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COMPARISON THEOREMS 

FOR FUNCTIONAL DIFFERENTIAL EQUATIONS 

JOZEF DZURINA, KoSice 

(Received September 24, 1992) 

Summary. In this paper the oscillatory and asymptotic properties of the solutions of the 
functional differential equation 

Lnu(t)+p(t)f(u[g(t)]) = 0 

are compared with those of the functional differential equation 

ctnu(t) + q(t)h (u[w(t)]) = 0. 

Keywords: Property (A), canonical form 

A MS classification: Primary 34C10 

We consider the n-th order (n ^ 2) functional differential equation 

(1) (d^)-(4"'( , ))'-)+!,<" /<" l !'(')1)=0' 
where n,g,p 6 C([*0,oo)), / e C(R), p{t) > 0, r.(t) > 0, i = l ,2 , . . . ,n - 1, 
xf(x) > 0 for x j£ 0 and g(t) —• oo as t -+ oo. 

We introduce the notation 

(2) L0u(t) = u(t), Liu(t) = -^-r(Li.1u(t))', Lnu(t) = (Ln-lU(t))', 

i -= l , 2 , . . . , n - l . 

The author would like to thank the referee for some useful comments. 
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Then equation (1) can be rewritten as 

Lnu(t)+p(t)f(u[g(t)]) = 0. 

The domain D(Ln) of Ln is defined to be the set of all functions u: [Tu, oo) -» R 
such that Liu(t), 0 ^ i ^ n exist and are continuous on [Tu,oo). By a proper 
solution of equation (1) we mean a function u(t) £ D(Ln) which satisfies (1) for 
all sufficiently large t and sup{|u(t)|: t ^ T} > 0 for every T > Tu. We make 
the standing hypothesis that equation (1) does possess proper solutions. A proper 
solution of (1) is called oscillatory if it has arbitrarily large zeros; otherwise it is 
called nonoscillatory. Equation (1) is said to be oscillatory if all its proper solutions 
are oscillatory. 

We say that the operator Ln is in canonical form if 

/

oo 

s) ds = oo for 1 < i ^ n — 1. 

It is well known that any differential operator of the form (2) can always be rep­
resented in a canonical form in an essentially unique way (see Trench [10]). In the 
sequel we will suppose Ln is in canonical form. 

Lemma 1. Let (3) hold. If u(t) is a nonoscillatory solution of (1), then there 
exists a ti and an integer t, 0 ^t^n-1 such that t^n (mod 2) and 

u(t)Liu(t) > 0 on [ii, oo), 1 < i < I, 

(-ly-'utyLiuit) > 0 on [*i,oo), t + l^i^n. <4> 

Lemma 1 generalizes a well known lemma of Kiguradze [6] and can be proved 
similarly. 

A function u(t) satisfying (4) is said to be of degree t. The set of all nonoscillatory 
solutions of degree t of (1) is denoted by Mi. If we denote by JV the set of all 
nonoscillatory solutions of (1), then 

M = MQ UM2 U • • • UJVn-i, for n odd, 

Af = MuJV3U---UA/'n-i, for n even. 

Following Kusano and Naito [7] we are interested in the situation when M = JVo, 
especially when every nonoscillatory solution u(t) of (1) satisfies 

(5) lim u(t) = 0. 
t—j»oo 

Definition 1. Let Ln be in canonical form. Equation (1) is said to have property 
(A) if for n even (1) is oscillatory (i.e. M = 0) and for n odd every nonoscillatory 
solution u(t) of (1) satisfies (5). 
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R e m a r k 1. Let us denote M0 = 1 and 

pt pSi pS2 

Mi(t)= r{(si) • • • / ri(si)d$i...d$i, i = l , . . . , n - l . 
Jto Jto Jto 

Then a stronger asymptotic result can be established, namely, according to Theo­
rem 1 in [1] if u(t) satisfies (5) then also 

lim Mi(t)Liu(t) =0 , i = 0 ,1 , . . . , n - 1. 
t->oo 

The following lemma is elementary but quite useful in the sequel. 

Lemma 2. Let p(t) ^ 0, q(t) ^ 0. Suppose that a function a(t) is positive, 
continuous and nondecreasing on [t0l oo). If 

/

oo poo 

p(s)ds ^ / q(s)ds, t^ t0, 

/

oo poo 

p(s)a(s)ds^ / q(s)a(s)ds, t^t0. 

then 

In the literature many comparison results have been established to the effect that 
if a differential equation with a deviating argument has property (A) then so does 
another related equation with larger deviating argument. Attempts in this direction 
have been undertaken e.g. by Kusano and Naito [7], Mahfoud [9] and Erbe [3] and 

[4]-
The aim of this paper is to present comparison results in the opposite direction, 

that is we wish to derive property (A) of an equation with a deviating argument 
from the corresponding property of another equation with larger deviating argument. 
Therefore, let functions g(t) and w(t) be subject to the conditions 

(6) g,weC\ g'(t)>0, w'(t)>0, w(t)>g(t). 

