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Summary. In this paper it is shown that a Boolean orthoposet (i.e., the orthoposet 
fulfilling the condition a A b =i> a _L 6) admits a set representation. It is further shown 
that some results about Boolean orthoposets follow immediately from this representation. 
Finally, it is proved that an orthocomplete Boolean orthoposet has to be a Boolean algebra. 
This statement can be viewed as a generalization of various results from [3, 8, 5, 4], 
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1. PRELIMINARIES AND BASIC NOTIONS 

Let us first review basic notions. 

Definition 1.1. An orthoposet is a triple (P, ̂ / ) such that 
(1) (P, $;) is a partially ordered set with a least and a greatest elements 0, 1, 
(2) ':P -» P is an orthocomplementation, i.e., (i) a" = a, (ii) a ^ b -=> b' ^ a', 

(Hi) a V a' = 1 for every a,b E P. 

In the sequel we will shortly write P instead of (P, < / ) . 

Definition 1.2. Elements a, b of an orthoposet P are called orthogonal (denoted 
by a Lb) ifa^V. 

An orthoposet P is called Boolean if a Lb whenever a A b = 0. 

A special kind of orthoposets are the so-called concrete orthoposets—set repre
sented orthoposets ordered by inclusion such that finite orthogonal suprema are 
formed by the set-theoretic unions. 
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Definition 1.3. A concrete orthoposet is a triple (9,C,C) where 9 C expK 
for some X ^9 such that 

(1) 0 e ^ , 
(2) Ac = X \ A £ 9 whenever A£ 9>, 
(3) \J& £ 0* for every finite family & C 9 of mutually disjoint elements such 

that V & exists in (9, C). 

Definition 1.4. Orthoposets P, Q are called isomorphic if there is a one-to-one 
mapping f:P -> Q such that 

(1) a O if and only if f(a) ^ /(&), 
(2) /(a') = f(a)' 

for every a,b £ P. The mapping f is then called an isomorphism. 

2. CONCRETE REPRESENTATION OF BOOLEAN ORTHOPOSETS 

First, let us give a characterization of orthoposets admitting a concrete represen
tation (this generalizes a result of [2]). 

Definition 2.1. A two-valued state on an orthoposet (P,^,') is a mapping 
s:P-> {0,1} such that 

(1) s(l) = 1, 
(2) s(a) ^ s(b) whenever a ^ 6, 
(3) s(V F) = Yl s(a) for every finite set F £ P of mutually orthogonal elements 

aeF 
such that V F exists in (P, ^). 

Definition 2.2. A set S of (not necessarily all) two-valued states on an or
thoposet P is called full (see [2]) if for every pair a,b £ P with a £ b there is a 
two-valued state s £ S such that s(a) £ s(b). 

Proposition 2.3. An orthoposet P has a concrete representation iff the set of 
two-valued states on P is full 

Proof . Let / : P -> 9 be an isomorphism of (P, ̂ / ) and (9, C,c) and let us 
suppose that a,b £ P with a £ b. Then f(a) <£ f(b), hence there is an x £ f(b)\f(a). 
For the two-valued state sx on P defined by 

sx(c) = l iff x£f(c), c£P, 
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we obtain sx(a) = 1 £ 0 = sx(b). Thus, the set of two-valued states on P is full. On 
the other hand, let us suppose that the set S of two-valued states on P is full. Then 
the mapping f:P -* expS defined by 

f(a) = {seS;s(a) = l} 

is an isomorphism of P and / (P) , where f(P) is a concrete orthoposet. • 

As a technical tool for constructing a concrete representation of a Boolean ortho
poset we will use a special kind of ideals ([1], compare also with [6]). 

Definition 2.4. Let P be an orthoposet. Let us define, for every set Q C P, 

Q+ = {a G P ; q^a for every q G Q}, 

Q- = {a G P; a ^ q for every q G Q}> 

The set I £ P is called an ideal if F+- C I for every finite set F C I. 
An ideal I is called maximal if it is not a proper subset of another ideal. 

Lemma 2.5. Let P be a Boolean orthoposet and let I C P be an ideal. Let us 
suppose that ID {a, a'} = 0 for some a G P. Then IU {a} is contained in an ideal. 

Proof . Put 
J = (J (FU{a})+_. 

FCI 
Ffinite 

Then I U {a} C J and it suffices to prove that J is an ideal. First, let us suppose 
that G C J is a finite set. Every g G G belongs to (Fg U {a})+_ for some finite 
set Fg C L Hence g is a lower bound for (Fg U {a})+ and for ( (J Fg U {a}),. 

g€G + 

Since g is an arbitrary element of G, we obtain G+ D ( \J Fg U {a}) and G+__ C 

( (J Fg U {a}) C J. Now, let us suppose that F C I is a finite set. Since 
gEG 

a1 £ F+_ C I, there is a bp G F+ such that a' $£ 6^. Since P is Boolean, there is a 
cp G -P\ {0} such that cp ^ a',&/-. Thus, c'F ^ 1 is an upper bound for Fu{a} and 
1 £ (F U {a})+_. Therefore J ^ P. The proof is complete. • 

Theorem 2.6. Every Boolean orthoposet has a full set of two-valued states, i.e., 
it has a concrete representation. 

