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Summary. It is proved that parabolic equations with infinite delay generate Cp-semigroup
on the space of initial conditions, such that local stable and unstable manifolds can be
constructed for a fully nonlinear problems with help of usual methods of the theory of
parabolic equations.

Keywords: parabolic functional equation, infinite delay, stable and unstable manifolds

AMS classification: 45K05, 35R10, 35B35, 35B40

INTRODUCTION

The aim of this paper is to prove the existence of a resolvent operator for the
parabolic equation with infinite delay, such that solutions, given by this resolvent,
define a Cp-semigroup with the properties, which enable to construct stable and
unstable manifolds for the fully nonlinear problem V

(0.1) u(t) = Au(t) + Lu, + g(u(t), u),
(0.2) u(O) =T, u=e¢,

where u; denotes a shift of the function u: u¢(7) = u(t+7) for r < 0, A is a generator
of an analytic semigroup in a Banach space X and L is a continuous linear operator
from an appropriate function space Y into X. The example of the operator L we
have in mind is the integral operator

(0.3) Lug = /o " k(s)(A + bI)u(t — 5) ds
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and the nonlinearity g can take the following form:

(0.4) g(u(t),u) = /:o F(u(t = s), Au(t — s))dp(s)

with f(0) = 0, Df(0) = 0, dp(s) = k1(s) ds+80(s), where k, k; are suitable functions
and & is the Dirac function concentrated at 0. This type of equations arise e.g in
investigation a heat conduction in materials with memory.

Solvability on the real line and asymptotic behaviour of the solution of the linear
equation (0.1) with a more special operator L were treated in [2], [7]. (L was of the
form (0.3) with the additional requirement on the Laplace transform of the kernel
k to be extendible to certain sector in the complex pla'ne). The existence of stable,
unstable and center manifolds for semilinear problem (0.1), (0.2) was proved in [8].
In a fully nonlinear case, linearized stability and unstability and the existence of a
local center manifold for parabolic equation was shown in [1]. In the present paper,
some of these results are generalized to the equation with infinite delay. In this case,
a variation of parameters formula with the analytic semigroup eA? is not available.

The difficulties connecting with the fully nonlinear character of the equation were
in [1] overcome by replacing the space X by an interpolation space between D(A)
and X. These spaces and the maximal regularity properties for the linear parabolic
problems were treated in [11]. Here, we make use of these spaces to prove the
existence and the maximal regularity property of a resolvent operator, which satisfies
the equation

R(t) = AR(t) + LR,, R(0)=1I, Ro=0.

The operators R(t) do not form a semigroup. However, we shall prove that the
operators S(t): (z,p) — (u(t),us), where u is a solution of the equation u(t) =
Au(t) + Lu,, (0.2), given with help of the resolvent R, form a Cy-semigroup on a
certain subspace of X x Y. The equation (0.1) is then replaced by the equation

z(t) = Bz(t) + h(z(t)), 2(t) = (u(t),us), h(2(t)) = (g(u(t),u),0)

and B is the generator of the semigroup S. Due to the special form of the semigroup
S, estimates for projections and convolutions of S similar to those for analytic semi-
groups are proved. These estimates, which are not generally valid for Cy-semigroups
enable us to construct stable and unstable manifolds in the usual way. The existence
of a center manifold will be proved in a forthcoming paper.

The result is applied to the integrodifferential equation which can describe the heat
conduction in materials with fading memory. there is a lot of papers describing the
asymptotic behaviour of solutions of such equations, see e.g. [5] and references given
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there. The authors worked mostly in Lo-spaces with some positivity or monotonicity
assumptions on the kernels, which are not necessery here, so our result does not seem
to be contained in these papers.

