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Summary. Recently Popa and Noiri [10] established some new characterizations and
basic properties of a-continuous multifunctions. In this paper, we improve some of their
results and examine further properties of a-continuous and a-irresolute multifunctions. We
also make corrections to some theorems of Neubrunn (7].
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1. INTRODUCTION

In 1965, Njastad [8] introduced a weak form of open sets called a-sets. Some kinds
of generalized continuous functions were defined in terms of a-sets by several authors.
For example, Maheshwari and Thakur [4] defined a function f: (X,7) — (Y,U) to
be a-irresolute if f=*(V') is an a-set for every a-set V of (Y,{). Mashhour et al [6]
defined a function f: (X,T) = (Y,U) to be a-continuous if f~*(V) is an a-set for
every open set V of (Y,U). In 1986, Neubrunn [7] extended these concepts to multi-
functions. Recently Popa and Noiri [10] obtained several new characterizations and
properties of a-continuous multifunctions. The purpose of this paper is to improve
some results of [4] and [10], to exploit further properties of a-continuous and a-
irresolute multifunctions, and to make corrections to some theorems of Neubrunn [7].

Throughout this paper, (X,T) and (Y,U) are always topological spaces. The
closure (resp. interior) of a subset A in (X, T) is denoted by CI(A4) (resp. Int(A)).
Then A is called a-open [8] if A C Int(Cl(Int(A))), and A is a-closed if X — A is a-
open. Note that a-closed sets are called coa-sets in [4]. Let 7, denote the family of all
a-open subsets of (X, 7). It was shown in [8] that 7, is a topology on X. Let a Cl(A)
(resp. aInt(A)) denote the closure (resp. interior) of A with respect to 7. A subset
U of (X, T) is called an a-neighborhood of a point x € X if there exists a V € T4 such
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that # € V C U. By a multifunction F: (X,7) — (Y,U), we mean a point-to-set
correspondence from (X,7T) into (Y,U), and we always assume that F(z) # 0 for
alz € X. Foreach BCY, F¥(B) ={z € X | F(z) C B} and F~(B) = {z €
X | F(z) N B # 8}. In particular, F~(y) = {z € X | y € F(z)} for each point
y €Y. For each A C X, F(A) = U,c, F(z). Then F is said to be a surjection
if F(X) = Y, or equivalently, if for each y € Y there exists an z € X such that
y € F(z). Moreover F: (X,T) — (Y,U) is called upper semicontinuous, abbreviated
as u.s.c. (resp. lower semicontinuous, abbreviated as l.s.c.) if F¥(V) (resp. F~(V))
is open in (X, T) for every open set V of (Y,U). The graph G(F) of F is defined
by G(F) = {(z,y) | z € X,y € F(z)}. We say that F" has a closed (resp. a-closed)
graph if G(F) is closed (resp. a-closed) in (X x ¥, T x U). The graph multifunction
Gr: (X, T) = (X xY,T xU) of F is defined by Gr(z) = {z} x F(x) for each z € X.
Other basic concepts and terminology about multifunctions are as in [2] and [3].

2. a-CONTINUOUS MULTIFUNCTIONS

Following Neubrunn [7], we define the fundamental concepts.

Definition 2.1. ([7]) A muitifunction F': (X, T) = (Y,U) is called
(a) upper a-continuous, abbreviated as u.a.c., if F: (X, To) = (Y, U) is us.c,,
(b) lower a-continuous, abbreviated as La.c., if F: (X,Ta) — (Y,U) is Ls.c.
Now F: (X,T) = (Y,U) is a-continuous if it is both w.a.c. and La.c.

The following characterizations of upper a-continuity and lower a-continuity are
due to Popa and Noiri [10].

Theorem 2.2. ([10]) Let F: (X,T) — (Y,U) be a multifunction. Then the
following statements are equivalent.
(a) F: (X,7T) = Y, U) is ua.c
(b) F¥(V)e T, forany V € U.
(c) F~(V) is a-closed in (X, T) for any closed V of (Y,U).
(d) For each point ¢ € X and each neighborhood V of F(x), there exists an o-
neighborhood U of z such that F(U) C V.
(e) aC{F~(B)) C F~(CI(B)) for any BCY.

