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A GROWTH ESTIMATE FOR CONTINUOUS RANDOM FIELDS 
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(Received June 13, 1995) 

Summary. We prove a polynomial growth estimate for random fields satisfying the 
Kolmogorov continuity test. As an application we are able to estimate the growth of the 
solution to the Cauchy problem for a stochastic diffusion equation. 
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1. INTRODUCTION 

The main purpose of this paper is to give a growth estimate for random fields 

satisfying the famous Kolmogorov test for the existence of a continuous version. 

Growth estimates for this version (for parameters tending to infinity) are important 

in many applications. As an example we will consider the growth of the solution 

to the Cauchy problem for a linear stochastic diffusion equation. This behaviour 

determines a function space in which the solution of the corresponding semilinear 

equation will exist. The paper is divided into four sections. In the next section 

we prove the main result. Then we discuss the Gaussian case. The final section is 

devoted to applications. 

Partially supported by DFG 
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2. MA^N RESULT 

Let (CI, 5, P) be a complete probability space. Denote by M the set {1,2,...}. We 
shall prove the following assertion. 

Theorem 2.1. Let Z = (Z(r))r&R,i be a random held with the property that 
there exist constants v >\, K>- 0, a > d and c > 0 such that, 

E\Z(r) -Z(s)\v ^c-nK-\r-s\a 

for all n € N and any r, s £ [-n, n]d. Tfien the following holds: 
(i) There exists a pathwise locally Holder continuous version Y of Z. 
(ii) For any S > 1 this versioj] satisfies the inequality 

\Y(r)\^m-{l + \r\s±^) 

for any r 6 Kd where i]s is a random variable with P({0 < ng < oo}) = 1. 

Proof , (i) The conditions of the Kolmogorov continuity test are satisfied on 
[-n, n)d, n e N, which by a standard argument implies the existence of a pathwise 
locally Holder continuous version Y of Z on Rd. From now on we will deal only 
with Y. • 

(ii) In order to show the growth estimate for Y we will use the following auxilary 
result. 

Lemma 2.2 (Garsia [3]). Let ip: R ->• K+ andp: \-\fd, Vd] -> U+ be continuous 
even functions, where p is increasing for u £ [0, Vd] and p(0) = 0, while xp is convex 
and lim tp(x) = oo. If f: [0, l]d -4 R is a continuous function with the property 

[ f JJ^imdsdr=:B(f)<oo, 
j[o,i]''j[o,i]'i \ p ( | r - s | / V d ) j 

tJien 

(2-1) \f(t) -f(s)\ < 8 • jf ' S 0" 1 ( ^ > ) drfti) 

fioids for all t, s € [0, l]d , wfiere '</>_1 is defined by 

( sup{r G R: V(0 ^ u } , u^ip(0), 

0, eJse. 
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Put now a = (1/2,..., 1/2) g Ud and define random fields yW : H x [0, l]rf 

rc 6 ^, by 
y(")(r) := Y(2n(r - a)), r 6 [0, l]d. 

Set e := a - d. We obtain 

E| Y w ( r ) _ Y(">(s)|" = E| Y(2n(r - a)) - Y(2n(s - a))|" 

^c-nK - |2n(r-s) | r f + E 

= c • 2d+e • nK+d+e • \r - s\d+e. 

In order to apply Lemma 2.2 we put 

tp(x) := |x|", x 6 Rd 

and 

P Í x J ^ l x l ^ - ^ l o g ^ ) 2 ^ , | * |<VЗ, 

where 
7 := Vd • exp(v/d). 

Furthermore, define 

S(Y(»>):=/ / ^ ( y ( y - , y ( y Ï(УW) := / / ф 
J[0,1]J І[0,1]'' p(|r - s\/Vd) 

and 

Q:=f;(2n)-<' i + i+ e + ' ')-B(y<'')), 
n = l 

where S > 1. As in Walsh [9], proof of Corollary 1.2, we get 

EJ3(Y<")) <_ co(d,e,u) • (2n)d+e+K, 

which implies 

0 £. EQ ^ co(d,s,u) • Y^(2n)-S < oo 
n = i 

and hence 0 ^ Q < oo P a.s. Now we shall proceed pathwise. For this purpose we 
fix an w e fi such that Q(u) < oo. Obviously, we have 

