge-disjoint 1-factors.

Theorem C [7] Let G be a connected graph of even order =4. Then there exist
a hamiltonian cycle C of G® and a 1-factor F of G* such that C and F are edge-
disjoint.

Theorem D [5)]. Let G be a connected graph of even order 24, and let H be
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a triangle-free subgraph of G® with A(H) < 2. Then there exists a 1-factor F of G*
such that E(F)n E(H) = 0.

The following theorem is the main result of this note:

Theorem 1. Let G be a connected graph of order p = 4 and let M be a matching
in G. Then there exists a hamiltonian cycle C of G* such that E(C)n M = 0.

To prove Theorem 1 we shall use five lemmas and two remarks. We say that an
ordered pair (T", r') is a rooted tree if T" is a tree and r’ € V(T"). We say that rooted
trees (T',r') and (T”, r") are isomorphic if T’ and T” are isomorphic and there
exists an isomorphism T’ onto T” which maps r’ onto r”. Let T be a tree. Similarly
as in [7], by a terminal subtree of T we mean a rooted tree (7", r') with the properties
that 7" is a subtree of T and for each ve V(T — r'), degr. v = degr v.

Let m = Oand n = 1 be integers, and let ug, ..., #,, wy, ..., w, be mutually distinct
vertices. We denote by A4, the path with

V(4,) = {wy,....,w,} and E(4,) ={ww,,;; 1 Si<n-1}.
Similarly, we dénote by B,,, the path with

V(Bp) = {thms ---» g, Wy, ..., w,} and

E(B,,) = {uu;_y; m2j >0} U{ugw}u{ww; 1 Sk<n—1}.
Finally, we define the following rooted tree:

Dy = (B tho) -

Denote
@ = {Dlls D14’ D21’ D22’ D23’ D245 D31’ D33’ D34’ D44a DOS} s

9' = @—- {Dos}.

Lemma 1. Let T be a tree of order p = 6. Then there exists a terminal subtree
of T which is isomorphic to one of the elements of 9.

Proof. Let 6 denote the diameter of T. Obviously, there exists a terminal subtree
(To, 7o) of T'such that
dry(re,v) £ 5 forevery veV(T,) and
dr(ro, ') = min (5,8) for at least one v' e V(Ty).
It is easy to see that there exists a terminal subtree (7", r') of T such that V(T’) =
€ V(Ty), and (T, r') is isomorphic to one of the elements of 2.
If G is a graph, then we denote by #(G), #(G) and #(G) the set of hamiltonian

cycles of G, the set of hamiltonian paths of G and the set of matchings in G, respec-
tively.

Lemma 2. Let n = S5, and let M be a matching in A, Then there exists
a hamiltonian w, — w; path P of (A,)* such that E(P)n M = {.
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Proof. If n =5, then for a ie{l,2,3} matching M;e #(As) we determine
E(P,):
M, = {Wlwz, W3Wa} , E(P,) = {W1W3, W3Ws, WsWy, W‘;Wz} .
M, = {wywy, waws} , E(P,) = {wyws, waws, waws, wsw} .
My = {wows, waws}, E(P3) = {w ws, waws, waWs, wsWs} .

The path P;, i € {1, 2, 3} has the desired properties. For every matching M’ e .#(As)
there exists i € {1, 2, 3} such that M’ = M,.

Let n = 6. Assume that for every tree A4,,, where 5 £ m < n, it is proved that for
any matching M* e .#(A4,,) there exists a w; — w, path P* € #((A4,)%) such that
E(P*)n M* = 0.

Denote

To=T—w,, M¢g=M, if ww,¢M and

My =M — {ww,}, if ww,eM.

Then 5 < |V(To)| < n, T, is isomorphic to A4,_, and M, € #(Ty). It follows from
the induction hypothesis that there exists a w, — w; path P, € #((Tp)?) such that
E(Py) n M, = 0. We define

P = Po + W1W3 .
Then P € #((A,)*) has the desired properties.
Remark 1. Let M be a matching in A,. Then there exists a hamiltonian w, — w;
path P of (4,)’ such that E(P)n M = 0.
Lemma 3. Let n = 4, and let M be a matching in A,. Then there exists Ce
€ #((A,)*) such that E(C)n M = 0.
Proof. Now we distinguish two cases and several subcases.