Theorem 2.3. ([10]) Let F: (X,T) - (Y,U) be a multifunction. Then the
following statements are equivalent.
(a) F: (X,T)- (Y,U) is La.c.
(b) F~ (V)€ T, forany V € U.
(c) F*(V) is a-closed in (X, T) for any closed V of (Y,U).
(d) aCI(F+(B)) Cc F+(CI(B)) forany BCY.
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(e) F(aCIl(A)) C CI(F(A)) forany AC X.

In our next result, we provide a simple and direct proof of Thecrem 3.9 of [10].

Theorem 2.4. ([10]) A multifunction F: (X,T) = (Y,U) is La.c. if and only if
its graph multifunction G is lLa.c.

Proof. Suppose that Gr is La.c. Then for any open subset V of (Y,U),
F~(V) = Ge(X x V) € Ty. Hence F is La.c. Conversely, suppose that F is La.c.
For each U € T and each V € U, we have G (U x V) = UNF~ (V) € T,. Therefore
Gr is La.c. from Proposition 6.3.5 of [3]. ]

Definition 2.5. A multifunction F': (X, T) — (Y, ) is said to have a strongly a-
closed graph if for each pair (z,y) ¢ G(F) there exist U € 7, and V € U, containing
z and y respectively such that (U x V)N G(F) = 0.

From this definition, we see that F': (X, T) — (Y,U) has a strongly a-closed graph
if and only if F': (X,74) — (Y,U,) has a closed graph. Moreover, if G(F') is strongly
a-closed, then it is a-closed. The following example will show that the converse is
not true in general.

Example 2.6. Let X bean infinite set, let z; € X (i = 1,2, 3) be three different
pointsand T={G C X | z; ¢ G,i=1,2,3}U{G C X | X ~ G is finite}. Then it is
easy to verify that 7 is a topology on X and T = 7. Choose an infinite subset P
of X such that z; ¢ P ( = 1,2,3) and X — P is also infinite. Define a multifunction
F: (X, T)= (X,T) by

3,2}, if z€P;
F@y={ ek
{z3,23}, ifz€X-P

The graph G(F) = P x {21,223} U (X ~ P) x {z2,z3} of F is a-closed, since § =
Cl(Int(Cl(G(F)))) C G(F). But for any two a-neighborhoods U and V of z;, we
have (U x V) NG(F) # @. Therefore G(F) is not strongly a-closed.

Recall that a subset A of a space (X, T) is called a-paracompact [1] if for every open
cover V of A in (X, T) there exists a locally finite open cover W of A which refines
V. Our next several results concern the relationship between upper a-continuity and
strongly a-closed graphs.

Theorem 2.7. Let F: (X,T) = (Y,U) be a u.a.c. multifunction from a space
(X, T) into a Hausdorff space (Y,U). If F(z) is a-paracompact for each z € X, then
G(F) is strongly a-closed.

Proof. Suppose that (zo,y0) ¢ G(F). Then yo ¢ F(zo). Since (Y,U) is a
Hausdorff space, for each y € F(zo) there exist open sets V() and W (y) containing
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y and yo respectively such that V (y)nW (y) = 0. The family {V(y) | y € F(z0)} is an
open cover of F(zo). Thus, by a-paracompactness of F(zo), there is a locally finite
open cover V = {Ug | B € I'} which refines {V(y) | y € F(xo)}. Therefore there exists
an open neighborhood Wy of yo such that Wo intersects only finitely many members
Up,, Ug,, ..., Ug, of V. Choose y1,%2,--+,¥n in F(zo) such that Us, C V(y;) for
each 1 < i < n, and set W = Won (N, W(¥:)). Then W is an open neighborhood
of yo such that W N ( User V) = 0. By the upper a-continuity of F, there is a
U € 7, such that 2y € U C F+(Upe; Vo). 1t follows that (U x W) N G(F) = 0.
Therefore G(F) is strongly a-closed. [m]

Corollary 2.8. ([10]) If F: (X,T) = (Y,U) is a u.a.c. multifunction into a Haus-
dorfF space (Y,U) such that F(z) is compact for each « € X, then the graph G(F)
is a-closed.