To be able to build our comparison technique we use the following differential 
operator which was introduced by Kusano and Naito [7]. 

d 1 d d 1 d 
Otn = -T7 n d* rn_i[r(*)]r'(*) dt'dtr^t)]^(t) dt' 

where r(t) = g(w~x(t)) and w~l(t) is the inverse function to w(t). 
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We compare oscillatory and asymptotic properties of solutions of equation (1) with 
those of the equation 

(7) anu(t) + q{t)h(u[w(t)])=0, 

where q G C([t0, oo)), h e C(R), q(t) > 0, xh(x) > 0 for x ^ 0 and w(t) satisfies (6). 
Note that the function T(t) expressed in terms of arguments g(t) and w(t) of 

equations (1) and (7) is the main tool for comparing (1) and (2). 

Theorem 1. Suppose that (3) and (6) hold. Let h(x) be nondecreasing. Further 
assume that 

(8) f(x) sgn x ^ h(x) sgn x for x ^ 0, 

/

oo /»oo 

p(s) ds ^ / q(s) ds for t^t0. 
Then equation (1) has property (A) if so does equation (7). 

Proof . Let u(t) be a nonoscillatory solution of (1). We may assume that u(t) is 
positive (for u(t) < 0 we can use a similar argument). Then there exists an integer 
£ € {0,1, . . . ,n — 1} such that n + £ is odd, and a t\ ^ t0 associated with u(t) by 
Lemma 1. Assume 1^1. Integrating (1) and using T(t) ^ t we obtain 

(10) Ln_iti(r(t)) > J°°P(s)f(u[g(s)]) ds 

for t^t2(^t\) provided t2 is sufficiently large. First, note that u(t) is nondecreasing 
as £ ̂  1. Combining (10) with (8) one gets 

/

oo 

p(s)h(u[g(s)])ds, t>t2. 

Since the composite function h(u[g(t)]) is nondecreasing, according to Lemma 2 we 
obtain 

/

oo 

«tofc(u[ff(a)])ds, W 2 . 

We multiply (11) by rn_i (r(t))r'(t) and integrate the resulting inequality over [t, oo). 
Repeating this procedure, we arrive at 

(12) 
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We multiply (12) by ri(T(t))Tf(t) and integrate over [t2, t]. Continuing in this manner 
we obtain 

(13) 
u[T(t)]>c+ [ n í r l s O l r V ) f1 •• í" 'rt[T(st)]-r'(st) 

Jt2 Jt2 Jt2 
roo /»oo 

x / ' * * / q(sn)h(u[g(sn)]) dsn . . . dsi, t^t2l 
Jst Jsn-i 

where c = U[T(*2)] > 0. Denote the right hand side of (13) by z(t). By repeated 
differentiation of z(t) one can verify that z(t) is a function of degree £ and, on the 
other hand, 

(14) anz(t)+q(t)h(u[g(t)])=0. 

As U[T(£)] ^ z(t) and r(w(t)) = g(t) we see that 

u(g(t))=u(T[w(t)])^z(w(t)) 

for all large t, say t^t3. Combining this fact with (14) we see that z(t) is a solution 
of the differential inequality 

{anz(t) + q(t)h(z[w(t)])} sgnz[w(t)] < 0, t > t3. 

Then by Kusano and Naito (see [7]) equation (7) has also an eventually positive 
solution x(t) satisfying 

lim x(t) ^ c > 0, 
t— ôo 

which contradicts the hypotheses. 
Now, let £ = 0 (note that this is possible only when n is odd). To obtain a 

contradiction assume that CQ = lim u(t) > 0. Integrating (1), in view of (8) we have 
t—?>oo 

(15) 
/

oo 
nИsOjrЧsi) 

/•oo /»oo 
x / • • • / p(sn)h(u[g(sn)])dsn...dsi 

Jsi Jвn-1 

for all large t. Since u(t) is decreasing (£ = 0) one gets 

3 , , 
-co ^ u(t) ^CQ, t^ t2l 

207 



where t<i is large enough. This fact together with (15) and (9) implies 

Co>j + lt°
0r1[T(s1)]r'(Sl) 

\*v) «oo /»oo 
x • • / q(sn)h(c0)dsn...ds1 

Jsi »/fin-l 

for all large t, say t ^ t3. Again, let us denote the right hand side of (16) by z(t). 
Then 

(17).... anz(t) + q(t)h(co).= 0, t^t3. 

Noting that z(w(t)) ^ Co, (17) yields 

{anz(t) + q(t)h(z[w(t)])} sgn;*H*)] < 0. 

Again according to Kusano and Naito [7] equation (7) has also an eventually positive 
solution x(t) with the property 

* ( t ) ^ ! > 0 . 