B(Y<">K(2n)d+<s+£+"-<3<oo 
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for every n £ N. Applying now Lemma 2.2 to B(Y(n)) and ? W we arrive at 

|y(»)(r) _ y(») ( s ) | ^ Cl(d,e,u) • (2n)i±±^^ • Q1/* . |r - af/" • (log y ^ ) ^ 

for any r,s £ [0, l]d, compare again Walsh [9]. This yields 

|y(r)-y(s)| = |y(»)(I- + „ ) - y W ( i + a)| 

< c2(d,5,e,K,v,u) -n » " • \r - s\EJV • ( log. _ •) 

for r,s £ [—n, n]d and hence 

|y(r) | ^ |y(0)| + c2(d,5,e,K,v,u) • n ^ . |r|e/" • (log ^ ) 2 / " 

for r £ \-n,n]d. Consequently, if n - 1 ^ |r| <. n, n £ N, we get n <. |r| + 1 and 

|y(r) | ^ |Y(0)| + c2(d,5,e,K,u,u;) • (\r\ + I)**?* • |r|*/" . (log M M + 1 ) ) 2 / l ' 

Since |r| > 1 implies |r| + 1 ^ 2|r| we can continue in this case by 

<. \Y(0)\ + c3(d,5,e,K,u,io) • Irl'*'*""1"'. 

Moreover, we know that 

sup |y(r) | < oo. 
|r|<l 

Therefore, we finally have 

|y(r) | < c(d,6,e,K,U,U)(l + | r | H ' t n + t ) 

for any r £ Rd and almost all w G H, which completes the proof. 

400 



3. T H E GAUSSIAN CASE 

Intuitively, it is clear that the growth estimate should be better if we additionally 

know that Z is Gaussian. In fact, we obtain the following assertion. 

T h e o r e m 3 . 1 . Let Z = (K(r) ) r 6 R j be a centered Gaussian random field such 

that there exist constants e > 0 and K >- 0 with 

E | Z ( r ) - Z ( s ) | 2 <.c-nK • \r - s\c 

for any r,s £ [—n, n]d, n e N . Then there exists a pathwise locally Holder continuous 

version Y of Z with the property 

I Y ( r ) | ^ ( l + V > l K + £ - l o g ( l + | r | ) ) Pa.s. 

for any r € Rd, where n is a random variable with P({0 < n < oo}) = 1. 

P r o o f . The existence of a locally Holder continuous version Y of Z follows 

immediately from Theorem 2.1 and the well-known fact that 

Ef2p = ( 2 p - 1 ) ! ! - ( E £ 2 ) P 

holds for centered Gaussian random variables f. In order to apply Lemma 2.2 we 

choose 

4>n(x) = exp (x2/(3 • 2ccnK+c)) 

and 

p(u)=(Vd-\u\)e/\ 

Let y(n> be the random fields defined in the proof of Theorem 2.1. By virtue of 

E [ y ( n ' ( r ) - Y^(s)}2 <. 2Ecn"+E • |r - s|E 

for r,s e [0, l]d it follows that 

y ( n ) ( r ) _ y ( n ) ( s ) 

p(\r-s\/Vd) 

is a Gaussian variable with mean zero and second moment less than 2ccnK+e, which 

leads to 1 ^ EB(Y<-n'>) ^ j 3 , n £ N, where 

y < n > ( r ) - y ( n > ( s ) 

J[o,i]* jo,i]" V p(\r-s\/Vd) ) 

401 



Set 

: = £ „ - ' . B(yM) 

for 5 > 1. Because of EQ < oo we can choose an LJ belonging to a set Q0 with 
P(fio) = 1 such that Q(w) is finite, and proceed by a pathwise consideration. We 
obtain ^(u) = (3 • 2£cnK+£ • log(u))1/2, u > 1. Prom 

B(УM) ^ i 

we get 

|yW(r) - y M ( s ) | < 8 • jf " 0-- ( - - £ £ - - ) dp(«) 

/ /'lr-sl / 
< 4eV3 • 2£cd^/2nK+£ • / y'llogB(yM) - 2d -log(u)| • u ' " 1 du 

<c4(£,d)-ne-^ • f v / | logB(y(")) | -u*- 1du+ j T ° v / | M « ) | - " f " 1 d u 

<_ c5(e,d) -n'~¥-

x (|logQ|1/2 + |d- - log(n) | 1 / 2 ) | r -# / 2 + V ' \\og(u)\^2 • u*"1 

Jo 

The integral is bounded from above by 

< c 6 ( £ ) - [ | r - S | £ / 2 - | l o g | r - s | | 1 / 2 + l ] . 