1. NOTATIONS AND PRELIMINARIES
Let A be the generator of an analytic semigroup e4! in a Banach space X. We
introduce the interpolation spaces between D(A) and X. Let || - || denote the norm

in the space X, wo = {sup Re A, A € 0(A)}. For wo < 0, € (0, 1) we set

Da(a,00) = {z € X, |z|o = sup€!~* || Ae*éz ||< o0},
§>0

Da(a + 1,00) = {z € D(A), Az € Da(a, )},

For wg > 0 we set Da(a,00) = Da_2u,(a,00), Da(a+1,00) = Dpg_su,(+1,00).
The closure of D(A) in Da(a, o) in the norm

lzlla = [zl + |2]a
will be denoted by X . It can be shown, (see [11]), that
X*={z€X; lim £~*Ae?z =0}.
{reX; Jim £ Ae™a }
We denote by Xe+! the closed subspace of Da(a + 1,00):

Xt = {z € D(A); Az € X°},  ||zllat1 = [|Az]|a.

It is shown in [ll] that there are constants M > 0, w > wq, such that the following
estimates hold:

(1.1) "R('\’A)“L()?) < |'\—"A!:| forallA € C, Re) > w,
(1.2) ||AR(,\,A)||L(X.) <M, Red >w,
(1.3) "eAt“L(X) s MeWt, t 2 0’
(1.4) ||AeM||L()‘() < —Atie“", t>0,
M
(1.5) llAe*||L(xe,x) € e > 0,
(1.6) z€X* = lim le**z — zlla = 0,
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where X is any of the spaces X, Xe, xot! a € (0,1) and R(A, A) = (A - A)~ L.

Let R* = [0,4+00), R~ = (~00,0]. For n € R we d.enote by C,(R*,X) (or
Cp(R™, X)) the set of all f: [0,4+00) — X, (or (—00,0], X) such that ¢ — e f(t)
(or t — e~ " f(t)) is continuous and bounded. These spaces are endowed with the
norms:

Ml e, 2, = suplle” Ollx

oy = -nt t ¢
||f||c,,(n-,,\) fzg le=" F(O)llx
The following lemma is proved in [1].

Lemma 1. Let A satisfy (1.1)<(1.3), h € C,(R*,X) for n < -w, k €
Cp(R™, X®) for > w. If we set

t

(1.7) wt)= [ AIhis)ds, t20
0
t

(1.8) ot) = / eAt-Dk(s)ds, <0,
- 00

then u € Cy(R*, X*1), v € C,(R~, XoH+!).

Let ¥ > 0. Denote by Y the space of all functions ¢: (—00,0) — X* which are
strongly measurable and

0
(1.9) lplye = sup €'~ / lle"” Ae*¢p(r)|| dT < +o0,
£>0 -00
0
(1.10) el_me‘-" / lle’” Ae#p(7)||dT =0
-00

with the norm o
lellv== [ e liglidr + lely-=.

-00
Let Yo*! = {o, (r — Ap(7)) € Y} and for some a € (0, 1) let

(1.11) L be a continuous linear operator from Y**! into X*.

In the sequel we shall need some informations about the operator L()), which is
defined by:

(1.12) L(A): X*t! = X, L(\)z = L(t — e*"2).
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Then L(X) is a continuous linear-operator from X®+! into X* for ReA > — and

1]

ILWelle € — 55

zlla+1-
Moreover, throughout the paper we shall suppose that

(1.13) ILA)YR(A, A)llL(xe) < ReA > —v, §>0.

C
FE

Remark. The operator L given by
00
Ly =/ e " Ap(—s)ds
0

can serve as a simple example satisfying the assumption (1.13) with g = 1.

Now, we can define the operator
(1.14) DN =(A-A-L()™!
which plays the same role in construction of a resolvent operator R(t) for the equation
(1.15) u(t) = Au(t) + Lu,

as the resolvent R(A, A) for the semigroup eA?.
For A such that ReX > —7, |A] large enough, we have the expression

(1.16) D()) = R(\, A) + R(), A) i(L(,\)R(,\, A)"
. n=1

so that we have estimates similar to (1.1), (1.2):

(1.17) IDM)lL(x=) < IAD(M)llL(x=) < C, [A] 2 Ro, ReAd > 7.

