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ON A HAMILTONIAN CYCLE OF THE FOURTH POWER 

OF A CONNECTED GRAPH 
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(Received November 21, 1989) 

Summary. In this paper the following theorem is proved: Let G be a connected graph of order 
p ̂  4 and let M be a matching in G. Then there exists a hamiltonian cycle C of G4 such that 
E(C)f\M=<!>. 
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By a graph we will mean a finite undirected graph with no loops or multiple edges 
(a graph in the sense of [1] and [2]). If G is a graph, then we denote by V(G), K(G), 
and A(G) the vertex set, the edge set, and the maximum degree of G, respectively. 
The number |V(G)| is called the order of G. If u,v,we V(G), then the degree of u 
in G and the distance between v and w in G will be denoted by degG u and dG(v, w), 
respectively. 

If G is a graph and n is a positive integer, then the n-th power Gn of G is the graph 
defined as follows: V(Gn) = V(G) and E(Gn) = {uv; u,ve V(G) and 1 S dG(u9 v) ^ 

= n}. 
We say that a graph F is a 1 -factor of a graph G if F is a regular graph of degree 

one, and at the same time a spanning subgraph of G. A set M £ E(G) is called 
a matching in G if no two edges in M are incident with the same vertex. 

We now mention some results concerning regular factors and hamiltonian pro­
perties of the fourth power of a connected graph. 

Theorem A [3]. If G is a connected graph of even order §:4, then G4 has a 3-f actor 
F such that each component of F is a copy of K4 or K3 x K2. 

Theorem B [4]. F0r every connected graph G of even order ^ 4 , G4 has three 
mutually edge-disjoint 1-factors. 

Theorem C [7]. Let G be a connected graph of even order ^ 4 . Then there exist 
a hamiltonian cycle C of G3 and a \-factor F of G4 such that C and F are edge-
disjoint. 

Theorem D [5]. Let G be a connected graph of even order ^ 4 , and let H be 
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a triangle-free subgraph of G3 with A(iJ) ^ 2. Then there exists a l-factor F of G4 

such that E(F) n E(H) = 0. 

The following theorem is the main result of this note: 

Theorem 1. Let G be a connected graph of order p ^ 4 and let M be a matching 
in G. Then there exists a hamiltonian cycle C of G4 such that E(C) n M = 0. 

To prove Theorem 1 we shall use five lemmas and two remarks. We say that an 
ordered pair (T, r') is a rooted tree if T is a tree and r' e V(T). We say that rooted 
trees (T, r') and (T", r") are isomorphic if T and T" are isomorphic and there 
exists an isomorphism T onto T" which maps r' onto r". Let Tbe a tree. Similarly 
as in [7], by a terminal subtree of Twe mean a rooted tree (T, r') with the properties 
that T is a subtree of T and for each v e V(T — r'), degj- t? = deg r v. 

Let m 1_ 0 and n ^ 1 be integers, and let u0,..., um, wt, ..., wn be mutually distinct 
vertices. We denote by An the path with 

V(An) = {Wl, ..., wn} and E(An) = {wtwi + 1; 1 = i = n - 1} . 

Similarly, we denote by BOT/I the path with 

V(Bmn) = {Wm, • • -, "o , wx , . . . , w„} and 

£(£m„) = {wjw,-!; m ^ j > 0} u { u ^ } u {wkwk+1; 1 g fe = n - 1}. 

Finally, we define the following rooted tree: 

#m« = (-9WB, u0) . 

Denote 

» = {#11, #14, #21, #22, #23, #24, #31, #33, #34, #44, #05} , 

« » ' - = » - {D05} . 

Lemma 1. Let T be a tree of order p §; 6. Then there exists a terminal subtree 
of T which is isomorphic to one of the elements of 3). 

Proof. Let b denote the diameter of T. Obviously, there exists a terminal subtree 
{T0, r0) of T such that 

dTo(r0, v) g 5 for every v e V(T0) and 

dTo(r0, v') = min (5, 5) for at least one v' e V(T0). 