Hence 

| У ( r ) - У ( , ) | śíc7(є,d,õ,к,ш)-n'-
,/a 

2n 
l+log 1 / 2 (n) + \r-s\ 

2n 

1/2 

+ 1 

holds for r,s £ [—n,n]d. Using the same argument as in the the general case we 
finally arrive at 

|y(r)| ^ c8(e,d,6,K,u) • [l + (\r\K+* • log(l + M)1/2] , 

proving the theorem. • 
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4. APPLICATIONS 

4 .1 . Wiener fields. First let us consider the standard Wiener process w = 

(w(t))t^o- Theorem 2.1 gives P a.s. 

\w(t)\^t]a(l+ta), a€(J, l) 

while Theorem 3.1 leads to 

\w(t)\ < n ( l + s/t • log(l + «)) P a.s., 

which is quite close to the exact asymptotic behaviour. In general, if w is the 

Brownian sheet we obtain the same with |t|, t e R+ instead of t ^ 0. In order 

to introduce a class of Wiener fields which is used beside the Brownian sheet as 

the driving term for stochastic partial differential equations we must do a little 

preliminary work. Choose an orthonormal basis (ONB) (hn)neN in L2(U
d) consisting 

of elements such that the following is satisfied: 

(i) The mappings gn: Rd -¥ R defined by 

gn(x) :=£...£ hn(y) ày 

are uniformly Lipschitz continuous, 

(ii) We have 

s u p ( | | M o o + | | s» | |oo)<oo, 
ngM 

where ||-||oo denotes the sup-norm, 

(iii) For any n e N there exist 

d d d 
-—gn,..., -— . . . - — g n 
dxd ax\ dxd 

for any x e Ud. These derivatives are continuous and satisfy 

^•••£-d9n(x) = hn(x), 

ne N,x= (Xl,...,xd) e «d. 

Such an ONB always exists. To see this let Z denote the integers and notice that 

L 2 ( R ) = $ L 2 ( k , ( H l ) 4 
kei 
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The System 

ekn(x) := (2/K)1 /2 • sinn(z - feit), x e (fat, (k + 1)TC), n£M, Ä; € Z, 

i an ONB in L2(fat, (k + l)n). Define forneN,kel 

' ek,n(x), xe(kK,(k + l)n), 

. 0, else, 

and let /?: Z x N -> N be a bijection. Then 

form an ONB in L2(K), where (k(j),n(j)) = P~l(j), j 6 M. Moreover, the mappings 
e, are Lipschitz continuous and 

sup \ej(x)\ < (2/rc)1!2 

j£M,i6R 

holds. Setting 

gj(x) = J ej(y)dy, xeR, jeN, 

we get a differentiable mapping with 

sup |3,0) | ^ (2K)1/2. 
j€N,x6R 

Furthermore, let 
d 

hi(x) ^ H ^ O i ) 
i= i 

and 
d 

9i(x)—n^w^'). 
1=1 

where x = (xlt... ,xd) and i = (i(l),..., i(d)) e Md. Finally, for i £ R1* and n e N 
put 

/i„0) := hK(n)(x) and pn(x) := §K(n){x), 

where K: N -» Nd is a bijection. One easily proves that 
• (hn)nm is an ONB in L2(R

rf), 
• the mappings gn, n 6 N , are uniformly Lipschitz continuous, 
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• SUp(||/j„||oo + ||<7n||oo)<00, 
n£N 

• e^S^9n(x) = hn(x). 

Let (An)n6M be a sequence of positive real numbers such that 2 A„ < oo. Denote 
n=l 

by B a Wiener process on L2(U
d) with the covariance operator T given by 

r / i :=^A n ( / i , f t n ) / i n , /i€L2(Rrf), 
n=l 

where (.,.) denotes the inner product in L2(R
rf). Then 

W(t,x) = JTBt(hn)gn(x) 
n=l 

is a centered Gaussian random field with covariance 

EW(t, x)W(s, y) = (tAs)- 6(x, y), 

where 
0(x,y) = f^\ngn(x)gn(y). 

n=l 
Because of 
E[W(t,x)-W(s,y)]2 

< 2 • E f f ; Bt(hk)(gk(x) - gk(y))]\ 2 • E[~£(Bt(hk) - Bs(hk))gk(y)]2 

*=i fe=i 

<. const -t • \x - y\ • sup sup |<7it(3;)| + const -\t — s\ • sup sup |<?kOr)|2 

km .TgR'1 keN xeRd 

<_ constat- \x-y\ + |t - s\] 

we get for t <. n 

E[W(t,x) - W(s,y)f s$ const-n\(t,x) - (s,y)\. 