£
(Al
Due to the continuity of D(A), the last inequality holds for all A € C such that

dist(A, Z) > ¢, where £ = {)A € C; D(X) ¢ L(X*,Xt!)}. From now on we shall
denote by C any constant.
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2. CONSTRUCTION AND ESTIMATES OF THE RESOLVENT OPERATOR

We will construct the resolvent operator R(t) in such a way, that the Laplace
transform of R will be D(A). To this end we will write D()A) as a sum:

(2.1)  D(A) = R(M\, A) + R(A, A)L(A)R(M, A) + ...+ DAYL(A)R(A, A))".

Let ¢ is the domain of analyticity of the function D(A) which-has its values in
L(X®, X*%1). Then

84ioco .
(2.2) Ra(t)z = / A D(A)LA)R(A, A))"z dA

§—ioo

is the inverse Laplace transform of the last term in (2.1) provided that
(2.3) nB>1, 6>sup{Rel, A¢op}.

From (2.2) we obtain the estimates:

(24) NRa(®)zllat1 € Cellzlla, Ra(D)zlla < Ce*|izlla, 3 0.

In the same way as in [10] we can prove that the inverse Laplace transform of

R(A, A)(L(A)R(A, A))¥ is a convolution (f xg = fot f(t —s)g(s)ds)

(2.5) Br = et x Hy,
where
(26) () L 0, for 7 < -t
. T = T— ,
' eAt+1)e for -t <7<0
2.7) Hoyiz=Hy*xHpz, z€ X°.

Now, we can set

n-1

(2.8) R(t)=e*+ ) Bi(t) + Ra(t), t>0.
k=1

Proposition 1. Let (l.l)‘—(l.6), (1.11), (1.13), (1.17) be fulfilled. Let z € X°.
Then R(t)z € X*+! for t > 0, R is differentiable on (0,+00) and there is K > 0
such that

29) MAR@)la + 1ROzlla < Xellzfle, ¢>0,
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where d > max(6, —}v), with & given in (2.3). Moreover, if £ € X®*!, then R(-)z €
C(R*, X )NnC'(R+, X) and

(2.10) IR(t)zllat1 + IR(E)zlla € Ke®||z|las1, t > 0.

Proof. First, let us suppose that (1.1)~(1.4) hold with w = —v. Then it is
sufficient to prove the estimate (2.9) for By only. The first and the last terms in
(2.8) have been estimated in (1.4) and (2.4) respectively.

Let us estimate H,(t)z for £ € X*. According to (2.6), it means to estimate the
Y2+ norm of the function v, where

for r < —t

0’
Pe(7) = {

A+ for—t<r1<0

Making use of (1.3), (1,5) we get

0 t
/ ' ||Aye(7)|| dT = / e""”e‘q‘_gifle"';?"z”ds
0

—-00

v = fL—s\"! 1
<C /0 UKL ( " ) leflads < Ce=74 ],

o
[¥e]yatr =sup§l'°‘/ Ile"’AzeAftp(‘r)"dr
£>0

—00
t
= sup{l""/ lle=7* A2e#€eAl=2)z|| ds
£§>0 0
t
= supfl—a/ “e—'y:AeA(£+t-s)/2AeA(£+t—a)/21,” ds
0

£>0

1
_ _ _ _ _ +t— a-1
<oupg=C e 2 gt (SH0) T

1
< 2‘;*;5"°Ce""2~/0 (€ +t—5)"ds]|z|q < Ce™ 2|z,

Next, we have to prove that

0
lim - / le"™ A%eA€ gy (7)|| dr = 0.
-00

¢~o+
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Let us choose ¢ > 0. Then there is 61 > 0 such that ||Ade?*z|| < sa-1 .‘il;al for
8 < 6 and M given in (1.4). Then for §{ < 6; we get:

t
¢ / lle™7* A%eAl="+6)z]| ds <
t—-6,

o ft—s+E\TTY . e(l-a) ¢
Qfl-o’/ ( ) ds - < =.
t—6, 2 8 2

Now we choose & < 6; such that £'=2||Ae#¢z|| < S5+ whenever £ < 8. Then

(2.11)

t—4y 1—6, 6761 €
g [l ATAC= 0z ds < /0 (o B g < £
0

As Hy(t) = Ly and Hp = Hy—1 * Hy, we get the estimate:
(2.12) 1He@)lL(x=) < CtE~le /2,
To prove the continuity of Hj, let us consider the difference Y144 — vp,.

