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1. INTRODUCTION

The purpose of this paper is to show the existence of C2-smooth solutions for the
singularly perturbed equation

(1) Uyy + €Uz = €f(u,y,2),

where u is 2r-periodic in z and y, f € C™(R x R x R,R) is 2r-periodic in z and y,
€ > 0 is a small parameter. We shall show that (1) possesses a solution provided f
is globally Lipschitz in u uniformly for y, z with a Lipschitz constant K < 1 and a
certain ordinary differential equation has a 2r-periodic solution. We conclude this
paper with a discussion of the equations (1) when f is independent on y. We also
show a geometric interpretation of this special case.

Singularly perturbed equations on tori have been studied by several authors [2],
[3], [4]. Usually they have used the approach via the Nash-Moser implicit function
theorem. We will use only the Banach fixed point theorem.
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2. MAIN RESULTS
Theorem 2.1. If there is a constant K, 0 < K < 1 such that
(+) 1£(u,-,°) = fluz, ) < K - Juy — ug
for all uy,u2 € R, then (1) has a solution u, for each small € > 0 having thé form
ue(z,y) = %(z) + O(¢)

where U is a stable (see (=) in the proof of this theorem) 2r-periodic solution of the
equation

l 2

(2) . v = % J, f(v,s5,z)ds.

Proof. First of all, we investigate the equation (2). Let
2r
H= {v: R — R, v is 2r-periodic, 2njv})® = / v2(s)ds < oo}.
0
It is well-known that H is a Hilbert space with the basis
{sinnt, cos mt}n>1,m>o0-

Lemma 2.2. The equation
2r
v'=g, g€H, / 9(s)ds =0
‘ 0
has a unique solution v(g) in H such that f:t v =0 and v}l < Igl.

i=1

00
Proof of Lemma 22. fg= Y a; sinit+b;-cosit then

o <]
v=-— Z(a.- -sin it + b; - cosit)/i%.

i=1
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We put S(g) = v(g), F(9) = il;foh f(9,8,z)ds and Pg = -.}g-foh 9(s)ds. Then
(2) has the form

(3) s=S(I-P)-F(s+1),
0=PF(8+t),

where s € Ker P, t € Im P = R. Since f has the property (+) we have
IS — P)(F(s1 +t) — F(s2 + t) || < K - B81 — 52k

for all 5,52 € Ker P. Using the Banach fixed point theorem we can solve the first
equation of (3) for each t. We insert this solution s(t) into the second equation of
(3) obtaining

(4) 0= PF(s(t) +1).

We see that each solution of (4) determines a unique solution of (2). If a zero of (4)
is simple then we say that the solution of (2) determined by this zero is the stable
solution of (2) (-).

Without loss of generality we can assume that 7 = 0, i.e. t = 0, 8(0) = 0. We
denote

X = {u: R x R — R, u is 2n-periodic in z, y,

1 2x p2x
Jul = o / /0 u?(z,y)dzdy < oo}.
0

X is a Hilbert space with the basis

{sinmt - sin it~; sinmt - cos it, cosmt - cos it, cos mt - sin it.}

Lemma 2.3. The equation
2=
Wyy + EWez = ¢, geX, L 9(z,")dz =0
has a unique solution w, € X satisfying f‘:"t wy(z,-)dz = 0. Moreover,
1
|w,| < lg ' - E

Proof. The proof is the same as that of Lemma 2.2. a
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We put

- 1 2%
L) =ws, Ro=g [ seids G =16

Then (1) has the form

(5) w=¢e-T,-(I - R)-Gw+v+1),
v=e-S-(I-P)-R-Gw+v+1),
0=P-R-Gw+v+1t),

where w € Ker R, v € In RN Ker P, t € Im P = R. We note that v is independent
on z since ImR C H. By (+), Lemma 2.2, Lemma 2.3 we see that the mapping

(;u,v)-»(e-T.-(1—ié)-G(w+u+t),e.s-(z-P)R-G(w+v+t))

defined on Ker Rx Ker P with the norm J.J+}.] is Lipschitz with a Lipschitz constant
K, K < K, <1fore>0smallteR.

Thus the first two equations of (5) have unique solutions w,(t), v¢(t) for each t € R,
e > 0 small, and Jwc(¢)ll, §ve(t)] are bounded on each bounded subset of R. Using
these estimates and the Sobolev imbedding theorem we see that we(t), v.(t) € C3
and |w(t)|cs, |ve(t)|cs, are uniformly bounded for ¢ > 0 small, |t| < 1. We take
a sequence ¢; — 0, &; > 0, t; — ¢, |t;] < 1, & small. Then by the Arzela-Ascoli
theorem, {we,(t;), ve;(t:)}&° has a subsequence tending to (@,v) in C2.

On the other hand, (5) implies

2n

£
Uy = oo A flw+v+ty z)de,

1 2n
Wyy + EWzs =e(f(w+u+t,y,z)—- T f(w+v+t,y,:c)dz)‘.