Setting W(t,x) = W(0,x) for t < 0 and applying Theorem 3.1 we finally obtain 

\W(t,x)\ < ;? • (l + (|(t,x)|2 • log(l + |(t,z)|))1/2) 
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4.2. The Cauchy problem for a stochastic diffusion equation. 
Let L = Jj - A be a parabolic second order differential operator with Holder 

continuous and bounded coefficients and consider the formal Cauchy problem 

(Lu)(t, x) = a(t, x) • £(t, x), (t, x) e (0, T] x Ud, 

u(0,x)=0, xeRd, 

where 0 < T < oo is a fixed real number, a: ft x [0, T] x Rd -> R satisfies some 
conditions which will be specified below and f is a Gaussian noise which is white in 
time and coloured (i.e. correlated) in space. That means 

( = ( ^ ) , V 6 D ( ( 0 , T ) x R J ) ) 

is a mean zero generalized random function with 

®Z(.<P)((4>)= [ / / <p(t,x)^(t,y)r,(x,y)dydxdt, 
Jo Jud Jud 

where V is the test function space and 

n(x,y) :=^\nhn(x)hn(y) 
n = l 

with (An)nSN and (/in)ngN was introduced in Subsection 4.1. One easily proves 

Qd+l 

£ = W 
? dtdxi...dxd 

in distribution (i.e. the covariance functionals of the two generalized random func
tions coincide.) One can also consider a space-time Gaussian white noise. But 
in this case the space dimension d is restricted to one (cf. Manthey [6], Walsh 
[9]). Let F = CSt)te[o,T] be the filtration generated by W. Furthermore, let / : 
fi x [0,T] x Ud ->• R be progressively measurable and such that 

f l / j '^' (S) E / / \f(u!,t,x)\dx\ dí <oo 

(The mapping / is called progressively measurable, if for every t € [0,T] the restric
tion of / to n x [0,t\ x Rd is St ® S([0,t]) ® <8(R'i)-measurable.) 

For this class of mappings the stochastic integral 

h(f) = f f f(s,x)dWsx : = £ / ' [ / f(s,x)hn(x)dx] dBs(hn) 
Jo Jud

 n~z1 Jo Uud i 
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is well defined, i.e., the sum on the right hand side converges in L2(H). It is an 

F-adapted mean zero random linear functional with covariance 

E/.(/)/..(5) = Ef)A r . j f 'U /(r,*)M*)d*] \Jfvi9(r,y)hn(y)dy\ dr. 

Let (t, x, s, y) -+ G(t, x, s, y) denote the fundamental solution corresponding to the 

above Cauchy problem for a = 0. We set G(t,x,s,y) = 0 ii s e [t,T]. Note that 

there exist positive constants c\ and c2 such that 

(Gl) 0 <. G(t, x,s,y) < ci • \t - s\~d'2 • exp ( - c 2 ) ? - l A \ 

for 6 <. s < t, x,y e Rd, compare for instance Friedman [2]. Hence 

0 < / G(t, x, s, y) dy <. cG < oo, 0 <. s < t <. T, xeKd. 
Jad 

We will essentially use 

(G2) J [Jd(G(t,x,T,z) -l[0,s)(T)G(s,y,T,z))dz]2 dr 

<c(u.,T)-[\t-s\2» + \x-y\^] 

for an arbitrary p, e (0, | ) . 

This is a consequence of the mean value theorem and the following property (com

pare Redlinger [7]): 

(G3) For 21 + m <_ 2 and 0 <. s < t <. T, x,yeUd, 

\Dl
tD™G(t,x,s,y)\^ const-(t - s ) - 4 ^ - ' • e x p ( - c o n s t - ^ ~ ^ ) 

holds. 

Property (G3) is well-known (cf. Iljin, Kalashnikov, Olejnik [4]). 

Let us make the following assumptions: 

(S) (i) a is progressively measurabie. 

(ii) There exist p>2(d+ 1) and m >- 0 such that 

E\a(t,x)\2^c(p,T)(l + \xr) 

forte [0,T] a n d z e Rd. 
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Prom (S(i)) it follows that (u>,s,y) -+ l[0<t)(s)G(t,x,s,y)a(s,y) is a progressively 
measurable mapping as well. Denote the mapping x —> 1 + \x\m by o. In the sequel 
we shall use the following auxiliary fact. 

Lemma 4.2.1. There exists a constant a(m,T) such that 

Osj / G(t,x,s,y)Q(y)dy ^a(m,T)g(x) 
jRd 

holds for 0 s; s < t <. T, x 6 ~d. 