It is easy to see that there exists a terminal subtree (T, r') of T such that V(T) ^ 
c V(T0), and (T, r') is isomorphic to one of the elements of 2f. 

If G is a graph, then we denote by 3tf(G), JF(G) and Jt{G) the set of hamiltonian 
cycles of G, the set of hamiltonian paths of G and the set of matchings in G, respec­
tively. 

Lemma 2. Let n g 5, and let M be a matching in An. Then there exists 
a hamiltonian wt — w% path P of (An)

3 such that E(P) n M = 0. 
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Proof. If n = 5, then for a i e{ l ,2 , 3} matching M, eJt(As) we determine 
E(Pt): 

Mi = { w ^ , w3w4} , E(P1) = {wxw3, w3w5, w5w4, w4w2} . 

M2 = {wxw2, w4w5} , F(P2) = {wxw4, w4w3i w3w5i wsw2} . 

M3 = {w2w3, w4w5} , £(P3) = {wiW4, w4w3, w3w5, wsw2} . 

The path Ph i e {1, 2, 3} has the desired properties. For every matching M' eJt(A5) 
there exists i e {l, 2, 3} such that M' =" M(. 

Let n ^ 6. Assume that for every tree Am, where 5 ^ m < n, it is proved that for 
any matching M* e M(Am) there exists a wx — w2 path P* e JS?((AmY) such that 
F(P*) nM* = 0. 

Denote 
r0 = T - M>! , M0 = M , if wtw2 £ M and 

M0 = M — {wtw2} , if w-w2 e M . 

Then 5 ^ ^(^o)! < w* T0 is isomorphic to ^ - i and M0 e Jt(T0). It follows from 
the induction hypothesis that there exists a w2 — w3 path P0 e if((r0)3) such that 
£(P0) n M0 = 0. We define 

P = P0 + WiW3 . 

Then P e i f ((-4„)3) has the desired properties. 

Remark 1. Let M be a matching in A4. Then there exists a hamiltonian wt — w3 

path P of (A4)
3 such that E(P) n M = 0. 

Lemma 3. Let n ^ 4, and to M be a matching in An. Then there exists Ce 
€ ^((An)

A) such that E(C) n M = 0. 

Proof. Now we distinguish two cases and several subcases. 

1. Assume that n -= 4. From Remark 1 it follows that there exists a Wj — w3 

path P e ^((A4f) such that E(P) n M = 0. We put 

C = P + W j ^ . 

2. Assume that n ^ 5. It follows from Lemma 2 that there exists a Wj — w2 path 
P e iP((-4n)

3) such that F(P) n M = 0. 

2.1. Let wxw2 £ M. Then we put 

C = P + w ^ . 

2.2. w1w2 e M. 

2.2.1. Assume that n e {5, 6}. For a matching M^ e ^(-4„) with wxw2 e Mt we will 
determine -E(C,-) for i e {1, 2}. If n = 5, then 

Mx = { w ^ , w3w4} , E{CX) = {WiW4, w4w5, w5w2, w2w3, w3wx} , 

M2 = {wxw2, w4w5} , £(C2) = {WiW4, w4w2, w2w5, w5w3, WawJ . 
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If n = 6, then 

Mx = {W!W2, w3w4, w5w6} , 

E(Ct) = {wtw39 w3w69 w6w29 w2wS9 wswA9 w4wt} , 

M2 = {w1w29 w4w5} , 

E(C2) = {wxw39 w3w29 w2w59 wsw69 w6w4, w4wj . 

For every matching M' e M(An) with wxw2eM' there exists ie{\92) such that 
M' c Mf. 

2.2.2. Let n = 1. Denote 

T0 = T - wx - w2 and M0 = M - {wxw2} . 