Theorem 2.9. Let F: (X,7) = (Y,U) be a multifunction from a space (X, T)
into an a-compact space (Y,U). If G(F) is strongly a-closed, then F is u.a.c.

Proof. Suppose that F is not u.a.c. By Theorem 2.2, there exists a nonempty
closed subset C of (Y,U) such that F~(C) is not a-closed in (X, 7). We may
assume F~(C) # 0. Then there exists a point 20 € a CI(F~(C)) — F~(C). Hence
for each point ¥ € C, we have (x9,y) ¢ G(F). Since F has a strongly o-closed
graph, there are a-open subsets U(y) and V(y) containing xo and y respectively
such that (U(y) x V(y)) NG(F) = 0. Then {Y —~C}U{V(y) | y € C} is an a-open
cover of (Y,U), and thus it has a subcover {Y ~ C} U{V(y;) |y: € C,1 < i < n}.
Let U = N, U(y) and V = Ui, V(yi). It is easy to verify that C C V and
(U x V)NG(F) = 0. Since U is an a-neighborhood of zo, UNF~(C) # 0. It follows
that @ # (U x C)NG(F) C (U x V)N G(F). This is a contradiction. Hence the
proof is completed. a

Corollary 2.10. Let F: (X,T) — (Y,U) be a multifunction into an a-compact
Hausdorff space (Y,U) such that F(z) is a-closed for each x € X. Then F is u.a.c.
if and only if it has a strongly a-closed graph.

3. o-IRRESOLUTE MULTIFUNCTIONS

In this section, we discuss some properties of upper (lower) a-irresolute multifunc-
tions and generalize the main results of [4] to multifunctions.
Definition 3.1. ([7]) A multifunction F: (X, T) — (Y,U) is called
(a) upper a-irresolute, abbreviated as v.a.i., if F: (X, 7o) = (Y,Us) is us.c.,
(b) lower a-irresolute, abbreviated as lL.a.i., if F: (X, Tq) = (Y,Us) is Ls.c.
Now F: (X,T) = (Y,U) is a-irresolute if it is both u.a.i. and lL.a.i.
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1t follows from the definitions that a u.a.i. (resp. lLa.i.) multifunction is u.c.c.
(resp. La.c.). In [4], the authors introduced the concept of a-Hausdorff spaces in
order to ensure the graph of an o-irresolute function to be a-closed. It was shown
by Reilly and Vamanamurthy [13] that a-Hausdorff spaces are precisely Hausdorff
spaces. Therefore, as corollaries of Theorem 2.7, we have the following results.

Theorem 3.2. Let F: (X,7T) = (Y,U) be a u.a.i. multifunction into a Hausdorff
space (Y,U). If F(z) is a-paracompact for each x € X, then G(F) is strongly a-
closed.

Corollary 3.3. ([4]) If f: (X,T) = (Y,U) is an a-irresolute function and (Y,U)
is a-Hausdorff, then G(f) is a-closed.

Let A be a subset of a space (X,7). Then F: (X,T) = (A,7a) is called a
retracting multifunction [16} if x € F(z) for each z € A. By using the same technique
as in the proof of Theorem 2.7, we can obtain the following results.

Theorem 3.4. Let F be a u.o.i. multifunction of a Hausdorff space (X, T) into
itself. If F(z) is a-paracompact for each z € X, then the set A = {z | x € F(z)} is
an a-closed subset.

Proof. Let zo € aCl(A). Suppose that zo ¢ A, i.e. zo ¢ F(zo). Since (X, T)
is Hausdorff, for each x € F(z,) there exist open sets U(z) and V() containing
2o and z respectively such that U(z) N V(z) = 0. Then {V(z) | z € F(zo)} is an
open cover of F(zo). By the a-paracompactness of F(zo), {V(z) | z € F(z0)} has
a locally finite open refinement W = {Wp | 8 € I} which covers F(zo). Therefore
we can choose an open neighborhood Up of xo such that Up intersects only finitely
many members Wg,, Ws,, ..., Wa, of W. Choose z1,Z2,...,Z, in F(o) such that
Wa, C V(z;) for each 1 < i < n, and let U = Up N (N, U(z:)). Then U is an
open neighborhood of zg such that U N (U‘,EI Wpg) = 0. Since F is w.ai., there is
an a-neighborhood G of o such that F(G) C Uge; Wp- It follows that GNU is an
a-neighborhood of 2o and satisfies (G NU) N A = 0. This contradicts the fact that
2o € a Cl(A). m]

Corollary 3.5. ([4]) If f is an a-irresolute function of an a-Hausdorff space (X, T)
into itself, then the set A = {z | z = f(x)} is an a-closed subset.