Proof . Property (Gl) implies 

0 sC jG(t, x, s, y)g(y) dy = JG(t, x, s, y) dy + JG(t, x, s, y)\y\m dy 

Ud Ud R'' 

s; cG + c(m) • G(t,x,s,y)(\x\m + \x - y\m)dy 

Rd 

<. cG(l + c(m)\x\m) + JCl • \t - s\-d<2 • \x - y\m • exp ( - c2
1-^^- ) dy 

R'' 

<,a(m,T)g(x), 

proving the lemma. • 

The mild solution u to the formal Cauchy problem we are studying is defined to 
be 

ft [• 

G(t,x,s,y)a(s,y)dWs, u(t,x)= [ / 
JO JRd 

Now we check the correctness of this definition under the condition (S). Splitting 
G = Gl~7Gr and using the Holder inequality as well as Lemma 4.2.1 we obtain 

E \J^G(t,x,s,y)\a(s,y)\dyj 

<_ J f G(t,x,s,y)dy\ • J G(t,x,s,y)E\a(s,y)\'dy 

^c'-1- [ G(t,x,s,y)E\o(s,y)\'dy 
JRd 

<. c(T,p,m)g(x) < oo 

for p ^ 2, which easily yields (S). 
We are mainly interested in the growth of u if \x\ tends to infinity. 



and 

Theorem 4.2.2. Under the condition (E) there exists a pathwise iocaJJy Holder 
continuous version v ofu. For any S > 1 this version has the property 

K^Kn- j i + W ^ 1 ' ) , 
(t,x) e [0,T] x R-, where % is a random variable with P({0 < r/g < oo}) = 1. 

Proof . We will use Theorem 2.1. Therefore, the main point is to obtain the 
input inequality of this assertion. Fix (t,x),(s,y) e [0,T] x Rd, s <. t, and set 

M(r):= J J(G(t,x,T,z)-l[0tS)(T)G(s,y,T,z))a(T,z)dWTZ 

0 Rrf 

= £ / J {G(t,x,T,z)-l[0]S)(T)G(s,y,T,z))a(T,z)hn(z)dz dBT(hn) 
n=l0 ]& 

M(r):= f f G(t,x,T,z)a(T,z)dWTZ, r 6 [0,t]. 
Jo Jw 

D 

These processes are square integrable martingales with respect to the filtration 
F' = (3s)se[o,t]> possessing a pathwise continuous version which is considered in the 
sequel (cf. [1], Theorem 4.12 and 4.3.3). 

Next we prove that the conditions of Theorem 2.1 are satisfied under the assump
tion required above. Consider 

E[u(t,x)~u(s,y)]2p 

= E\J Ji{G{t,x,T>z)-ll0^(T)G(8,y,T,z))a{r,z)dW„] • 

Applying the Burkholder-Gundy inequality (compare for instance Liptser and 
Shiryayev [5]) to M we obtain 

<c(p)-E £ * - . • / [ / (G(t,x,T,z)) 
%~l Jo lJRd 

- ![<,,.)(T)G(S, y, T, z))a(T, z)hn(z) dz]' dT 

<Cl(p)-E \j^[J(G{t,x,r,z) 

- 1 [ 0 , , )(T)G(S, y, r, z))a(r, z) d*] dT 
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To abbreviate the expressions we will use the notation 

H(T, Z) := \G(t, x, T, z) - l [0 i . ,(T)G(S, y, r, z)\ 

as well as 
H+ (T, Z) := G(t, x, T, Z) + 1[0>,) (T)G(S, y,T,z) 

for fixed (t, x), (s, y). We continue the estimate with the help of the Cauchy-Schwarz 
inequality by 

2 1 P / 2 

$ C (p) • E [jf [ £ Я(т, *) d-] [ ^ Я+(т, *)a2(т, -) d-] dт 

^ C(P)E L Ґ 17 Я(т, г )d г ]
2 dr • | 7 Я+(т,г)rт2(т,г)dz]2 dт 

To handle the first integral we use (G2): 

ПP/2 

< c 2 (p,T,^ • [|t - s|2" + \x - j | 4 f / 2 - E W U H+(T,z)a2(T,z)dzj2 dr 

Let us seperately estimate the last expression by Holder's inequality: 

E / ' [ 7 H+(T,z)a2(T,z)dz\ dr 

< C 3 ( T , P ) - E / [/ fr+(r,*)<r2(r,*)dz] dr 

<Cs(r,p)- / [/ J.f+(T,-)d*]* dT- [' f H+(T,z)E<T2p(T,z)dzdT. 

