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Abstract. The y-domination number of a graph for a given number set Y was introduced 
by D. W. Bangc, A. E. Barkauskas, L. H. Host and P. J. Slater as a generalization of the dom­
ination number of a graph. It is defined using the concept of a y-dominating function. In 
this paper the particular case where Y = {0, l/k) for a positive integer k is studied. 
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This paper will concern a certain generalization of the domination number of a 

graph. All graphs considered will be finite undirected graphs without loops and 

multiple edges. 

A subset D of the vertex set V(G) of a graph G is called dominating in G, if for 

each vertex x £ V(G) - D there exists a vertex y £ D adjacent to x. The minimum 

number of vertices of a dominating set in G is called the domination number of G 

and denoted by 7(G). 

This well-known concept can be defined in another way, using domination func­

tions. We will speak about functions / which map 1 "(G) into some set of numbers. 

If S C V(G), then we denote f(S) = £ f(x). If x £ V(G). then by N[x] we denote 
x 6 .S 

the closed neighbourhood of x in G, i.e. the set consisting of x and of all vertices 

which are adjacent to x in G. Besides, we will also consider the open neighbour­

hood N(x) = N[x] - {x}. Now we can formulate the alternative definition of the 

domination number. 

A function / : V(G) -> {0.1} is called a dominating function of G. if f(N[x]) ^ 

1 for each x £ V(G). The minimum sum f(V(G)) = X! /(~0 taken over all 
iev'(G') 

dominating functions / of G is called the domination number of G and denoted by 
7(G). 
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It is evident that these two definitions are equivalent. Namely, if D is a dominating 

set in G, then the function / defined so that f(x) = 1 for x 6 D and f(x) = 0 for 

X € V(G) - D is a dominating function of G. Conversely, if / is a dominating 

function of G, then the set D = {x G V(G); /( . i) = 1} is a dominating set in D. 

The concept of a dominating function and obviously also the related concept of 

the domination number were generalized by some authors in such a way that the set 

of values {0,1} was replaced by another number set. In [1] the signed dominating 

function and the signed domination number were defined by replacing the set {0,1} 

by {-1,1} and in [2] the minus dominating function and the minus domination 

number were defined by using the set { — 1,0,1}. The fractional dominating function 

and the fractional domination number were introduced in [3] by using the set of real 

numbers. The most general case is the y-dominating function and the y-domination 

number, where a quite arbitrary set Y of values of / is used [4], 

Therefore, following [4], a function / : V(G) -» Y, where Y is a given set of 

numbers, is called a y-dominating function of G, if f(N[x\) ^ 1 for each x e V(G). 

The minimum of f(V(G)) taken over all y-dominating functions / of G is called the 

y-dominating number of G and is denoted by yy (G). 

We will not treat the domination is such a general way. We restrict our consid­

erations to natural generalizations of the set {0,1}, namely to two-element number 

sets {0, t} , where t is a positive real number. 

The following proposition is easy to prove. 

P r o p o s i t i o n 1. Let Y = {0,t}, where t is a positive real number. Let G be 

a graph. The Y-domination number 7v(G) of G is defined and at Jeast one Y-

dominating function of G exists if and only if S(G) ^ 1/t - 1. where 6(G) denotes 

the minimum degree of a vertex ofG. 

Let / be a function which maps V(G) into the set of real numbers and let x € V(G). 

The vertex set x will be called a zero vertex of / , if f(x) = 0. 

The following theorem enables us to restrict our consideration to numbers t which 

are inverses of positive integers. 

T h e o r e m 1. Let t be a positive real number, let G be a graph with S(G) ^ 1// —1. 

Let k = [1/t] and Yj = {0, t}, Y2 = {0 ,1 /*} . Then yyl(G) = ktyy3{G) and there 

exists a one-to-one correspondence between y-dominat ing functions of G and Y-­

dominating functions of G such that the corresponding functions have the same set 

of zero vertices. 

P r o o f . Let / : V(G) -> Yj, <j: V(G) -> Y2 and suppose that / , g have the same 

set of zero vertices. Then f(x) = ktg(x) and also f(N[x\) = ktg(N[x]) for each 

264 



x e V(G). Suppose that g is a y2-dominating function of G: then g(N[x]) ^ 1 

for each x € V(G). Evidently A,-* Js 1 and thus f(N[x]) ^ g(N[x]) Z 1 for each 

x £ V(G) and / is a Ys-dominating function of G. Now suppose that g is not a 

y2-dominating function of G. There exists x e V(G) such that g(N[x]) < 1. If 

k = 1. then g(N[x]) must be a non-negative integer and therefore g(N[x\) = 0. 