Corollary 3.6. Let A be a subset of (X,T) and F: (X, T) = (A, Ta) a u.a.i
retracting multifunction such that F(z) is a-paracompact for each z € A. If (X,T)
is Hausdorf, then A is a~closed.

Corollary 3.7. ([4]) Let A be a subset of (X,T) and f: (X,T) = (A,7a) an
a-irresolute retraction. If (X, T) is Hausdorff, then A is a-closed.
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Remark. From the proof of Theorem 3.4, it is easy to see that Theorem 3.4
and Corollary 3.6 are still valid if the upper a-irresolution of F is replaced by upper
a-continuity.

In considering when a u.a.c. (resp. lLa.c.) multifunction is u.ai. (resp. Lavi.),
Neubrunn [7] introduced the concepts of upper and lower somewhat openness. A
multifunction F': (X, T) — (Y,U) is said to be upper somewhat open if Int(F(U)) # 0
for any open set U € T with F(U) # 0. It is said to be lower somewhat open if
for any subset U € 7 and V € U such that F(z) NV # @ for any z € U, we have
Int(F(U)NV) # 0. Neubrunn (Theorem 5, [7]) claimed to prove that a u.a.c. and
upper almost open multifunction F: (X,7) — (Y,U) is uw.ai. Unfortunately, this
result is false as is shown in the following example.

Example 38. Let X = {a,b,c,d} and ¥ = {p,q,v}. Define a topology
T = {0,X,{a},{b,c},{a,b,c}} on X and a topology U = {§,¥,{p}} on Y. A
multifunction F: (X, T) = (Y,U) is defined as follows:

{p}, iz=g
F(zx)=1Y, if z=", or ¢

{pq}, fz=d

Then F is upper somewhat open and u.c.c. Since {p, ¢} is a-open in (¥,2) and
F*({p,q}) = {a,d} is not a-open in (X, T), F is not u.a.i.

Neubrunn also claimed that there is no essential difference between the proofs of
Theorem 6 and Theorem 5 of [7]. Since there is a gap in the proof of Theorem 5 of
[7], we conclude this section by providing a complete proof to Theorem 6 of {7].

Theorem 3.9. ([7]) Let F: (X,7T) — (Y,U) be a multifunction. If F is both
La.c. and lower somewhat open, then F is La.i.

Proof. Suppose that F'is not l.a.i. Then there is a nonempty V € U, such
that F~(V) ¢ T,. We may assume F~(V) # 0. Let U = Int(Cl(Int(V'))). Since
Fis La.c., F~(U) € Ta. Then F~(V) C F~(U) C Int(Cl{Int(F~(U)))). Tt follows
that F~(U) ¢ Cl(Int(F~(V))). Indeed, suppose this is not the case. Then F~ (V)
is a-open. Thus there exists a point p € F~(U) and an open neighborhood G of .
p such that G NInt(F~(V)) = §. Since GN F~(U) is a nonempty a-open subset
of (X,7), It(GNF~(U)) # 8. Let W = Int(G N F~(U)). Clearly, W is open in
(X,7) and W nInt(F~(V)) = 0. By the lower somewhat openness of F', we have
0 # Int(F(W)NnU) = Int(F(W)) N U, which implies that § # Int(F(W)NV) C
F(W)NInt(V). Then WN F~(Int(V)) # @. By the lower a-continuity of F' again,
W n F~(Int(V)) is a nonempty a-open set. Hence § # Int(W N F~(Int(V))) C
W N Int(F~(V)). This contradicts the fact that W N Int(F~(V)) = 0. m]
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4. MAPPING THEOREMS

In this section, we will establish some mapping theorems by using the method of
change of topology. A subset A of a space (X, T) is called a-compact if every a-open
cover of A in (X, 7) has a finite subcover. Hence the corcept of an a-compact space
in [5] can be restated as: A space X is a-compact if and only if X is an a-compact
subset of itself. From the definition, a subset A of (X, T) is a-compact if and only
if A is compact in (X, 7).