Using (Gl) we obtain 

< C ( T , P ) - / / ^+(r,2)E<72 p(r,^)d^dr, 
io ./R<< 

and (S(ii)) together with Lemma 4.2.1 leads to 

<es(r,p)-(i + l.-p + tor). 

Summing up we have 

p/2 
E[U(ť,z) - u(a, j/)r ^ cfer,^) • [|ť - s\2» + \x- yťT' • (1 + \x\m + \y\m) 
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for an arbitrary џ Є (0, §). Put u(t,.) := u(T,.) for ť > T and u(t,.) := 0 for ť <. 0. 
Hence u is defined on the whole R d + 1 . Moreover, we observe that 

u(t,x) -u(s,y) = м ( 0 V ť л Г , i ) - щ ( 0 V s Л Г , y ) . 

Consequently, if (t,x), (s,y) є [-n,ń]d+1, the above estimate implies 

E[u(t,x) - u(s,y)f < c7(p,T,џ) • nm • [|ť - s\2» + \x- y\4"]p/2 . 

By (S(ii)) there exist e > 0 and џ Є (0, §) such that 

d+l + e 
p >-^г-

Thus we can fìnd a b > 0 ensuring the representation 

p^^+Ь^d+l + e). 

This leads to 

[|ť - s Г + \x- y\^]p/2 <_ Ci(p) [|ť - s\2+2»b + \x- y\*+<»b] ***** 

<_ c8(p) [(|ť - s\2»ь У\x- y\2+^ъ)(\t - s\2 + \x- y\2)] ***** 

<_ c9(p))1(
1+2'lì,><<г+1+E> • \(t,x) - (s,y)\d+1+s 

if (ť, x), (s, y) Є [—n,n]d+1. Therefore, Theorem 2.1 implies the existence of a locally 

Hölder continuous version v of u. Moreover, Theorem 2.1 gives the growth estimate 

( 2((I + £ + l ) ( l + ł»I>) + Л + m \ 
l + | (ť,z) | * ) , 

t Є [0,T],x Є R d , from which we easily obtain 

Kť,æ) | ^r,в(p,T,d)(l + \x\i{áJ^+1)Ҳ), 

t Є [0,Г], x Є Rd, where P({0 < rìS(p,T,d) < co}) = 1. This proves Theorem 4.2.2. 

Finally, we shall discuss some particular cases. First we assume instead of (S(ii)) 

the more restrictive condition that there exists p > 2(d + 1) such that 

(BM) sup E\a(t,x)\1' < _ c < o o . 
i€[0.T] 
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Obviously, there exists a pathwise Holder continuous version v of u. Prom the 
previous consideration we easily see that 

\v(t,x)\^ns(p,T,u)(l + \x\^+1)), 

t e [o,T],x e ud. 
In the case when a is deterministic and satisfies a2(t,x) ^ const(l + |z|m),:r e Ud 

we observe (p = 1) 

K[u(t,x) - u(s,y)]2 <. cl0(T,u) • nm • [\t - s|2" + \x - 2/|4"]1/2 , 

(t,x),(s,y) e [-n,n]d+1, u e (0, 5), which leads to 

^cn(T,p)n"+m-\(t,x)-(s,y)f. 

Therefore, Theorem 3.1 guarantees the existence of a locally Holder continuous ver
sion v of u for which we get (2u + m <. m + 1) 

\v(t,x)\ ^ n ( l + V M m + 1 • log(l + \x\)] 

for any t e [0,T], x e Ud, where n is a random variable with P({0 < n < 00}) = 1. 
In the case that 

sup |<r(t,i)| ^ c < 00 
leio.T] 
«€RJ 

holds, we have even 

|t>(..j-)| ^ n ( l + VW • log(l + |s|)) 

for any t £ [0,T], x G Rd, where rj is a random variable with P({0 < 7) < 00}) = 1. 
So we have proved 

Theorem 4.2.3. Let a: [0,T] x Ud -> U be a nonrandom function with the 
property 

W(t,x)\2^ c(T)(l + \xD 

for t e [0, T], x e Ud. Then there exists a Holder continuous version v ofu such that 

\v(t,x)\ < q ( l + v / kl m + 1 log(l + |x|)) 

for any t e [0, T], x e Ud, where n is a random variable with P({0 < n < 00}) = 1. 

A c k n o w l e d g e m e n t . The paper has profited from careful refereeing. 
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