1%e4n — Pellyass
0 -t

< / lle”” AeAC+7)(eAh — I)z|| dr + / lle”” AeAt+A+7)z|| dr
-t ~t—h

0 -t
+sup£l—a [/ ||e1rA28A(!+f+€)(eAh _ I)z[l dT+/ ||e'y1'A2eA(t+h+'r+€)x“ dT] .
£§>0 -t -t—h

In the first and the third terms we make use of (1.6), the second term we estimate
with help of (1.5). The last term we estimate for small £ < §:in the same way as in
(2.11) and then we realize that sup{l a fo (s + &)~ 2**ds||z|ja — O for h — 0.

Using the same procedure as above and making use of Lemma 1, we obtain the

estimate for By = e? x Hy:
(2.13) IBi()zllas1 < CtF~ e 22|,

If A has its spectrum also on the right of the line Re A = —7, we take A = A—al,
L(X) = L()) + al so that A fulfills the estimates (1.1)-(1.4) with w = —7. Then

DA)=(A-A-LA)™!' = R\, A) + aR(), A)2 + R(), A)L(A)R(A A)
+ R(A, A)((L(A) + al)R(A, A))? + ...+ DAYL(A)R(, A)*

and
n-1

R(t) = ™ + ate® + Y By(t) + Ba(t) + Ra(t).
k=1

182



Here By, R, correspond to By, Ry respectively (see (2.5), (2.2)) with A replaced by
A and B, is the inverse Laplace transform of the remaining terms. These terms are
analytic in Re A > —v and have sufficient decay so that the inverse Laplace transform
exists and the estimate '

(2.14) Ba(t)zlla+1 < Ce™"/?||z]la

holds. Further,

C

IZVRA, A)zlla < ILA)RA, A)zlla + al| RO, A)zlla < mllrlla,

for Re A > v, which implies that the estimate (2.4) remains valid with R, instead
of R,. Now, (1.4) and (2.11) with A, By instead of A, By, (2.4) with R, instead of
R, and (2.12) give the estimate of ||AR(t)z||a. The same estimate for the derivative
R(t) we get analogously if we realize that Hj € C(R*, X®) and then

t
Bi(t)z = Hi(t)z + / AeAt=* H, (s)z ds.
0

The estimate (2.10) follows immediately from (1.3), (2.4), (2.13). O

The following lemma is similar to the Lemma 1.

Lemma 2. Let the assumptions of the Proposition 1 hold. Let h € Cy,(R*, X*)
with y < min (3, -6), k € Cu(e, X*) with p > max ( — }7,8). Set

' |
(2.15) u(t) = / R(t - s)h(s)ds, ¢30,
0
t
(2.16) ot) = / R(t - s)k(s)ds, ¢ <O0.
Then u € C,(R*, X**1) n CI(R*, X*), v € C,(R™, X**') nC}(R™, X*) and

(2.17) sup [le" i(t)lla + sup [le” u(t)lla+1 < Ci(n)sup (le”h(t)|la,
20 130 120

(2.18)  sup[le™*o(¢)]|a + sup le™* v(t)lla+1 < C2(se) sup [le™"* k(t)lla-
<0 <0 1<0

Proof. The proof is similar to that of the Proposition 1. Again, Lemma 1 and
the estimates (2.4), (2.14) prove the assertion for two parts of R. Now, using (2.12)
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and arguing as before we prove that

t t t—-s
ﬂev* / Bk(t—s)h(s)ds" _—." / / eNt=2)eAU=1=9) H. (5)e" h(s) do ds
0 a+l o Jo a+l

t t—3s
< supf'""/ / [|A2eAC—2=o+)en(t=2) [, (5)e™ h(s)|| do ds
£>0 0o Jo .

t pt—s —f+d
€Csup€l°°/ / (_______‘t—s-‘—a-i-f) e~V T Gk —1o- T 4n(t-0) 4o ds
£>0 o Jo 2

x sup [|le”* h(s)lla < C'sup [le" A(t)]la-
520 t20

The derivative t(t) exists in X and u(t) = h(t)+fo' R(t - s)h(s) ds. Again, decom-
posing R in three terms we get the rest of the estimate (2.17). The proof of (2.18)
is analogous.