Theorem 4.1. Let F: (X,7) — (Y,U) be a u.a.c. multifunction such that F(z)
is compact for each point x € X. Then F(K) is compact for each a-compact subset
K of (X,T).

Proof. It follows directly from Definition 2.1 (a) and Theorem 7.4.20f [3]. O

Corollary 4.2. ([10]) Let F: (X,T) — (Y,U) be a u.a.c. surjective multifunction
such that F(x) is compact for each point x € X. If (X, T) is a-compact, then (Y,U)
is compact.

Theorem 4.3. Let F': (X, T) = (Y,U) be a multifunction from a connected space
(X, T) onto (Y,U) such that F(z) is connected for each point € X. If F is either
u.a.c. or La.c., then (Y,U) is connected.

Proof. It follows from Theorem 2 of [11], Theorem 7.4.4 of [3], Theorem 2.2
and Theorem 2.3. u]

Corollary 4.4. ([11]) If (X, T) is connected and f: (X,T) = (Y,U) is an a-
continuous surjection, then (Y,U) is connected.

Recall that a space (X, 7T) is almost compact [14] if each open cover has a finite
subfamily whose union is dense in (X, 7). And (X, 7) is called almost paracompact
[15] if every open cover of (X, T} has a locally finite open refinement whose union is
dense in (X, 7). To obtain more mapping theorems, we first establish the following
two lemmas. The proof of first lemma is not difficult, so we omit it.

Lemma 4.5. (X, T) is almost compact if and only if (X,T,) is almost compact.

Lemma 4.6. For a space (X, T), the following statements are equivalent.
(a) (X,T) is almost paracompact.
(b) Every open cover of (X,T) has a T,-locally finite a-open refinement whose
union is dense in (X, T).
(c) Every open cover of (X, T) has a T-locally finite a-open one-to-one refinement
whose union is dense in (X, T).
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(d) Every a-open cover of (X,T) has a Ta-locally finite a~open refinement whose
union is dense in (X, Ta).

(e) (X,7Ta) is almost paracompact.

(f) Every a-open cover of (X, T) has a T-locally finite open refinement whose union
is dense in (X, T).

Proof. (a) = (b), (b) = (c), (d) = (e) and (f) = (a) are straightforward.

(c) = (d): Suppose that {Us | B € I} is an c-open cover of (X, 7). Then
{Int(Cl(Up)) | B € I} is an open cover of (X, T), thus it has a T,-locally finite a-open
one-to-one refinement {Vs | 8 € I} such that X = C1{Upe; Vs) = Upes CU(Va)-
Now let Wg = Ug NInt(Vp) for each B € I. Then {Wy | B € I} is a Ta-locally finite
a-open refinement of {Ug | B € I} . For each § € I, it is easy to verify that

aCl(Wp) = Cl(Us N Int(Vz)) = CHCYUp) NInt(Vp)) = Cl(Int(Vp)) = C(Vp).

Therefore X = Uge; o Cl(W;) = CL(Uge; Wa)-

(e) = (f): Let V = {Vs | B € I} be an a-open cover of (X,7). Then there
exists a To-locally finite a-open refinement W = {W, | A € A} of V such that
X = Uyep @CU(W)). Then {Int(W») | A € A} is an open refinement of V. Since
W is Ta-locally finite, for each z € X there is an o-open set G containing z such
that G intersects only finitely many members of W. Thus Int(Cl(Int(G))) is an open
neighborhood of & and intersects only finitely many members of {Int(Wx) | A € A},
which says that {Int(Wy) | A € A} is T-locally finite. For each A € A, aCl{W) =
Cl(Int(W1)), hence we have X = {Jye Cl(Int(W2)) = Cl(Uyep Int(Wy)). There-
fore {Int(W) | A € A} is a T-locally finite open refinement of V and its union is
dense in (X, 7). So the proof is completed. a

Theorem 4.7. Let F: (X,T) — (Y,U) be an a-continuous surjection such that
F(z) is compact for each point © € X. If (X,T) is almost compact, then (Y,U) is
almost compact.