Proof . Let P be a Boolean orthoposet and let us suppose that a,b € P 
with a ^ b. Then {&}_ is an ideal and, making use of Lemma 2.5 if necessary, we 
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conclude that {6}_ U{a'} is contained in an ideal. According to Zorn's lemma, there 
is a maximal ideal I D {b}U {a'}. Hence, according to Lemma 2.5, for every c G P 
either c G P or c' G P. Since I is closed under (finite) orthogonal suprema that exist, 
it is easy to see that the mapping s:P -> {0,1} defined by 

s(c) = 0 if and only if eel 

for every c G P, is a two-valued state on P such that s(a) = 1^0 = s(b). The proof 
is complete. • 

3. ORTHOCOMPLETENESS IN BOOLEAN ORTHOPOSETS 

In this section we will show how some completeness conditions force a Boolean 
orthoposet to have "good" behavior. We will use Theorem 2.6. It should be noted 
that an alternative proof (using some distributivity property of Boolean orthoposets) 
of Corollary 3.4 and Proposition 3.5 is presented in [8]. 

Definition 3.1. Let a be a cardinal number. An orthoposet P is called a-
orthocomplete if every set of cardinality less than a consisting of mutually orthogonal 
elements ofP has a supremum. 

An orthoposet is called orthocomplete if it is a-orthocomplete for every cardinal 
number a. 

Definition 3.2. An orthoposet P is called orthomodular if for every pair a,b E P 
with a ^b there is a c G P such that c ± a and b = aV c. 

Proposition 3.3. Every ujQ-orthocomplete (u>o denotes the first infinite cardinal) 
concrete orthoposet is orthomodular. 

Proof . Let & be a concrete orthoposet and let A,B G & with Ac B. Then 
B \ A = (A U Bc)c e&,(B\A)±AandB = Av(B\A). D 

Corollary 3.4. Every uo-orthocomplete Boolean orthoposet is orthomodular. 

Proposition 3.5. Every lattice Boolean orthoposet is a Boolean algebra. 

Proof . Let & be a lattice concrete Boolean orthoposet and let A,B G &. 
Since (A\(AAB))A(B\(AAB)) = $,wehzve(A\(AAB))n(B\(AAB))=:Q, 
hence AnB = AAB G 9. Moreover, AuB = (AcnBc)c = (AcABC)C = A\lB G &. 
Thus, AA(BVC) = An(BuC) = (AnC)U(AnC) = (AAC)V(AAC) for every 
A,B,C € &. The proof is complete. • 
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The following theorem is a generalization of various results from [3, 8, 5, 4]. 

Theorem 3.6. Every orthocomplete Boolean orthoposet is a Boolean algebra. 

Proof . Let us suppose that P is an orthocomplete Boolean orthoposet. Ac
cording to Proposition 3.5, it suffices to prove that a A 6 exists for every a, 6 € P. 
Let a, b G P. According to Zorn's lemma, there is a nonempty maximal set Q C P 
of mutually orthogonal elements c^ a,b. Since P is orthocomplete, there is a q G P 
such that q = V Q. Let us suppose that q ^ a A b and seek a contradiction. There 
is a d ^ a, b such that d £ q. Since P is Boolean, there is an e G P \ {0} such that 
e ^ d, q'. Thus, the set Q U {e} consists of mutually orthogonal elements that are 
less than or equal to a, 6, which contradicts the maximality of Q. • 

Let us note that an orthocomplete Boolean algebra is complete. As the following 
proposition shows, the condition of orthocompleteness in Theorem 3.6 cannot be 
weakened to a-orthocompleteness for any cardinal number a. 

Proposition 3.7. For every cardinal number a there is an a-complete orthomod-
ular Boolean orthoposet that is not a Boolean algebra. 

Proof . Without any loss of generality we may (and will) suppose that a is 
infinite. Let Xi, X2, X3, X4 be mutually disjoint sets of cardinality a+ . Let us 
denote S A T = (S \ T) U (T \ S) for every pair 5, T of sets and let us put 

X = XiUX2UX3UX4, 

&' = {0, Xi U X2, X2 U X3, X3 U X4, X4 U Xi, X}, 

&> = {A A B\ A G &\ B C X and cardB ^ a}. 

It is only a routine verification that & is a concrete a+-complete orthoposet. Indeed, 
0 G & and (A A B)c = Ac A B G & for every A A B e & (of the form in the 
definition of &). Finally, let ApABp ({3 G a) be mutually orthogonal elements of @* 
(of the form in the definition of &). Then \J (Ap ABp) = ( \J Ap) A C for some 

Pea pea 
C C X with cardC ^ ^ cardB/? ^ a. Since Ap (P G a) are mutually orthogonal 

pea 
sets, we have |J Ap G &* and V (AP &Bp)= \J (Ap A Bp) G &. 

pea pea pea 

According to Corollary 3.4, & is orthomodular. Since {x} G & for every x G 
X, & is Boolean. It suffices to prove that & is not a Boolean algebra. Indeed, 
(X1UX2), (X2UX3) G & and {A G ^ ; A C X1UX2 and A C X2UX3} = {Ae&; 
AcX2 and card_4 -̂  a} does not have a maximal element, i.e., (XiUX2)A(X2UX3) 
does not exist. • 
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