1. Assume that n = 4. From Remark 1 it follows that there exists a w, — w;
path P e #((A4)?) such that E(P)n M = . We put

C=P+ ww;.

2. Assume that n = 5. It follows from Lemma 2 that there exists a w; — w, path
P e #((A4,)?) such that E(P)n M = 0.

2.1. Let wyw, ¢ M. Then we put
C=P + WiWw, .
22. wyw, e M.

2.2.1. Assume that n € {5, 6}. For a matching M; € #(A4,) with wyw, € M; we will
determine E(C;) for i e {1,2}. If n = 5, then

Ml = {WIWZ, W3W4} , E(Cl) = {WIW4, W4Ws, WsWy, WoW;, w3wl} ’

M, = {wlwz, w4w5} , E(Cz) = {W1W4, W4aW2, WoWs, WsW;, Wswl} .
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If n =6, vthen
M, = {W1W2s W3Wg, Wsws} s
E(Cl) = {Wlwa, W3We, WeW3, WaWs, WsWy, W4W1} ’
M, = {Wlwz, W4W5} s
E(C;) = {wyws, waw,, WaWs, WsWe, WeWa, Wow,} .

For every matching M’ e #(A,) with w,w, € M’ there exists i e {1, 2} such that’
M c M,

2.2.2. Let n = 7. Denote
To=T—-w;—w, and My=M — {w,w,}.

Then 5 < lV(To)| =n — 2, T, is isomorphic to A4,-, and M, € #(T,). It follows
from Lemma 2 that there exists a wy — w, path P, € #((T;)?) such that E(P,) n
N M, = 0. There exists x € {ws, we} such that wyx € E(P,). We define

C =Py — wix + xw, + wows + Wiw, + wyw,.
In each case C € #((4,)*) has the desired properties.

Remark 2. Let M = {w,w,, w,w,, wswe} be the matching in 4,. It is easy to
show that there exists no hamiltonian cycle C of (4¢)* such that E(C)n M = 0.
This means that value 4 of the power in Lemma 3 is the best possible.

Lemma 4. Let T be a tree of order p = 4 and let M be a matching in T. Then
there exists a hamiltonian cycle C of T* such that EC)n M = 0.

Proof. If pe{4, 5}, then T is isomorphic to one of the 5 trees presented in the
list in [2], p. 233. It is easy to show that the statement of the lemma is correct.

Let p = 6. Assume that for every tree T* of order p*, where 5 < p* < p, it is
proved that for any matching M* € #(T*) there exists a hamiltonian cycle C* e
e H#((T*)*) such that E(C*) n M* = 0.

If T is isomorphic to A4, then the result follows from Lemma 3. We shall assume
that T'is not isomorphic to 4,. It follows from Lemma 1 that Thas a terminal subtree
isomorphic to one of the elements of 9. Now we shall distinguish two cases and
several subcases.

1. Assume that T has a terminal subtree isomorphic to one of the elements of 2'.
Consider such a terminal subtree (Tj, r,) that (T3, r,) is isomorphic to one of the
elements of 2’ and that for every terminal subtree (T”, r') of T which is isomorphic
to one of the elements of ', |V(T;)| < |V(T")|. For the sake of simplicity we will
assume that (Ty, r;) € 2. Then r; = 4, and there exist m 2 1 and n 2 1 such that
V(Ty) = {thp, ... oy Wy, ..., W,}. Denote

My =M ({ugwi} U {(Wiwes, 1 S k<n—1}).
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Moreover, we denote

Ty,=T-wy—...—=w,, My=M-—-M,,

it (T, uo) €e? ~ {Dzz} s

To=T~w,, My=M—{ww}, if (Ty,u)=D,,.
Then 5 £ |V(T;)| < p and M, € #(Ty). 1t follows from the induction hypothesis
that there exists C, € #((To)*) such that E(Co) N M, = 0.

