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A PRINCIPLE OF LINEARIZATION IN THEORY OF STABILITY 
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Summary. It is shown that the uniform exponential stability and the uniform stability at 
permanently acting disturbances of a sufficiently smooth but not necessarily steady-state 
solution of a general variational inequality is a consequence of the uniform exponential 
stability of a zero solution of another (so called linearized) variational inequality. 
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AMS classification: 34D05, 34G99, 58E35 

The principle of linearization and its correctness represents an interesting problem 
in the theory of stability of solutions of differential equations. In [8], P. Quittner 
deals with stability of steady solutions of variational inequalities finding sufficient 
conditions for stability which do not depend on existing nonlinearities. We deal with 
a similar question, also in the case of variational inequalities. We study the uniform 
exponential stability and the uniform stability at permanently acting disturbances 
of a sufficiently smooth solution U of a certain variational inequality in a Banach 
space and prove that both these properties follow from the uniform exponential 
stability of the zero solution of a so called linearized inequality. The main differences 
between this paper and [8] are: a) Our linearized inequality can be nonautonomous, 
b) instead of assumptions which guarantee the zero solution of a linearized inequality 
to be uniformly exponentially stable we assume straight the uniform exponential 
stability of the zero solution of a linearized inequality, c) we deal also with the 
uniform stability with respect to permanently acting disturbances. 

* The research was supported by the Grant Agency of the Czech Republic (grant No. 
201/93/2177). 
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Other ideas and methods which concern stability or instability of solutions of 

variational inequalities can be found for example in [3], [4] and [7]. 

Let H be a Hilbert space with a scalar product ( . , .) and an associated norm ||. ||, 

Bc (x) will denote the e-neighbourhood of the element x in H and B£ (x) will be its 

closure in H. 

Let B be a reflexive Banach space which is continuously imbedded into the Hilbert 

space H and which is dense in H. If we identify H with its dual and if B' is a dual 

to B then we have B C H C B'. We shall denote by ( . , .) such a duality between 

elements of B' and B that (x',x) = (x',x) if a;' e H. Let K be & closed convex set 

in B. 

We shall deal with various time-dependent solutions of certain variational inequal

ities in B. If C/ is such a solution on a time interval I then we shall use the notation 

/ = I(U). Each solution U will be supposed to satisfy the variational inequality 

a.e. in I(U) and to be maximal in that sense that it cannot be extended as a solution 

beyond the right end point of I(U). Under solutions, we understand only functions 

with the following smoothness: U(t) G L2(J;B) and dU/dt <E L2(J;B') for each 

bounded interval J in I(U). Then U belongs to C(J; H) (after a possible change on 

a set of measure zero in J) and 

(1) (^(t), U{t)) = i ^-t(\\U(t)\\2) for a.a. t e I(U) 

(see e.g. [5]). 

Let F: [0,+oo) x B —y B'. Assume that U is a solution (not necessarily steady-

state) of the problem given by 

(2) l ^ - + F(t,U),W -U^ >.0 for all W e K, 

(3) U(t) e K for all t e I(U) 

on the time interval [0, +oo). Assume that F has a Frechet differential D 2 F( i , U(t)) 

(D2 denotes the differential with respect to the second variable) for all t 6 [0, +oo). 

We shall denote this differential by A(t). A(t) is a linear operator from B into B'. 

Assume further that there exists c\ > 0 such that 

(4) (A(t)x,x) >- -ci | |a: | |2 for alia; e B and all* £ [0,+oo). 

We do not investigate the question of existence of solutions of the problem (2), (3) 

or other analogous problems in this paper. We are going to derive some estimates of 

those solutions U of the problem (2), (3) which are "sufficiently near" to the solution 

U at a time instant r . These estimates will have such a character that they will be 
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valid as long as the solution U exists (it means for all t 6 I(U) n [T, +OO)). Since the 
estimates will guarantee that the solution U cannot end by a "blow up" at the right 
end point of the interval I(U), it is natural to expect that I(U) = [T,+00). But in 
fact, to prove it, it would be necessary to use some additional assumptions about 
the operator F and the set K (see e.g. [1] and [2]). In order not to complicate this 
paper, we decided not to do it here. 