In the following, we shall define R(t) by (2.8) for ¢t > 0, R(t) = 0 for t < 0. Then
we can define Ry: (—00,0) — L(X?), Ri(7)x = R(t+ 7)z. Similarly as above we can
prove that Rz € Y 4! provided that £ € X* and

(2.19) IRezllye+s < Ce¥llzlla, [|Rezllyass — O for £ —0.

The decomposition (2.1) with n = 1 yields that R satisfies the equation

t
R(t)zr = e?'z + / At )LR,zds, € X, t>0
0

and Proposition 1 now implies that
(2.20) R(t)z = AR(t)z + LRz, =€ X, t>0, (z € X** ¢>0).

a

Now, a solution of a nonhomogeneous linear initial-value problem can be given
with help of R.

Lemma 3. Let z € X!, p € Yo+!, h € Cy(R*, X*) with n < min (1v,-6).
Let us define ¢(t) =0 for t > 0. Then the problem

(2.21) u(t) = Au(t)+ Lu, + h(t) t>0,
(2.22) u(0) ==z, u(r)=¢(r) forr <0

has a unique solution u € Cy(R*, X**!)n C}(R*, X*) given by
g R ot
(2.23) u(t) = R(t)z + / R(t — s)(Lps + h(s))ds.
) )
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Proof. The only thing to be proved is that the function I(s) = Ly, belongs to
Cy(R*, X*) for p € YOI,

- -3
loddlvoss = [ emllpts Dl dr +sup€!== [ 7 AP 4 r) o
>

—00 -00
0

0
= [ Mot dr +supet=m [ e aesép(o)) ar

-0 -0

(2.24)

= e [lgllyes.

The continuity of | can be proved in a similar way as the cohtinuity of H,.

—t—h
lot+h — tlyats = sup€'~* [/ || A2eAbp(t + h+ 7) — p(t + 7)|| d7
§>0 —00

—t
+ [ emiareAty(t + 7| dr] = max( sup (..),sup(...)).
——h 0<E<é £246

First, we choose 8§ so that the first supremum is sufficiently small and then we find
h to make the second one small enough. The assertion now follows easily. a

3. SOLUTION SEMIGROUP

The solution of the problem (2.21), (2.22) is given with help of the resolvent
operator R(t), which has most of the properties of the analytic semigroup e4!, but
the operators R(t), t > 0 do not form a semigroup. However, if we define the operator
S(t): (z, ) — (u(t), u:), where u is a solution of the problem with h = 0, we get a
semigroup on the space Z% = X@ x Yo+!;

| ¢\ _(R@t)z+ ft R(t - s)Lp,ds
(31) S(t) (‘P) - (gm + Rz (')f' fot Rt—:L¢sd3A) ’

Proposition 2. Let S(t) be defined by (3.1) for t > 0. Then {S(t)} is a Co-
_ semigroup of linear operators in the space Z% = X* x Yo+l Its generator B is
given by:

(3.2) D(B) = {(z,9) € 2%, z € X**!, g € Y**!, lim o(7) =},

1 (2)- (1),

A € Cis in g(B), the resolvent set of B iff ReA > —y and D()) € L(X*, X**!).
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Proof. The semigroup property and the continuity of S follow from its defini-
tion, (2.8), (2.19) and the continuity of ¢t — ;. Let A be defined by the right hand
side of (3.2) and let (z,¢) € A. Then according to Lemma 3

t
u(t) = R(t)z + / R(t — s)Lyp,ds
0
is a strict solution of the equation (2.19) with h = 0. It follows that

. d .
i(0) = Az + Lp, —urlimo(r) = 4(r), T <0

o acom.a(2)- (%1).

