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Summary. The existence of classical solutions for some partial differential equations on 
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1. INTRODUCTION 

The purpose of this paper is to show the existence of C2-smooth solutions for the 
singularly perturbed equation 

(1) Uyy + euxs = e/(t*,y,a,), 

where u is 2n-periodic in x and y, / € C°°(R x R x R,R) is 2ir-periodic in x and y, 
e > 0 is a small parameter. We shall show that (1) possesses a solution provided / 
is globally Lipschitz in u uniformly for y, x with a Lipschitz constant K < 1 and a 
certain ordinary differential equation has a 2K-periodic solution. We conclude this 
paper with a discussion of the equations (1) when / is independent on y. We also 
show a geometric interpretation of this special case. 

Singularly perturbed equations on tori have been studied by several authors [2], 
[3], [4]. Usually they have used the approach via the Nash-Moser implicit function 
theorem. We will use only the Banach fixed point theorem. 
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2. MAIN RESULTS 

Theorem 2.1. If there is a constant K, 0 < K < 1 such that 

(+) l/(tti,-,-)-/(«2,-,-)K^-|tti-«2| 

for all tii, «2 € R, then (1) has a solution ut for each small e > 0 having the form 

Uc(*,y) = *>(*) + 0(e) 

where v is a stable (see (—) in the proof of this theorem) 2n-periodic solution of the 
equation 

(2) v" = ±j**f(vys,x)dS. 

P r o o f . First of all, we investigate the equation (2). Let 

H = (v: R -> R, t; is 2n-periodic, 2K|V| 2 = f v2(s) ds < oo}. 

It is well-known that H is a Hilbert space with the basis 

{sinnf,cosmt}n^i,rn^o. 

Lemma 2.2. The equation 

/ •2 i t 

t/" = 0, y e if, / </(s)ds = 0 
Jo 

has a unique solution v(g) in H such that J0 v = 0 and | t / | ^ |(jr|. 

oo 

P r o o f of L e m m a 2.2. If 0 = £ a f-sintf+ 6, • cost* then 
t = i 

v = - ]Г(at- • sin й + 6, • cos it)/i2 

•=i 

D 
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We put S(g) = v(g), F(g) = ± f* f(g, s, x) ds and Pg = ±f*g(s)ds. Then 
(2) has the form 

(3) s = S(I-P).F(s + t), 

0 = PF(s + t), 

where s € Ker P , . 6 ImP SE R. Since / has the property (+) we have 

\\S(I - P)(F(si+t) - F(s2 + t))l\ SK-fa- * 2 | 

for all si,«2 £ Ker P. Using the Banach fixed point theorem we can solve the first 
equation of (3) for each t. We insert this solution s(t) into the second equation of 
(3) obtaining 

(4) 0 = PF(s(t)+t). 

We see that each solution of (4) determines a unique solution of (2). If a zero of (4) 
is simple then we say that the solution of (2) determined by this zero is the stable 
solution of (2) (-). 

Without loss of generality we can assume that v = 0, i.e. t = 0, *(0) = 0. We 
denote 

X = <u: R x R —• R, u is 2it-periodic in x} y, 

it M=h\jLTu,{x'y)dxdy<o°Y 
X is a Hilbert space with the basis 

{sin mt • sin it, sin mt • cos if, cos mt • cos it, cos mt • sin it] 

Lemma 2.3. The equation 

, 2 * 

wvv + ewxx = g, g€X, I g(x, ) dx = 0 VУУ 

has a unique solution wt € X satisfying /„* w9(x, •) dx = 0. Aforeover, 

M<l.l) 

Proof . The proof is the same as that of Lemma 2.2. D 
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We put 

1 [2n 

Te(g) = wgi
 R9=2^l 9(*,y)dxy G(g) == /(</ ,• ,) . 

Then (1) has the form 

(5) w = e • Te • (7 - R) • G(w + v + *), 

v = c • 5 • (/ - P) • A • G(u> + v + 0 . 

0 = PR-G(w + v + t)f 

where tu € Ker/E, v G Imf ln KerP, t G ImP = I?. We note that v is independent 

on x since ImRC H. By (+), Lemma 2.2, Lemma 2.3 we see that the mapping 

K v) -+ (e • Te • (/ - R) • G(u> + v + t),c • 5 • (I - P ) £ • G(w + v +1)) 

defined on Ker Rx Ker P with the norm | . | + | . | is Lipschitz with a Lipschitz constant 

Ku K < Ki < 1 for e > 0 small, t G R. 

Thus the first two equations of (5) have unique solutions we(t), ve(t) for each t G R, 

e > 0 small, and |wc(J)l, |v c (£) | are bounded on each bounded subset of R. Using 

these estimates and the Sobolev imbedding theorem we see that we(t), ve(t) G C3 

and |wc(0lc3> |vc(0lc3> a r e uniformly bounded for e > 0 small, \t\ .$ 1. We take 

a sequence e,- —• 0, £» > 0, U —• <, |*t| ^ 1, e* small. Then by the Arzela-Ascoli 

theorem, {w€i(U), vei(ti)}
(^ has a subsequence tending to (w,v) in C2. 