Proof. LetV ={Vs|B € I} bean open cover of (Y,U). For each z € X, there
exists a finite subset I(x) C I such that F(z) c J{Vs | B € I(z)} = V(x). Since
F is u.a.c., there exists a U(z) € T, containing  such that F(U(z)) C V(z). We
obtain an a-open cover {U(z) | z € X} of (X, 7). By Lemma 4.5, there are finitely
many points 2, z,..., % of X such that X = (JI_, a Cl(U(z:)). Since F is La.c.,
we have

Y = F( I:J aCl(U(zt))) = Lnj F(aCl(U(z:)) C U CUF(U(x.))

i=1 i=1

c O ave)=U U aw.

i=1 =1 gel(z;)
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This shows that (Y,U) is almost compact. ]

Definition 4.8. A multifunction F: (X,T) — (Y,U) is called a-open (resp. a-
closed) if F(G) is a-open (resp. a-closed) in (Y,U) for each open (resp. closed) subset
G of (X,T).

The proof of the following lemma is straightforward, so we omit it.

Lemma 4.9. Let F: (X,7T) = (Y,U) be a multifunction. Then the following

statements are equivalent.

(a) F: (X, T) = (Y,U) is a-closed.

(b) ForeachU € T and B CY with F~(B) C U, there exists a V € U, such that
BCVand F-(V)CU.

(c) For each U € T and each point y € Y with F~(y) C U, there exists an a-
neighborhood V' of y such that F~(V) c U.

(d) F: (X,T) - (Y,Us) is closed.

Theorem 4.10. Let F': (X,T) — (Y,U) be an a-continuous, a-open and a-closed
surjection from an almost paracompact space (X,T) onto a space (Y,U) such that
F(z) is a-paracompact for each x € X and F~(y) is compact for eachy € Y. Then
(Y,U) is almost paracompact.

Proof. Let {Ug | B € I} be an open cover of (Y,U). Since F(z) is a-
paracompact for each ¢ € X, there exists a U-locally finite open cover V, of F(z)
such that V; refines {Us | 8 € I}. Then {F*(UV:) | # € X} is an a-open cover
of (X, T), thus it has a T-locally finite open refinement {W, | A € A} such that
X = Uysea CL(Wy), following from Lemma 4.6. Hence for each A € A, there exists
an ry € X such that F(Wy) C UVz,. Let Ga = {F(WA)NV | V € V,, } for each
A€ A and G = {G |G € G, for some A € A}. It is easy to see that G is an a-open
refinement of {Ug | 8 € I}, since F is a-open.

We now show that G is U,-locally finite. For each y € Y and each z € F~(y),
we can choose an open neighborhood H such that H, intersects only finitely many
members of {W | A € A}. Since F~(y) is compact, there are finitely many points
T1,Tg,...,%n in F7(y) such that F~(y) C Ui, H., = H. Then H intersects
only finitely many members of {Wy | A € A}, namely Wy, W,,,...,Wy,. By the
a-closedness of F and Lemma 4.9, there exists an a-open subset Q containing y
such that F~(Q) C H. It follows that Q intersects at most finitely many members
F(Wy,), F(Wy,),...,F(Wy,) of {F(W)x | A € A}. On the other hand, V;,, is
U-locally finite, thus we can choose an open neighborhood Q; of y such that Q;
intersects only finitely many members of Vz,, . Then (Nk21 Qi) NQ is an a-open set
containing y and meeting at most finitely many members of G.
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From Theorem 2.3, we have F(CI(W,)) = F(a Ci(Wy)) C CI(F(W))) for each
A € A. Therefore

Y = F( U cuw))) c J aFEm)) = J{ene) |6 € 6}

AEA AEA
By virtue of Lemma 4.6 (b), (Y,/) is almost paracompact. a
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