Definition 1. We say that a solution U of (2), (3) is uniformly exponentially 
stable (with respect to the norm \\. \\) if there exist A > 0, C > 0 and 5 > 0 such 
that ifU is any solution of the problem (2), (3), r e I(U) and \\U(T) - U(T)\\ S£ A 
then 

\\U(t) - t / (0H C\\U(T) - fJ(T)||e-^-T> 

foraJite [T, +00) n I(U). 

Definition 2. We say that a solution U of (2), (3) is uniformly stable at perma
nently acting disturbances if for any given e > 0 there exist 5i > 0 and <52 > 0 so 
that if 
a) G(t, .) is for each t e [0, +00) an operator from B to B' satisfying the inequality 

\(G(t, V), W)\ ^ JJWII for aii V e K n Be(U(t)) and for all W e B, 
b) U is a solution of the problem given by the condition (3) and the variational 

inequality 

{^ + F(t,U) + G(t,U),W -u) >-0 forall We K, 

c) TeI(U),\\U(T)-U(T)\\<62 

then \\U(t) - U(t)\\ ^ e for all t e [0, +00) n I(U). 

The uniform exponential stability of the solution U is the property of those so
lutions U of (2), (3) which lie in a neighbourhood of U—let us write any of these 
solutions in the form U + u. If we substitute this form of U into (2), (3), we get 

(5) {^- + ^+F(t,U + u),W -U -u) >-0 for all W 6 K, 

(6) U(t) +u(t)e K forall teI(U + u). 

Let Ki(t) = K-U(t) (i.e. Kx(t) ~ {w 6 B; 3 W G K: w = W-U(t)}). Statements 
(5) and (6) can be rewritten: 

(7) (^- + ̂  + F(t,U + u),w-u^ >-0 fora l lweXiM, 

(8) u(t)eKx(t) for all t e I(u) 
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where I(u) = I(U + u) is the domain of definition of the solution u of (7), (8). It 
is easy to see that the uniform exponential stability of the solution U of (2), (3) is 
equivalent to the uniform exponential stability of the zero solution u = 0 of (7), (8). 
Similarly, it can be easily shown that the uniform stability at permanently acting 
disturbances of the solution U of (2), (3) is equivalent to the same property of the 
zero solution of the problem (7), (8). 

The term F(t, U(t) + u) can be expressed in the form F(t, U(t)) + A(t)u + N(t, u) 
where N(t, .) is a nonlinear operator from B into B'. Assume that 

(9) \(N(t,x),y)\^g(\\x\\)-\\y\\ for all x,y € B 

where g is a nondecreasing function on [0, +co) such that 

(10) g(h) = o(h) if h -> 0 + . 

This is an important assumption which characterizes the nonlinear operator N(t, .). 
Let us denote f(t) = dU/dt(t) + F(t,U(t)) in the following. Then the inequality 

(7) is identical with 

(11) (-^ + A(t)u + N(t,u) + f(t),w-u\ ^ 0 for all w e #!(*)• 

A so called linearized inequality arises from (11) by omitting the nonlinear term 
N(t,u): 

(12) (^ + A(t)v + f(t), w-v^0 forallwetfiW-

It will be considered with the condition 

(13) v(t)€K!(t) for all t e I(v). 

In fact, (12), (13) does not represent a linear problem, but it has a zero solution. It 
is not difficult to show that v is a solution of (12), (13) on the time interval I(v) if 
and only if the function V = U + v is a solution of the problem 

(14) l^-+A(t)V + h(t),W-v\ ^0 forallwe.fi:, 

(15) V(t)eK forallie/(V), 

where f\(t) = F(t,U(t)) — A(t)U(t). Moreover, the uniform exponential stability of 
the zero solution of (12), (13) is equivalent to the uniform exponential stability of the 
solution U of (14), (15). 
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Let us assume that 

(16) if x0 £ H and T ^ 0 then there exists a solution v of (12), (13) on [T, +oo) such 

that V(T) = x0. 