This contradicts the assumptions and the proof is complete. • 

E x a m p l e 1. Consider an even order delay equation 

/ 1 \ (m) 

(is) (^)y(m)) +*WW'M) = 0' m ^ ' 

where functions r, p, / and g are the same as in Theorem 1 and g(t) ^ t. Then by 
Theorem 1 equation (18) is oscillatory if the ordinary equation without delay 

/ l \ ( m * 

is oscillatory. 

Corollary 1. Let (3) hold. Let u(t); 1 ^ i ^ n — 1 be nonincreasing. Assume 
that f is nondecreasing. Suppose that g € C1 and g'(t) > 0. Then for any constant 
M equation (1) lias property (A) if and only if so does the equation 

(19) Lnti(t) + P(t)f {u[g(t) + M]) = 0. 
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Proof . Assume that M > 0. The "only if" part follows from Theorem 1 of 
Kusano and Naito [7], Now suppose that equation (19) has property (A). We put 

w(t) = g(t) + M. Then 

T(t) = g(w"1(t)) =t-M^t. 

By Theorem 1 of Kusano and Naito [7] the equation 

(20) anu(t) +p{t)f(u[g(t) + M]) = 0 

has property (A) as n(T(£))r'(£) ^ ri(t). The "if part now follows from Theorem 1 
applied to equations (20) and (1). 

Now let M < 0. We put g(t) = g(t) + M. Since -M > 0, by the first part of the 
proof of this theorem we see that the equation 

Lnu(t)+p(t)f(u[g(t)])=0 

has property (A) if and only if so does the equation 

Lnu(t) +p(t)f(u[g(t) + (-M)]) = 0, 

which we wanted to verify. • 

E x a m p l e 2. Consider an n-order linear delay differential equation 

(2D (-^•••(-^«'w)'--)+jK*)«ar(*))-ot 

where r, p and g are subject to the same conditions as in (1). Let us denote b(t) = 
r(g(t))g'(t) and put w(t) = t. By Theorem 1 equation (21) has property (A) if the 
differential equation without delay 

has property (A), which by Theorem 5 in [2] occurs if 

(22) liminf (jTwd.)" ' (f «')*>) > ^ 

where Mi is the maximum of all local maxima of the polynomial 

Pn(k) = -k(k - 1) . . . (* - n + 1). 
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If we set g(s) = x then (22) reduces to 

/ f9(t) V'1 / roo \ Mi 
liminf [ / r(x)dx 1 ( / p(s)ds J > -, 
'•*°° \Jt*n 1 \Jt J n-l 

which is a weaker sufficient condition for equation (21) to have property (A) than 
Kusano and Naito have required in [7]. 

For n even, as we see from Definition 1, property (A) of equation (1) reduces to 
oscillation of (1). In [8] Kusano and Naito discussed the oscillatory character of a 
special case of (1), namely the even order linear differential equation 

(23) Lnu(t)+p(t)u(t) = 0, 

by comparing (23) with a set of second order differential equations (see Theorem B 
in [8]). We adapt their method together with Theorem 1 and make use of the results 
obtained to extend the results of Kusano and Naito [8] and Trench [11]. 

Let 1 ^ i ^ n - 1 and _, s € [t0y oo). We define 

/o = l 

Ii(M;r.,...,r_) = / ri(x)Ii-i(xys,ri-iy... ,n)dx. 

Let us denote bi(t) = n(g(t))g'(t) for i = 1,2,..., n - 1. For simplicity of notation 
we put 

Ji(t,s) = /»(*,«; 6i,...,M» 

Ki(t,s) = Ii(t,s',bn-U... ,bn-i). 

Theorem 2. Suppose that n ^ 4 is even. Assume that all the conditions of 
Theorem 1 are satisfied with h(x) = x and w(t) = t. Define for i = 1,3,..., n - 3 

/

oo 

Ji-i(s,t)Kn-i-2(s,t)q(s)ds, 

/

OO 

Jn-z(syt)q(s)ds. 

Then equation (1) is oscillatory if the second order equations 

(26) {b!(t)y,{t)) +o*WlK')=0' •• = l , 3 , . . . , n - l 

are oscillatory. 

Proof . Applying Theorem B in [8] we conclude that equation (7) is oscillatory, 
and hence (1) is oscillatory by Theorem 1. • 
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Corollary 2. Let all the conditions of Theorem 1 hold with h(x) = x and w(t) = t. 

If ' • ' . . ' 

(27) - tofaf^ jT ri(8)ds^[f~OiWds^ >±,: i = l , 3 , . . . , n - l , 

where ai(t), i = 1,3,..., n• — 1 are defined as in (24) and (25), then equation (1) is 
oscillatory. 

Proof . We make a change of variables in the first integral in (27) by using the 
substitution s = g(x) and obtain 

(28) limmf(bi(x)dx)( a ; ( s )dsY>-, i = 1,3,... ,n - 1. 

It is known (see [5] ) that (28) is sufficient for all solutions of (26) to be oscillatory. 
Hence, Corollary 2 follows from Theorem 2. • 
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