1.1. Let (Ty, 4o) € {Dyy, D3y, D3,}. There exists x € V(T,) such that x # u, and
xt; € E(Co). Then dr(x, w;) < 4. We define

C=C0——u1x+u1W1+w1x.

1.2. Let (T}, o) € { D14, D34, D3y, Dyy}. Then T — V(Tp) = A,. It follows from
Remark 1 that there exists a w, — w; path P e 5((44)%) such that E(P)n M = 0.
There exists x € V(T;) such that xu; € E(C,), and if (T}, uy) = Dyq, then x # u,.
Hence dr(x, w;) < 4. We define

C=(Co — uyx + u;wy + xw)UP if x=+u, and

C=(Co—uyx +uw, +xw;)UP if x=u,.

1.3. Let (T, up) € {D,3, Dy3}. There exist x,ye V(T,) such that u,x,u,ye
€ E(Cy), uyx * u,y, and if (T}, 4,) = D;3, then y * u;. Then dr(w;x) £ 4 and
dr(w,y) £ 4. We define

C=Cy— uyx — uyy + uwy + wawy + wix + t,w, + yw,
if x%u, and

C=0Co— uyx =ty + uyw; + wiws + wax + uw; + yw,
if x=u,.

1.4. Let (Ty, #y) = D,,. There exists x € V(T,) such that u,x € E(C,) and x #+ w,.
Then d(w,, x) < 4. We define

C=Cy = uyx + uw, + xw,.

We can see that in each subcase C has the desired properties.

2. Assume that T contains no terminal subtree isomorphic to an element of 2'.
It follows from Lemma 1 that there exists n = 5 and a terminal subtree (T3, r;)
of Tsuch that (T3, r,) is isomorphic to Do, and degy r, = 3. For the sake of simplicity
we will assume that (T, r,) = Dy, thus r, = uo and V(T;) = {ug, Wy, Wy, ..., W,}.
Denote :

M, = Mn E(T,).

Then M, € #(Ty). As follows from Lemma 2, there exists a hamiltonian w, — w,
path P e 3P((T; — u,)®) such that E(Pjn M, = 0. Further, we denote

To=T—w, —...—w, and Myg=M—M,.
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Then M, € #(T,). Since T'is isomorphic to no 4, and T contains no terminal subtree
isomorphic to an element of 2', we have 5 < |V(T0 l < p. It follows from the in-
duction hypothesis that there exists C,e 3#((To)*) such that E(C,) n M, = 9.
‘Since degr, uo = 2, there exist x, ye(V(T,) — {#o}) such that xye E(C,) and
dr(uo, x) + dr(o, y) £ 4. Without loss of generality we may assume that dr(uo, x) =
< dy(uy, y). We define

C=(Co — xy + xw, + yw)UP,

then C € #(T*) and E(C)n M = §.
Thus the proof of Lemma 4 is complete.

Lemma 5. ([6] p. 63.) Let G be a connected graph and let L be a subgraph of G
which contains no cycle. Then there exists a spanning tree T of G such that Lis
a subgraph of T.

Proof of Theorem 1. Let G be a graph satisfying the conditions of Theorem 1
and let M be.an arbitrary matching in G. As follows from Lemma 5, there exists
a spanning tree T of G such that M is a matching in T. According to Lemma 4, T* has
a hamiltonian cycle C such that E(C)n M = . Thus G* also has a hamiltonian
cycle C such that E(C) n M = 0.
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Suahrn

O HAMILTONOVSKEJ KRUZNICI V STVRTEJ MOCNINE SUVISLEHO GRAFU

ELENA WISZTOVA

V &lanku je dokazana nasledovna ‘veta: Nech G je stvisly graf s p vrcholmi, kde p= 4anech M
je parenie v grafe G. Potom v G* existuje hamiltonovsk4 kruZnica C také, Ze E(C) NM=9
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