This is possible only if g(y) = 0 for each y € N[x]. But then also f(y) = 0 for 

each y e N[x] and f(N[x]) = 0; the function / is not a Ys -dominating function 

of G. If k > 2, then the number of vertices of jV[:r] which are not zero vertices 

of g is at most k — 1. But these vertices are exactly those vertices which are not 

zero vertices of / . We have f(N[x]) <. (k - l)t. Evidently 1/t > k - 1 and thus 

f(N[x[) <. (k - l)t < 1; the function / is not a ^-dominat ing function of G. 

If go is a minimal (i.e. with the minimum sum on V(G)) y2-dominating function, 

then the corresponding function f0 is a minimal Ys -dominating function. We have 

1Y\(G)= Y. / » W = £ ktg0(x) = kt Z 9o(x) = ktlY,(G). • 

xev(G') xev(G) xev(G) 

For each positive integer k we denote Y(k) = {0,1/A:} and i(k,G) = 7y(jt)G. 

From Proposition 1 we have the following corollary. 

C o r o l l a r y 1. Let k be a positive integer, let G be a graph. The Y(k)-domination 

number j(k,G) is defined and at least one Y(k)-dominating function ofG exists if 

and only if 5(G) > f c - l . 

Note that 7(1 , G) = 7(G), the usual domination number of G. 

If we speak about a function / : V(G) -+ Y(k), we will use the notation V° = 

{x e V(G); f(x) = 0}, V+ = {x 6 V(G); f(x) = 1/A:}. 

T h e o r e m 2. Let G be a regular giaph of degree k - 1 with n vertices. Then 

1(k,G) = n/k. 

P r o o f . The neighbourhood N[x] for each x G V(G) has exactly k vertices. If 

/ is a y(A:)-dominating function, then / must assign the value 1/A; to all vertices of 

N[x]. As x was chosen arbitrarily, it assigns 1/fc to all vertices of G, which implies 

the assertion. D 

By G2 we denote the square of the graph G, i.e. the graph such that V(G2) = V(G) 

and two vertices are adjacent in G2 if and only if their distance in G is at most 2. 

The symbol o-o(G) denotes the independence number of G, i.e. the maximum number 

of pairwise non-adjacent vertices in G. 

T h e o r e m 3. Let G be a regular graph of degree k with n vertices. Then -y(k, G) = 

( n - Q o ( G 2 ) ) / A : . 
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P r o o f . For each vertex x of G the set N[x] has fc + 1 vertices. If / is a Y(k)-

dominating function of G, then N[x] contains at most one zero vertex of / . The 

distance between two zero vertices of / cannot be 1; then the closed neighbourhood 

of either of them would contain them both. This distance cannot be 2; then there 

would exist a vertex adjacent to both of them and its closed neighbourhood would 

contain them both. Therefore the distance between two zero vertices of / in G is at 

least 3 and in G2 at least 2; they form an independent set in G2 . Therefore there 

are at most a0(G
2) zero vertices of / and at least n - a0(G

2) vertices x such that 

f(x) = 1/k. This implies the assertion. • 

Coro l l a ry 2. Let Cn be the circuit of length n. Then 7(3, C„) = n / 3 and 

7(2, C„) = n / 3 f o r n = 0(mod3), 7(2,C„) = n / 3 - 1 / 6 for n = l (mod3) , 7(2,C„) = 

n / 3 + 1/3 forn = 2(mod3). 

A path is a similar case. If / is a y(2)-dominating function of a path P„ of 

length n, then again the distance between any two zero vertices of / is at least 3 and 

moreover neither the vertices of degree 1, not the vertices adjacent to them may be 

zero vertices of / . This yields the result. 

P r o p o s i t i o n 2. Let Pn be a path of length n. Then 7(2, P„) = n/3 + 1 for 

n = 0(mod3), 7(2,P„) = n / 3 + 2/3 for n = l (mod3) , 7(2,P„) = n / 3 + 5/6 for 

n = 2(mod3). 

Now we turn to complete graphs and complete bipartite graphs. 

T h e o r e m 4. Let k,n be positive integers, k ^ n. TJien y(k,Kn) = 1. 

P r o o f . In the complete graph Kn we have N[x] = V(Kn) for each vertex .r. 

If / is a Y(fc)-dominating function, then f(V(Kn) = f(N[x]) 3= 1. Moreover, there 

exists a function / which assigns the value 1/k to k vertices and the value 0 to the 

remaining n - k vertices: then f(V(Kn)) = 1. • 

T h e o r e m 5. Let k,m,n be positive integers, k — 1 <. m ^ n. If k < m, then 

7(fc, A'm,n) = 2. Ifm = k - 1, then l(k,Km,n) = (m + n)/k = (k + n - l)/fc. If 

m = fc, then f(k,Km<n) = 2 - 1/fc. 

P r o o f . Let fc < m. Let A, B be the bipartition classes of K, \A\ = m, \B\ = n. 