Then 5 ^ |V(-T0)| = n - 2, T0 is isomorphic to .An_2 and M0eM(T0). It follows 
from Lemma 2 that there exists a w3 — w4 path P0 e Jf((T0)

3) such that E(P0) n 
n M0 = 0. There exists x e {w5, w6} such that w3x e E(P0). We define 

C = P0 — W3X + XW2 + W2W3 + W3Wt + WtWA . 

In each case C e ^f((Art)
4) has the desired properties. 

Remark 2. Let M = {wxw2, w2w4, w5w6} be the matching in A6. It is easy to 
show that there exists no hamiltonian cycle C of (A6)

3 such that F(C) n M = 0. 
This means that value 4 of the power in Lemma 3 is the best possible. 

Lemma 4. Let T be a tree of order p = 4 and let M be a matching in T. Then 
there exists a hamiltonian cycle C of T4 such that E(C) n M = 0. 

Proof. If p e {4, 5}, then Tis isomorphic to one of the 5 trees presented in the 
list in [2], p. 233. It is easy to show that the statement of the lemma is correct. 

Let p = 6. Assume that for every tree T* of order p*9 where 5 = p* < p9 it is 
proved that for any matching M* e M(T*) there exists a hamiltonian cycle C* e 
e 3V((T*Y) such that E(C*) n M* = 0. 

If Tis isomorphic to Ap then the result follows from Lemma 3. We shall assume 
that Tis not isomorphic to Ap. It follows from Lemma 1 that Thas a terminal subtree 
isomorphic to one of the elements of St. Now we shall distinguish two cases and 
several subcases. 

1. Assume that Thas a terminal subtree isomorphic to one of the elements of Q)'. 
Consider such a terminal subtree (Tl9 rx) that (Tl9 rx) is isomorphic to one of the 
elements of 9)' and that for every terminal subtree (T', r') of T which is isomorphic 
to one of the elements of Q\ \V{T$\ = \V(T)\. For the sake of simplicity we will 
assume that (Tl9 rx) e 9'. Then r1 = u0 and there exist m = 1 and n = 1 such that 
V(Tt) = {um,..., u0, w1}..., wn}. Denote 

M* = M n ({u0wx} u {wkwk+l9 l ^ k g n - 1 } ) . 
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Moreover, we denote 

To^T-Wi-.^.-Wn, M0 = M-Mi9 

if (Tl9Uo)e9'~{D22}, 

T0 = T~w2, M0^M-{wlw2), if (T1 ,u0) = D22. 

Then 5 <: \V(T0)\ < p and M0eJt(T0). It follows from the induction hypothesis 
that there exists C0 e ^( (T 0 ) 4 ) such that E(C0) n M0 = 9. 

1.1. Let (T1? u0) G {D n , D2i, D31}. There exists x e V(T0) such that x + u0 and 
xu! G £(C0). Then dr(x, wt) g 4. We define 

C =^ C0 — uxx + uxwt + w tx . 

1.2. Let (Tj, u0) G {D14, D24 , D34, Z)44}. Then T - V(T0) = -44. It follows from 
Remark 1 that there exists a wx - w3 path P G JF((A4)

3) such that E(P) n M = 0. 
There exists x G V(T0) such that xux G £(C0), and if (Tl9 u0) = Z)44, then x =# u4. 
Hence dr(x, wt) g 4. We define 

C = (C0 — u ^ + uxw3 + xw t) u P if x + u0 and 

C = (C0 — uxx + uxWi + xw3) u P if x = u0 . 

1.3. Let ( r l , u 0 )G{D 2 3 , D3 3}. There exist x,yeV(T0) such that ulx,u2ye 
eE(C0), uxx + u2j>, and if (T lf u0) = D33 , then y 4= u3. Then dr(wjx) g 4 and 
dT(w2y) ^ 4. We define 

C = C0 — uxx — u2y + uxw3 + w3wx + wxx + u2w2 + yw2 

if x + u0 and 

C = C0 - uxx - u2y + uxwx + wtw3 + w3x + u2w2 + yw2 

if x = u0 . 