It follows that ¥ = 0, W is independent on y, W = W(z) satisfies

1 2 2n p21

s/ — — —_— -—
v = o A f@+tyz)dy w ), J, f(W+t,y z)dyde.

However, this equation is precisely the first equation of (3) and thus @ ~ s(t)- This
implies

‘Exgl+ we(t) = s(t), 'l_i.l& ve(t) =0
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in the space C2. Hence for ¢ > 0 small the last equation of (5) is C'-close to the
equation

0=P-R-G@+t)= P F(s(t)+1)
on the interval (—1, 1) € (-1,1). But we know that P - F(s(0) + 0) = 0 and this
root is simple. Thus the equation
0=P-R-G(we(t) + ve(t) +1)
has a solution on (—%, %) for € > 0 small tending to 0 as ¢ — 0. This completes the
proof. a

It is clear that we can repeat the above proof if f depends smoothly also on ¢, i.e.
f=f(uy,z,6).

Remark 2.4. Since a small smooth perturbation of a function having a simple
root also has a simple root, it is not difficult to see that each stable solution v of (2)
has the following property: Each 2r-periodic (smooth) perturbation of (2) possesses
a 2n-periodic solution near 7.

Finally, let f(u,y,z,0) = g(u) and g(c) = 0, ¢’(c) # 0, |¢'(.)] < 1. Then the
equation (3) has the form

1 2
=96 +1)- 5 [ olstw)+0)du,
T Jo
1 2n
0= -2—1;/0 9(s(u) +1t) du.

We see that the first equation has a unique solution s = 0 for each t € R and thus
(4) has the form '

’ 0 =g(t). 4
Since g(c) = 0, ¢'(c) # 0, the trivial solution u = ¢ of u” = g(u) is stable.
3. A SPECIAL CASE

In this section we assume that f is independent on y, i.e. we investigate the
equation

(6) v _ é“w + tze = f(u, 2)

on the torus S! x S!.
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We suppose that there is a K > 0 satisfying

of

5""('1 )I <K.
The operator A, : Dom(A,) C X — X,

1
A‘u = Eu,, + ug’,
has the invariant subspace
Hy = span{sin mz, cosmz}.

Further,

Hi® H; = X,

H, = span{sin my - cos jz,sinmy - sin jz, cos my - cos jz, cos my - sin jz};">l.

Hence the spectrum of A,/ H; is

1 2 _ —
{--e-m -7 }m)l = o(A./Ha).
On the other hand, if F(u) = f(u, ') then
F(H\) C Hi, 1F(w) - Flul < K - Jur - wall.

Summing up we obtain g(A./H2) N (-K, K) = @ for ¢ > 0 small.
Thus applying Theorem 2 from [1] we obtain

Theorem 3.5. For ¢ > 0 small each 2x-periodic solution of (6) is independent
on y. :

Finally, Theorem 3.5 has the following simple geometric interpretation: Consider
the equation

(7) Uyy + Ugz = .f(u» z)

on the torus M, = S! x {z € R?,|z| = ¢} (z € S!). Then by using a suitable scaling
of variables (7) can be transformed into (6). Hence for € > 0 small the equation (7)
has only C2?-solutions on M, which are independent on y. Of course, provided they
exist.
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Remark 3.6. Similarly we can study the following problem: Let us consider
the system of equations

Efup + eEfu, = efp(z,y,u1,...,um), P=1,...,m

where (z,y) € T™ x T™, u, = up(z,y) € R, ¢ is a small nonnegative parameter,
E? = EP, E} = EP, EP is a strongly elliptic operator on the i-dimensional torus
Tﬁzsl X ...xSl,i.e.

EPu= E %(af.j(z)g%u),
ij

where af ; are 2n-periodic in all coordinates of z and the matrices {af;(.)} are sym-

metric positive definite. Further, fp are 2r-periodic in (z,y) and globally Lipschitz
in u = (uy,...,u,) with a Lipschitz constant K, i.e.

oComrthyeey ) = folomtidy o U2 € Ky flud — wd)2 4 (uy — w22,

Let A, be the first nonzero eigenvalue of EP. We assume

m
(Kp/Ap)? < 1.
p=1

Then following the above procedure we obtain: The above mentioned equation has
a solution u in the form up = v, + O(¢), p = 1, ..., m, for each € > 0 small where
v = (v1,...,vm) is a stable solution of

1 2r 2n
Eﬁ”p=(—2';)‘,,—./o A fr(z,y,01,...,v;m)dz.

The stability of v means that under a small perturbation of the right hand side of
this equation there always exists a unique solution near v.
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Souhrn

URCITY TYP PARCIALNYCH DIFERENCIALNYCH ROVN{C NA TOROCH
MiIcCHAL FECKAN

V prici sa $tuduji 8pecidlne parcidlne diferencidlne rovnice na téroch, pritom sa doka-
zuje existencia ich klasického riesenia.
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