On the othrer hand, let (z, ¢) € D(B). Then there are A € o(B), (y,%) € X* xY+1,
such that (z,9) = (A — B)"!(y,%). A direct computation yields the expression for
(A-=B)™', A€ o(B):

(34)(A - B)™! (":)

_ ( D)y + L0 — [} *C~y(0)do))
T\ 1= D)y + L8 — [ C-y(0)do)) + [ T=y(o) da)

As D(A): X* — X+ we get z € X+, Further ¢(1) = Ap(1) — (1), ¢(0) =
z = (z,p) €EA. 0O

The assertion about the spectrum of the operator B follows easily from the ex-
pression (3.4).

Now, if we denote z(t) = (u(t), ut), then the problem (2.21), (2.22) can be rewritten
in the following form:

h(t
(3.5) z(t) = Bz(t) +/( ( )) , 2(0) = (z) .
. 0 p
In the sequel we shall suppose that
(3.6) o(B)NiR=0, supRes™(B) < A\; <0< Ay < infReot(B),

where ¢~ (B) (ot (B)) denote the corresponding parts of o(B) with negative (posi-
tive) real parts.
We shall denote by Pt the projection operator

1
pt = L
(3.7) = 5= /FR(,\,B)d,\,
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where T is a suitable path around the bounded set o+ (B) with Rez > A; for 2 € T
Further, let P~ =1 - P*, Z= = P~ (2%), Z* = P¥(Z?),

(3.8) St(t) = —l—,/e’\‘R()\,B)d,\, teR, S~ (t)=S(t)-S*(t), t=0
2m Jr

From this expression we get the following estimate of the operator S*(t):
(39) “S+(t)”L(Zu D(B)) Cexzt t<0.

To get the estimate for the operator S~(t) we need the decomposition of D(A).

As we have seen in the proof of Proposition 1, we can assume, without loss of
generality, that Re 0(A) < —v. Then in the decomposition (2.1) of D()) all terms
but the last one are analytic in the halfplane Re A > —+. Let us define

(3.10) Ra(3) = DOYLAR(, A))",

(3.11) R*(t)z = / e D(\)zdA = / MR, (\)zd),
r r

(3.12) R™(t) = R(t) — R*(t) forteR.

It means that R~(t) = —R*(t) for t < 0 and

n—1 A1+ioco

R (t) =e?' 4+ E Be(t) +/ , eMR,(A\)dX fort>0.

k=1 A1= ioo

Then (1.3), (1.4) with w = —7, (2.4), (2.17) with § = Ay, (2.9), (3.10)—(3.12) yield
the estimates

C 1
(3.13) IR (t)z||as1 < 7¢ e %|z||lq fort>0, a< mm( y—A1),
(3.14) IR™(®)zlla+1 < Ce™||zllat1, t 20,
(3.15) IR™(T)zlla+1 < Clzlla, T <0,
(3.16) [|Rf z||lye+r € Ce™%||z||la t >

For A > —v we denote by ®, the function

0 00
®(7) =/ e (1-y(g) do =/ e*p,(t)dt.
T 0

Then ||®||ya+: < W“ga”ya“ and we get the following formula for the operator
S=(t)=S(t) - S*(t),t>0:

70(3)= (o)
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where

. " n-1 i 1 a+ioo
y(t) = R~{t)z + / [AC= 4+ 3" Bi(t — 5)lLpsds + o= / eMRa(A)L®)d),
- 0 k=1 a

221 Josico
yit+7) for -t <7<0

vl = {R*(t +1)z+p(t+7) - 5 [ R, (A)L&rdA for 7 < —t

With help of t.'his expression, (2.24), (3.13)—(3.16) we get the estimate of S™(t):
(317 1S~z < Ce™, t30,

- where Z is any of the spaces 2%, Z, ‘ N
Z={:=(2,0) € 2% 2 € X", fim o(r) =z},

(3.18)
llzliz = lizllas+1 + ll@lly =+

It is easily seen from (3.4), (3.8) that

(3.19) SH(t) (;) _ (R;?Stzz) => S7(1) (;) - (R;§tzx>.