The validity of this condition can be usually verified by various methods in special 

cases. See e.g. [1] and [2] for more details. 

T h e o r e m 1. Let the zero solution of the problem (12), (13) be uniformly expo

nentially stable and let the conditions (4), (9), (10) and (16) be satisfied. Then the 

zero solution of the problem (11), (8) is uniformly exponentially stable, too, and 

consequently, also the solution U of the problem (2), (3) is uniformly exponentially 

stable. 

P r o o f . Let u be a solution of (11), (8), T,t G I(u), T < t and let v be a 

solution of (12), (13) on [T,+oo) such that V(T) = U(T). We shall use the notation 

I U I [T, ( ] = max | |u(t ') | | . First, we shall derive an estimate of \\u(t)-v(t)\\. Choosing 

w = v(t) in (11), w = u(t) in (12) and adding (11) and (12), we obtain 

(-^-(u -v)+ A(t)(u -v) + N(t, u),u- v) £. 0, 

(j-(u-v),u-v} ^ (-A(t)(u - v),u - v) - (N(t,u),u - v). 

Using (1), (4) and (9), we obtain 

| j-t\\u(t) - v(t)f ^ c, ||u(t) - r-(r.)||2 + iK||u(t)||)||u(t) - v(t)\\ 

<{ci + l)\Wt)-v(t)f + \g\\\u(t)\\), 

- it [e~2(cl+1)iii"W - »MII 2 ] < e~2(ci+1)i i 92(\\u(t)\\), 

\\u(t)-v(t)f ^ I f ^{ci+1){t-°g2(\\u(m)^ 

^4l^[e2(C,+1)(4-T)-1]*2«^)-

If we denote 

then we can write 

(17) \\u(t)-v(t)\\^gi(t~T,t\u\l[Ttt]). 

If u is a solution of (11), (8) and there exists T e I(u) such that | H T ) | | = 0 then 

[T, +oo) C I(U) and ||u(i)| | = 0 for all t e [f. +oo). This follows from (17) (where we 

use t i s O ) and (10). 
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Let A, 5 and C be numbers which are connected with the uniform exponential 

stability of the zero solution of (12), (13) (see Definition 1). We shall prove that 

(18) there exists A' > 0 such that if u is a solution of (11), (8), r e I(u), 0 < 

| |U(T) | | <. A' then 

| | u W | | < 2 C | | u ( T ) | | e - ^ - T ' / 2 

f o r t e [T ,+ oo )n I ( u ) . 

Suppose that (18) is false. Then for each A' > 0 there exists a solution u of (11), 

(8), T e I(u) and t0 e [T, +OO) n I(u) such that 0 < | |U(T) | | < A', 

(19) ||u(to)|| = 2C||«(T)||e-*<'°-T>/2, 

(20) | |u(t)| | < 2C \\u(T)\\e-s^-^2 for t e [T, to). 

Let 7 be such a positive number that Ce~Sjl2 <. | . Suppose that A' is so small 

that 2CA' < A. 

There exists n e N U {0} and h e [0,7) such that t0 = T + 7n + h. It follows from 

(16) that there exists a solution vn of (12), (13) on the interval [T + 7n, +00) such 

that U(T + jn) = VU(T + tn). Using the inequality (17), we obtain 

ll«(*o) - vn(t0)\\<_ 51 (h, l u | [ T + 7 „ , t n ) ) , 

\\u(t0)\\<\\vn(t0)\\+gi(h,tul[T+ynM), 

\\u(t0)\\ < C\\vn(T + in)\\e~Sh + 9l (h, Iu | | [ r + 7 n , t o ] ) 

<. C | | U ( T + 7 n ) | | e - ^ + 9l (h, 2C | | u ( r ) | | e - f W - ) . 