1.4. Let (Tl9 u0) = D22. There exists x G V(T0) such that u2x G £(C0) and x * wx. 
Then dr(w2, x) g 4. We define 

C = C0 — u2x + u2w2 + xw2 . 

We can see that in each subcase C has the desired properties. 
2. Assume that T contains no terminal subtree isomorphic to an element of @'. 

It follows from Lemma 1 that there exists n ^ 5 and a terminal subtree (T2, r2) 
of Tsuch that (T2, r2) is isomorphic to D0n and deg r r2 ^ 3. For the sake of simplicity 
we will assume that (T2, r2) = D0n, thus r2 = u0 and V(T2) = {u0, wl5 w2 , . . . , wn}. 
Denote 

M2 = M o E(T2). 

Then M2 G ̂ ( T 2 ) . As follows from Lemma 2, there exists a hamiltonian wx — w2 

path P € ^ ( ( T 2 - u0)3) such that E(P) n M2 = Q. Further, we denote 

T0 = T — wx — ... — wn and M0 = M — M2 . 
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Then M0 € Jt(T0). Since Tis isomorphic to no Ap and Tcontains no terminal subtree 
isomorphic to an element of Q\ we have 5 < |^(-T0)| < p. It follows from the in­
duction hypothesis that there exists C0 e Jf ((T0)

4) such that E(C0) n M0 = 0. 
Since degro «0 ^ 2, there exist x, y e (V(T0) - {u0}) such that xy e E(C0) and 
dT(u0i x) + dr(Mo> y) ^ 4. Without loss of generality we may assume that dT(u0, x) g 
g dr(w0, >>). We define 

C = (C0 - xy + xw2 + j ^ ) u P , 

then C e ^ (T 4 ) and £(C) n M = 0. 
Thus the proof of Lemma 4 is complete. 

Lemma 5. ([6] p. 63.) Let G be a connected graph and let Lbe a subgraph of G 
which contains no cycle. Then there exists a spanning tree T of G such that L is 
a subgraph of T. 

Proof of Theorem 1. Let G be a graph satisfying the conditions of Theorem 1 
and let M be. an arbitrary matching in G. As follows from Lemma 5, there exists 
a spanning tree TofG such that M is a matching in T. According to Lemma 4, T4 has 
a hamiltonian cycle C such that E(C) n M = Q. Thus G4 also has a hamiltonian 
cycle C such that E(C) n M = Q. 

References 

[1] M. Behzad, G. Chartrand, L. Lesniak-Foster: Graphs & Digraphs. Prindle. Weber & Schmidt, 
Boston 1979. 

[2] F.Harary: Graph Theory. Addison-Wesley, Reading, Mass., 1969. 
[3] L. Nebeskf: On the existence of a 3-factor in the fourth power of a graph. Cas. pSst. mat. 105 

(1980), 204-207 . 
[4] L. Nebesky: Edge-disjoint 1-factors in powers of connected graphs. Czech. Math. J. 34 (109) 

(1984), 499-505. 
[5] L. Nebesk}: On a 1-factor of the fourth power of a connected graph. Cas. pSst. mat. 113 

(1988), 415-420 . 
[6] / . Sedld6ek: Introduction into the Graph Theory (Czech). Academia nakl. fiSAV, Praha 

1981. 
[7] E. Wisztovd: A hamiltonian cycle and a 1-factor in the fourth power of a graph. Cas. pest. 

mat. 110 (1985), 403-412. 

Suhrn 

O HAMILTONOVSKEJ KRU2.NICI V STVRTEJ MOCNINE StfVISLfiHO GRAFU 

ELENA WISZTOVA 

V clanku je dokazana nasledovna veta: Nech G je suvisly graf s p vrcholmi, kde p ^ 4 a nech M 
je parenie v grafe G. Potom v C?4 existuje hamiltonovska kruinica C taka, Ze E(C) f) M = 0. 
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