Next, in the same way as in Lemma 2 we prove that
' t
@) e / s==9) (")) asf, < cpsup bl
¢ k(s) t
(3.21) sup e ¥ S (t—s) ds" <C(p) sup e # k()| )

provided that n < a, ¢ > —a, h € C,(R*, X*), k € C,(R™, X?).
Now we can prove the existence of a stable and unstable manifolds for the equation
‘ t
(3.22) #(t) = Bz(t) + (y(Zé ))) ,  2(0) = 2,
(3:23) - 9€CY(2,X%), ¢(0)=0, Dg(0)=

Theorem. Assume that A is a generator of an analytic semigroup in X, L satisfies
(1.11), (1.13) and (3.6), (3.23) hold. Then there exists r > 0 and two differentiable
functions

h: B(O,r)CZ2 NZ — 2,
k: B(0,r)Cc 2t — Z,
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such that, setting

& ={h((); ¢ € B(0,r) C Z- N2z},
% = {k(); { € B(0,r) C 2%},

we obtain the following conclusions:

(i) F(%) is tangent to Z~(Z1) at the origin.

(ii) For any zo € (20 € %) there is a mild solution z of the eguation (3.22)
which satisfies the initial condition 2(0) = z,. This solution is defined on R*(R~)
and lim 2(t)=0 ( lim 2(t) = 0)

(m) Tbe tra_]ectory of a solution z belongs to .9’(‘?/ ) prowded that z(O) €S
(2(0) € U), |2(0)||z is small enough. '

Proof. Consider the operator Il given by
(3.24)

(¢, 2)(t) = 2(t)= S~ (t)¢— /o t 5-(t—s) ( 9(’53))) ds+ [ ” S*(t-s) ("(’és))) ds

It follows from the definition, the estimates of S*, S~ and (3.23) that this operator
maps a neighbourhood of zero in the space (ZNZ~) x Cy(R*, Z) into C,(R*, Z),it
is continuously differentiable in both variables, I1(0,0) = 0, D,II(0,0) = id. Using
the Implicite Function Theorem we get the existence of r > 0, r; > 0 such that
for each ( € B(r,ZN Z~)(B(r,X) = {z € X; ||zllx < r}) there is a unique
2(¢) € B(r1,Cy(R*, Z)) with II(¢,2(¢)) = 0 and z is continuously differentiable
with respect to (. o

Now we can define the function h: h({) = 2(¢)(0). The set & isa graph of a map

®: B(() = — [ S*H(~s) (’(‘és») ds for ¢ € B(r,Z N Z~). As $(0) = 0, we get

the assertion (i). A
For zp € % we have a function z € Cp(R*, Z), such that II(P~zp,2) = 0. Ac-

cording to (3.24) P*2(0) = — [ S*+(~s) (’(’é‘))) ds and

2(t) = ST()P"z0 + / ‘S(t—-s) (9(‘("))) - [ " St - ) (9(z(()s)))

(3.25) = 5(t) (p zo—/ SH(= )(9(1(3))))_‘_/0t S(t_s)(g(zés)))

= S(t)z + /0 S(t - s) (g(’é’)))

which proves (ii).
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Let 20 € &, to > 0, 2(P™20) be a solution of (3.22) given by (3.24). As the
equation is autonomous, the function u(t) = 2(P~z)(t + to) is also a solution of
(3.22). Then

u) = 1570+ S* OO+ [ 15w~ + 576 -] (4 ) as.

Multiplying by S*(—t) and limiting for ¢ — co we get

P*u(0) = - /0 ~ 5+ (s) (g(“és))) ds

and in the same way as in (3.25) we obtain N(P-u(0),u) = 0. It follows that
u(0) = 2(to) € % provided that ||z||z is so small that ||P~u(0)||z < r.
In the similar way, by solving the equation

(3.26) z(t) = S*(t)¢ + /0 t St - s) (”(’és” ) ds + [ ; S=(t - s) (“’("és))) d

in a neighbourhood of zero in Zt x C,(R™, Z), we obtain a backward solution which
tends exponentially to zero when t — —oo. a

Remark. For the original problem (0.1), (0.2) we get the following assertions:

(i) For any (z,¢) € & the solution of (0.1), (0.2) exists in the large. It belongs
to Cy(R*, X2*+1) N C}(R*, X*) with [|e" u(t)[la41 < r1. Conversely, if (z, ) is such
that ||P~(z,9)||z < r, u(.,(z,¢)) € Cy(RT, X*+1) and ||e" u(t)||a+1 < m fort >0,
then (z,9) € .