For each vertex x 6 A, its open neighbourhood satisfies N(x) C B. As N[x] = 

{.1;} U N(x) and f(N[x]) ^ 1 for a K(fc)-dominating function / , there are at least 

fc - 1 vertices y e N(x) C A which are in V+. If moreover f(x) = 0, then there are 

at least fc such vertices. Therefore either }(x) = 1/fc for all x 6 A and f(y) = 1/k 
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for at least fc — 1 vertices of B, or }(y) = 1/fc for at least fc vertices of B. In the 

former case f(V(Km,n)) ^ (m + fc - l)/fc ^ 2. In the latter case analogously either 

f(x) = 1/fc for all x 6 B and }(y) = l/A: for at least fc-1 vertices of A, or / (y ) = 1/fc 

for at least fc vertices of A. In both these cases again }(V(Km,n)) ^ 2. A function 

/ which assigns 1/fc to exactly A: vertices of A and to exactly fc vertices of B has 

}(V(Km,n)) = 2. 

Now suppose m = fc — 1. Then | A | = fc - 1. Let x e B and again let / be a 

K(fc)-dominating function of Km,n- The set N[x] has exactly fc vertices and thus 

f(x) = 1/fc for each y t Ar[x]- This means that f(y) = 1/fc for each y e A and 

also / ( x ) = 1/fc. As x is an arbitrary vertex of B, we have f(x) = 1/fc for all 

x e V(Km,n) and f(V(Km,n)) = (fc - 1 +n)/k. Another K(fc)-dominating function 

does not exist and thus 7(fc, Km,n) = (fc - 1 + n)/fc. 

Finally, let fc = m. If / is a y(fc)-dominating function, then either f(x) = 1/fc for 

each x e A and for at least fc-1 vertices x of B, or / (x ) = 1/fc for exactly fc—1 vertices 

of A and all vertices x 6 B . In the former case f(V(Km,n)) ^ (2fc - 1)/A: = 2 - 1/fc, 

in the latter case f(V(Km,n)) ^ (fc - 1 + n)/fc ^ (2fc - l)/fc = 2 - 1/fc. If / 

assigns the value 1/fc to all vertices of A and to exactly fc-1 vertices of B, then 

f(V(Km,n)) = 2 - 1/fc, therefore 7(fc, Km,n) = 2 - l/A:. • 

By the symbol G ffi H we denote the Zykov sum of graphs G and H, i.e. the graph 

obtained from vertex-disjoint graphs G and H by joining all vertices of G with all 

vertices of H by edges. 

T h e o r e m 6. Let k,q be positive integers, let G,H be two graphs such that 

7(fc,G), l(k,H) are defined andq sC l+mm(j(k,G),y(k,H)). Then1(kq,G®H) ^ 

(y(k,G) + ~f(k,H))/q. 

P r o o f . Let g and h be minimal Y(fc)-dominating functions of G and H, respec­

tively. Let / : V(G)UV(H) -> Y(kq) be defined so that f(x) = g(x)/q for x G V(G) 

and / (x ) = h(x)/q for x 6 V ( # ) . Consider x e V(G). The closed neighbourhood 

of x in G ffi H is the disjoint union of the closed neighbourhood of x in G and of 

V(H). The sum of values of / over the closed neighbourhood of x in G is at least 

1/q, its sum over V(H) is at least i(k,H)/q. It follows from the assumption that 

l/q + -y(k, H)/q ^ 1. For x € V(H) this may be proved quite analogously. Therefore 

/ is a l'(fcf/)-dominating function of G ffi H. This implies the assertions. • 

For the particular case fc = 1 we have a corollary. 

C o r o l l a r y 3 . Let q be a positive integer, let G. H be two graphs such that q < 

1 + inin(7(G), 7 (H))- Then y(q,G®H) < (7(G) +y(H))/q. 
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A similar assertion holds for G © A'i, i.e. the graph which is obtained from G by 

adding a new vertex and joining it with all vertices of G by edges. 

T h e o r e m 7. Let k be a positive integer, let G be a graph for which 7(fc, G) is 

defined. Then 

7(A: + l , G + A ' , ) = 7 ( f c , G ) . ^ T + ^ r . 

