Mathematic Bohemica

Jiří Cerha

A method for determining constants in the linear combination of exponential

Mathematica Bohemica, Vol. 121 (1996), No. 2, 121-122

Persistent URL: http://dml.cz/dmlcz/126106

Terms of use:

(C) Institute of Mathematics AS CR, 1996

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http: //dml.cz

A METHOD FOR DETERMINING CONSTANTS IN THE LINEAR COMBINATION OF EXPONENTIALS

J. Cerha, Praha

(Received December 7, 1994)

Summary. Shifting a numerically given function $b_{1} \exp a_{1} t+\ldots+b_{n} \exp a_{n} t$ we obtain a fundamental matrix of the linear differential system $\dot{y}=A y$ with a constant matrix A. Using the fundamental matrix we calculate A, calculating the eigenvalues of A we obtain a_{1}, \ldots, a_{n} and using the least square method we determine b_{1}, \ldots, b_{n}.

Keywords: fundamental matrix, linear differential system, shifted exponentials, eigenvalues, the least square method

AMS classification: 65D15, 65L99, 34A30

Let $n \geqslant 1$ denote an integer, $a_{1}, \ldots, a_{n} ; b_{1}, \ldots, b_{n}$ real numbers, $a_{i} \neq a_{j}$ if $i \neq j$, $b_{i} \neq 0$ for $i=1, \ldots, n$,

$$
f(t)=b_{1} \exp a_{1} t+\ldots+b_{n} \exp a_{n} t
$$

for real t. Let $h_{1}, \ldots, h_{n} ; k_{1}, \ldots, k_{n}$ denote real numbers, $h_{1}=k_{1}=0, h_{i} \neq h_{j}$ and $k_{i} \neq k_{j}$ if $i \neq j ; i, j=1, \ldots, n$. Define the $n \times n$-matrix valued function

$$
Y(t)=\left[\begin{array}{ccc}
f\left(t-h_{1}-k_{1}\right) & \ldots & f\left(t-h_{1}-k_{n}\right) \\
\cdots & & \\
f\left(t-h_{n}-k_{1}\right) & \cdots & f\left(t-h_{n}-k_{n}\right)
\end{array}\right] \quad \text { for real } t .
$$

Theorem. Y is a fundamental matrix of the linear differential system $\dot{y}=A y$ with a constant $n \times n$-matrix A, and a_{1}, \ldots, a_{n} are the eigenvalues of A.
Proof. Let us set $y_{i}=\exp \left(-a_{i}\right) ; i=1, \ldots, n$,

$$
E_{1}=E\left(h_{1}, \ldots, h_{n}\right) \equiv\left[\begin{array}{ccc}
y_{1}^{h_{1}} & \cdots & y_{n}^{h_{1}} \\
\cdots & & \\
y_{1}^{h_{n}} & \ldots & y_{n}^{h_{n}}
\end{array}\right], \quad E_{2}=E\left(k_{1}, \ldots, k_{n}\right)
$$

$$
G=\operatorname{diag}\left[a_{1}, \ldots, a_{n}\right], \quad B=\operatorname{diag}\left[b_{1} \exp a_{1} t, \ldots, b_{n} \exp a_{n} t\right]
$$

Using induction we shall prove that E_{1} is regular or, equivalently, the function

$$
\varphi(y)=c_{1} y^{h_{1}}+\ldots+c_{n} y^{h_{n}}
$$

has at most $n-1$ positive roots for arbitrary c_{1}, \ldots, c_{n} excluding $c_{1}=\ldots=c_{n}=0$ and arbitrary h_{1}, \ldots, h_{n} satisfying our assumptions. This is clear for $n=1$. Let $n>1$, let our assertion be true for $n-1$ and let us suppose φ has n positive roots. Hence, the derivative φ^{\prime} has $n-1$ positive roots which, using $h_{1}=0$, contradicts the induction hypothesis. Similarly, E_{2} is regular. Using our notation we obtain $Y=E_{1} B E_{2}^{T}, \dot{Y}=E_{1} G B E_{2}^{T}$. Hence Y is regular and $A \equiv \dot{Y} Y^{-1}=E_{1} G E_{1}^{-1}$ is constant, which proves our theorem.

Let $p \geqslant 2 n$ be an integer, $t_{0}, h>0$ real numbers, $f_{i}=f\left(t_{0}-(i-1) h\right)$ for $i=1, \ldots, p$. Let $n, h, f_{1}, \ldots, f_{p}$ be known, while $a_{1}, \ldots, a_{n} ; b_{1}, \ldots, b_{n}$ are to be determined. We put $h_{i}=k_{i}=(i-1) h$ for $i=1, \ldots, n$. (However, there exist many methods for choosing h_{i}, k_{i}.) Now, we may calculate $Y(t)$ for

$$
t \in M \equiv\left\{t_{0}-(i-1) h: i=1, \ldots, q\right\}
$$

where $q=p-2 n+2, q \geqslant 2$. We will determine $\dot{Y}(t)$ numerically for some fixed $t \in M$ and put

$$
A=\dot{Y}(t) Y(t)^{-1}
$$

Concerning numerical errors, we would probably obtain better results putting

$$
A=\frac{1}{m}\left(\dot{Y}\left(t_{1}\right) Y\left(t_{1}\right)^{-1}+\ldots+\dot{Y}\left(t_{m}\right) Y\left(t_{m}\right)^{-1}\right)
$$

where $m>1$ is an integer, $t_{1} \ldots, t_{m} \in M, t_{i} \neq t_{j}$ if $i \neq j$. We obtain a_{1}, \ldots, a_{n} calculating the eigenvalues of A.

Alternatively, the formula

$$
A=\frac{1}{t_{2}-t_{1}} \ln Y\left(t_{2}\right) Y\left(t_{1}\right)^{-1}
$$

can be used. Let g_{1}, \ldots, g_{n} denote the eigenvalues of the matrix $Y\left(t_{2}\right) Y\left(t_{1}\right)^{-1}$ for some fixed $t_{1}, t_{2} \in M, t_{1} \neq t_{2}$. Hence, the values a_{1}, \ldots, a_{n} coincide with the values

$$
\frac{1}{t_{2}-t_{1}} \ln g_{i} ; \quad i=1, \ldots, n
$$

Now, b_{1}, \ldots, b_{n} may be determined using the least square method.

References

[1] P. Hartman: Ordinary differential equations. John Wiley \& Sons, New York, London, Sydney, 1964.
Author's address: Jiří Cerha, Veltruská 533, 19000 Praha 9, Czech Republic.