On the other hand, (5) implies 

e [2n 

Vyy ~ 2K J ^W + V + *' y ' ^ d X i 

+ ewxx = e\J(w + v + t,y,x) - — / f(w + v + t,y,x)dxj. w{ yy 

It follows that v s 0, w is independent on y, ti; = w(x) satisfies 

<-2* i /•2nr2n 

UГ ~2ҡJ / ( ш + ť ' ^ x ) d ^ " " 4^2 / / /(w + *iУ>*)dУd*. 

However, this equation is precisely the first equation of (3) and thus to -̂  $(0* * "*s 

implies 

lim wt(t) = s(ť), lim t>c(ť) = 0 
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in the space C2. Hence for e > 0 small the last equation of (5) is Cl-close to the 
equation 

0 = P R • G(w + t) = P . F(s(0 + «) 

on the interval ( -£ , | ) C (-1,1). But we know that P • F(s(0) + 0) = 0 and this 
root is simple. Thus the equation 

0 = P'RG(we(t) + vt(t) + t) 

has a solution on (— ,̂ ~) for £ > 0 small tending to 0 as e —• 0. This completes the 
proof. • 

It is clear that we can repeat the above proof if / depends smoothly also on £, i.e. 
/ = /(ti,J/,x,£r). 

Remark 2.4. Since a small smooth perturbation of a function having a simple 
root also has a simple root, it is not difficult to see that each stable solution v of (2) 
has the following property: Each 27t-periodic (smooth) perturbation of (2) possesses 
a 2rc-periodic solution near v. 

Finally, let /(u,y,x,0) = <K") and g(c) = 0, g'(c) £ 0, \g'(.)\ < 1. Then the 
equation (3) has the form 

1 Ґ 

8" = g(8 + t)-—J g(s(u) + t)du, 

1 ŕ* 
0 = 2 W 0 s(s(u) + t)áu. 

We see that the first equation has a unique solution s = 0 for each t 6 R and thus 
(4) has the form 

0 = g(t). 

Since g(c) = 0, g'(c) ^ 0, the trivial solution u = c of u" = (/(u) is stable. 

3. A SPECIAL CASE 

In this section we assume that / is independent on y, i.e. we investigate the 
equation 

(6) -tiyy + uxs = /(u,ar) 

on the torus Sl x Sl. 
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We suppose that there is a K > 0 satisfying 

10/ 
\du 

The operator J4C : Dom(At) C X —* X, 

£<•• •>!<*•• 

, 1 

A€u = -uyv + uXTi 

has the invariant subspace 

H\ = span {sin mx, cos mar}. 

Further, 

i/i e H2 = X, 

/f2 = span{sinmy • cos jx, sin my • sin jx, cos my • cos jx, cos my • sin jxJJ1^1. 

Hence the spectrum of At///_ is 

/ _ ! „ , - - j - } __ _r<A_/._r_). 

On the other hand, if F(u) = /(ti, •) then 

F ( i / 0 C Hi, |F(tn) - F (n 2 ) | ^ K . |u , - ti2 | . 

Summing up we obtain <r(A€/H2) O (—/f, /C) = 0 for e > 0 small. 
Thus applying Theorem 2 from [1] we obtain 

Theorem 3.5. For e > 0 smatf eac/j 2n-periodic solution of (6) is independent 
on y. 

Finally, Theorem 3.5 has the following simple geometric interpretation: Consider 
the equation 

(7) ti , t + «** = / ( uyx) 

on the torus Mt = S1 x {2: € R2, |*| = e} (x € 51). Then by using a suitable scaling 
of variables (7) can be transformed into (6). Hence for e > 0 small the equation (7) 
has only C2-solutions on Me which are independent on y. Of course, provided they 
exist. 
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R e m a r k 3.6. Similarly we can study the following problem: Let us consider 
the system of equations 

EPup + eEPup = efp(z,y,ui um), p = . l , . . . , m 

where (x,y) 6 T ^ x T"\ up = up(x,y) 6 R, e is a small nonnegative parameter, 
Ep = Ep, Ep = Ep, Ep is a strongly elliptic operator on the m-dimensional torus 
T** = Sl x . . . x 5 l , i . e . 

>•-?:£(<,<•). 
where of are 27i-periodic in all coordinates of z and the matrices {a£j(.)} are sym­
metric positive definite. Further, fp are 2rc-periodic in (x,y) and globally Lipschitz 
in u = ( t i i , . . . , tim) with a Lipschitz constant Kp i.e. 

\fP(rM,...,um)-fp(ryv...,ui)\^Kpy/(u\-uir+...+(um-uiy. 

Let Ap be the first nonzero eigenvalue of Ep. We assume 

m 

£ ( / < : P / A P ) 2 < I. 

Then following the above procedure we obtain: The above mentioned equation has 
a solution ti in the form tip = vp + 0(e), p = 1, . . . , rn, for each e ^ 0 small where 
t; = ( v i , . . . , vm) is a stable solution of 

i /»2ir y»2ti 

E>p = (2Krl "I Mx,y,Vl Vm)dx-
The stability of v means that under a small perturbation of the right hand side of 
this equation there always exists a unique solution near v. 
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Souhrn 

URČITÝ TYP PARCIÁLNYCH DIFERENCIÁLNYCH ROVNÍC NA TÓROCH 

MICHAL FEČKAN 

V práci sa študujú speciálně parciálně diferenciálně rovnice na tóroch, přitom sa doka­
zuje existencia ich klasického riešenia. 
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