Similarly, we can derive the estimate 

| |U(T + 7OII < C \\U(T + 7 ( i - l ) ) | | e -* ' + 9l (7 ,2C \\u(T)\\e-Sj^-^2) 

for i = 1 ,2, . . . ,n. Thus, using the inequality Ce~Sj/2 ^ | , we can write 

2C| |u(T) | |e- i( t°-T>/2 = | |u(t0)| | 

<. C | | U ( T + in)\\e-sh + 51 (h,2C||u(T)||e-*W-) 

<. C | |U(T + -yn)|| + 51 (7 ,2C ||u(T)||e-*W.-) 

<.C{C||u(T + 7 ( n - l ) ) | | e - ^ 

+ 51 (7 ,2C H u M H e - ^ t " - 1 ' / 2 ) + o, (7 ,2C | | u ( r ) | | e -*" l - ) 

< . i C e - ^ / 2 | | u ( T + 7 ( n - l ) ) | | 

+ C51 (7,2C \\u(T)\\e-Sj^-^2) + 0 l (7 ,2C H u W H e - ^ l 2 ) < _ . 
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<: (i) n Ce-^"/ 2 | |u(T) | | +Ce fT V J ( I ) V ^ / 2
5 l ( 7 , 2 C | | u ( T ) | | e - ^ " - ^ / 2 ) 

3=0 

_ (|)»cé-*»»/-B«(T)|| 

+ Ce* f (1.V**/- ď l ( 7 , 2 C "" ( T )H e" , 7 ("' j ) / 2) 2 C ||ufTV|,e-M»-i>/' 
+ C e 1 . 1 2 J e 2C||u(T)||e-f-r(»-i)/- 2 ° l | u W I | e 

^ (i)"Ce-^"/ 2 | |u(T)| | + C e i ^ ( | ) J
5 2 ( 7 , 2 C A ' ) 2 C | | u ( T ) | | e - ^ " / 2 

where #2(??) = sup [gi(7,ff)/cr]. The function g2 is nondecreasing and it follows 
<re(0,r,) 

from (10) that 
liш. gг(r)) = 0. 

Hence 

2C|KT)||e-*( tn-T>/2 ^ ( |) n Ce- f T n l 2 | |u(r) | | 

+ 4CVT||u(T)||e-'S w/2

9 2(7,2CA'), 

2Ce-*(to-r)/2 _ ( I ) " c e - ^ " / 2 ^ 4C 2 e^ e -^ n / 2

S 2 (2CA'), 

2e-Sh'2 - ( | ) n sj 4CefT52(2CA'). 

Choosing A' sufficiently small, we can make the right hand side of this inequality so 
small that the inequality does not hold. This is a desired contradiction and hence 
(18) is true, which implies the uniform exponential stability of the zero solution of 
(11), (8). • 

A theorem about differential equations in Banach spaces which is analogous to 
Theorem 1 is proved for example in [6]. 

Lemma 1. Let the zeio solution of the pioblem (12), (13) be uniformly exponen
tially stable and let the conditions (4) and (16) be fulfilled. Then the zeio solution 
of (12), (13) is also unifoimly stable at peimanently acting disturbances. 

Proof . Suppose that G(t): B -+ B' for all t Js 0. Let u be a solution of the 
problem given by 

(21) /^ + A(t)u + f(t) + G(t)u,w-u\>0 for all w 6 Ki(t) 

and the condition (8) and let v be a solution of (12), (13). Finally, let T, t € 
7(u) n I(v), T < t. In a way similar to that which was used to derive (17), we can 
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get the inequality 

(22) I i \\u(t) - ^(t) | |2 ^ c i |K*) - v(t)\\2 + (G(t)u(t),u(t) - v(t)). 

Let A, 5 and C be numbers which are connected with the uniform exponential 

stability of the zero solution of (12), (13) (see Definition 1). Let e > 0 be given. 