P r o o f . Let / be a minimal Y (fe)-dominating function of G. Let w be the added 

vertex. Let g: V(G) U {w} -> Y(k + 1) be defined so that g(x) = kf(x)/(k + 1) for 

x £ V(G) and g(w) = l/(fe + l ) . Then the sum of g(x) over the closed neighbourhood 

of l i n G © K \ is equal to the sum of g over the closed neighbourhood of x in G plus 

g(w). The sum of g over the closed neighbourhood of x in G is at \easfk/(k + 1) 

and g(w) = l/(fc + 1), therefore the sum of g over the closed neighbourhood of x in 

GffiA'i is at least 1. The closed neighbourhood of w in GffiA'i is V(G)u{w} and the 

sum of g over it is greater than or equal to this sum over the closed neighbourhood 

of any other vertex, therefore it is also at least 1 and 

£ g(x) = *£- £ f(x)+9W = *+Ji(k,G) + 1±i. 
*€V(C)U{»} x-eV(G) 

Hence 7(fc + l , G © A ' i ) < k^f(k,G) + j i y . On the other hand, let g0 be a minimal 

Y(k + l)-dominating function of G © A'I and let f0: V(G) -)• Y(k) be defined so 

that f0(x) = (k + l)g0(x)/k for each x e V(G). The sum of values of g over the 

closed neighbourhood of any vertex x e V(G) in G is at least 1 - l/(k + 1) and 

thus such a sum of /o is at least 1. We have E /o(x) = Yl (k + l)g0(x)/k = 
xgV(G) x£V(G) 

-f1 E 3o(:r) = ^ i 7 ( f c + l , G © A i ) - < 7 o H ) = ^ 7 ( f c + l , G © A 1 ) - i a n d t h u s 
xev(G) 

7(fc,G) s: 4 ± i 7 ( J f c + l , G © A ' i ) - i , which yields 7(A: + 1,G©A1) ^ ^ ( ^ G J + j i j . 
Hence we have the equality 7(fc + 1, G © A'i) = %tf-y(k, G) + ^ j . D 

In the end we will consider the number j(k, G) for different numbers k and for the 

same graph G. 

T h e o r e m 8. Let k, q be positive integers. Then there exists a graph G such that 

1(k + l,G)-1(k,G) = q. 

P r o o f . Denote p = kq + q + I and let G be the Zykov sum Kk © Kv, where 

Kv denotes the complement of the complete graph Kp, i.e. the graph consisting of p 

isolated vertices. If / is a function such that f(x) = 0 for x e V(KV) and f(x) = l/k 

for x 6 V(Kk), then / is a Y(A:)-dominating function of G; namely, we have V(Kk) C 

AT[a;] for each x € V(G) and f(V(Kk)) = 1. We have i(k,G) = 1. Each vertex of 
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Kp has degree k in G and therefore for each Y (k + l)-dominating function g we have 

g(y) = l/(fe + l) for each y 6 V(G) and y(k + 1,G) = (p + k)/(k + 1) = q + 1. D 

The next theorem is not expressed for k in general, but only for 7(1, G) and 

7(2, G). 

T h e o r e m 9. Let q be a positive integer. Then there exists a graph G such that 

7 ( l , G ) - 7 ( 2 , G ) = g . 

P r o o f . Let H be a graph obtained from the circuit of length 4 by adding a new 

vertex u and joining it to a vertex v of the circuit by an edge. Take 2q pairwise vertex-

disjoint copies Hi,..., H2q of H. Take a vertex w and join it by edges with the vertex 

corresponding to u in each of the graphs Hi,..., H2q• Finally, take a new vertex x 

and join it with w by an edge. The resulting graph will be G. For q = 4 this graph 

is shown Fig. 1. The number 7(1, G) is the usual domination number 7(G) of G, 

i.e. the minimum number of vertices of a dominating set D in G. Evidently such a 

dominating set must contain at least one of the vertices w, x and at least two vertices 

from each H for i = 1 , . . . , 2q: hence 7(G) ^ 4q + 1 . If D consists of w. of the vertices 

corresponding to v in H and of one other vertex of the circuit in H for i = 1,... ,2q, 

then D is dominating in G and \D\ = Aq + 1, which implies 7(G) = Aq + 1. Now let 

V+ be the set consisting of all vertices of D and, moreover, of x and of one more 

vertex of the circuit in each H for i = l,...,2q. We have |V+| = Gq + 2. If f(x) = \ 

for x e V+ and f(x) = 0 for x e V(G)-V+, then / is a V'(2)-dominating function of 

G and is evidently minimal. We have 7(2, G) = f(V(G)) = | | V + | = 3q + 1. Hence 

7 ( l , G ) - 7 ( 2 , G ) = g. D 
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P r o b l e m . Can Theorem 10 be generalized to a theorem analogous to Theo­

rem 9? 

A final remark. The Y (fc)-doniination number of a graph can be defined in another 

way, without using the concept of a y(fc)-dominating function: 

A subset D of V(G) is called fc-tuply dominating in G, if for each x 6 V(G) - D 

there exist fc vertices y\,...,yk od D adjacent to x and for each y € D there exist 

fc - 1 vertices z\,.. .,Zk-\ adjacent to y. The minimum number of vertices of a 

fc-tuply dominating set in G is called the y(fc)-domination number of G. 

A fc-tuply dominating set was defined and used also in [5], but in a weaker form: 

the requirement of existence of z\,... ,Zk-\ for y £ D was not. used there. 
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