(ii) Any (z, p) € % satisfies the equation (0.1) for ¢ < 0.

4. EXAMPLE

Consider the problem

u(t, z) = Au(t,z) + bu(t, z) + /°° ki(s)(Au(t — s,z) + cu(t — s,z))ds
(4.1) R
+ f(u(t, z), Au(t, z)) +/0 ka(s)h(u(t — s,z), Au(t — s, z)) ds,

u(t,z) = 0 for z €99, t €R,
u(0, ) = uo(z) for z € Q,
u(r,z) = p(r,z) for <0, z € Q.
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We suppose that Q is a bounded open set in R with a smooth boundary, £, h are
smooth functions vanishing at zero together with their first derivatives,

(4.2) [h(p, 9)| < C(lpl + lgl) for p,q €R,
<

. o
(4.3) [ki(s)| < Cie™™ fori=1,2 |k1(A)] <

,\_ﬂ’ﬁ>0'

Now, we can rewrite the equation (4.1) in the form (0.1), setting
A=A+bI,
1) = [ bi(o)av(-5,2) + ci(-s, ) ds
g9(v,¥)(z) = f(v(z), Av(z)) + /000 ka(s)h(¥(—s,z), Ayp(—s,z)) ds.

It was shown in [5] that, taking X = C(), D(A) = {u € C?(Q), “Ian = 0}, we
get X« = h2%(Q), X! = h2*+%((Q), where h$(Q) is the space of all functions v:
€ — R, such that v/sq = 0 and

|u(z) —u()] _

lim sup =0, hi*’ = {ue C*Q),Au€ hi}.

§—0 le—yl<s |17 - y|0
Then, owing to the assumptions on the functions f, h, (4.2), (4.3) it is easy to verify
that g maps the space Z into X, L is a continuous linear operator from Y **! into
X« satisfying (1.13) and A is a generator of an analytic semigroup in X.
The relation between the eigenvalues of the Laplace operator and the Laplace
transform of the kernel k; yields the values of the spectrum of the equation. In fact,
for v € X2+! we have

L(A)v = /ooo ki(s)e™"* (A + ¢)vds = k1 (A)(A + c)v.

Let 0 > p; > p2 > p3 > ... be eigenvalues of the operator A. Then A € C, such
that Re A > —« is in the spectrum of the operator B (see (3.3)) iff

(k1 (A) 4 1)ptn = A — cky(A) — b for some n € N.

It follows that for b < 0, ¢ < 0, k; nonnegative, nonincreasing, the spectrum of B
lies in the halfplane with negative real parts and 0 is asymptotically stable solution
of (4.1). .

If we take ki(s) = e7*, we have k;()) = _y—ix and we get an instability of the
zero solution whenever b > v — u; or if ¢ + p1 + 7(#1 + b) > 0. If, moreover,
c+ pn +7(pun +0) £ 0for n =2, 3, ..., then we can apply Theorem 1 to get the
saddle point property of the zero solution. :
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Remark. It is also possible to deal with integral operators with singular kernels
of the type t=Pe~7 for 8 < 1. The weight function e?” in the definition (1.9) of the
space Y* should then be replaced by the function (—7)~#e?". All results remains
valid with this change, only the proofs are a bit more complicated. The operator L
given by

oo
Lo = / s7Pe™ Ap(s) ds
0
then satisfies the assumptions (1.11), (1.13).

The author wishes to thank to dr. J. Milota for helpful discussions.
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Souhrn

RESICI SEMIGRUPA A INVARIANTN{ VARIETY
PRO FUNKCIONALN{ ROVNICE S NEKONECNYM ZPOZDENIM

HANA PETZELTOVA

V priaci je ukdzdno, ze potiteéni iiloha pro funkciondlni diferencidlni rovnice parabo-
lického typu definuje Cp-semigrupu na prostoru potite¢nich podminek, jejiz vlastnosti do-
voluji zkonstruovat stabilni a nestabilni variety pro plné& nelinearni rovnice obvyklymi me-
todami.
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