Put <52 = min{A; e/(2C)}. There exist T > 0 and <5i > 0 such that Ce-ST ^ \ 

and <51e(c'+1)T ^ yJcT+l52. Assume that \(G(t)x,y)\ ^ S\\\y\\ for all t ^ 0 and 

i e K i ( i ) n 5 t ( 0 ) . 

Suppose that u is a solution of (21), (8), r <E I(u) and | |u(r) | | < 52. Let v be a 

solution of (12), (13) on [T,+OO) such that V(T) = U(T). It follows from (22) that if 

t e [T,T + T) n I(u) and |u|[T, t] ^ e then 

§ - | ||u(f) - „(t) | |2 ^ C l | |u(t) - t,( t)| |2 + Si\\u(t) - v(t)\\ 

$(c1 + l)\\u(t)-v(t)\\2 + \S2, 

i _ d _ [ e _ 2 ( c i + 1 ) t | K t ) ' _ ^ ) | | 2 ] ^ e _ 2 ( c i + 1 ) t l ( 5 2 j 

I K t ) - ^ ) l l 2 ^ i ^ e 2 t - + 1 » ( ' - « < 5 2 d ? = - ^ - i - T y [ e 2 < - + 1 ) < ^ ) - 1 ] 5 2 , 

I K « ) - l ) ( ( ) | | $ ^ 7 i = = e ^ + 1 ) ^ ) < 5 1 , 

2y/Ci + 1 

H01KH0II + - J—^e^+W-^Sr. 
ZyC\ + 1 

Using the uniform exponential stability of the zero solution of (12), (13), one has 

||«(0II ^ C||t,(r)||e-{('-^ + 7-7LT=e^
+1^ 

2y/Cl + 1 
^C52 + \52^(C + \ ) ^ ^ l e . 

This inequality was derived only for t e [T,T + T] n I(u) such that l|u|[TiT+T] ^ e. 

Since |K*) | | depends continuously on t, the above inequality must hold for all t e 

[T,T + T\. Moreover, we have 

I K T + D | | < C52e-*T + A - = - e< c '+ 1)T s= \52 + \52 = |<52. 
2yC\ + 1 

Applying *he same considerations on the time intervals [T + iT,T + (i + l)T] n / (u) 

for i = 1,2,..., one obtains the estimate ||u(t)|| ^ e for t from all these intervals. 

Thus, |K t)l l ^ e for <* e [T, +oo) n I(u), which we wanted to prove. • 

344 



Theorem 2. Let the zero solution of the problem (12), (13) be uniformly expo

nentially stable and let the conditions (4), (9), (10) and (16) be satisfied. Then the 

zero solution of the problem (11), (8) is uniformly stable at permanently acting dis

turbances and consequently, also the solution U of the problem (2), (3) is uniformly 

stable at permanently acting disturbances. 

Proof. Due to Lemma 1, the zero solution of (12), (13) is uniformly stable at 

permanently acting disturbances. Let e > 0 be given. Let the numbers T, Si and 

S2 be defined (in dependence on e) in the same way as in the proof of Lemma 1. 

Moreover, let e be so small that g(e) < Si. Put S[ = Si — g(e). 

Let u be a solution of the problem given by 

(23) (-£; + A(t)u + N(t)u + f(t) + G(t)u,w-u}2 0 tor all w e Ki(t) 

and the condition (8), r G I(u) and ||«(T)|| < S2. Assume that \(G(t)x,y)\ <. S[\\y\\ 

for all t > 0, y e B and x 6 Ki(t)n~Bs(0). Then 

\(N(t)x + G(t)x,y)\ <. bdlxll) + 5[] • | |y | | <. [g(e) + S[] • \\y\\ = Si\\y\\. 

If we view the term N(t)u + G(t)u in the inequality (23) as a disturbance and use 

the uniform stability at permanently acting disturbances of the zero solution of (12), 

(13) and Lemma 1, we obtain ||u(t|| < e for all t e [T, +OO) n I(u). This completes 

the proof. • 
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