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Summary. In this Note, we study infinite graphs with locally finite outerplane embed-
dings, given a characterization by forbidden subgraphs 
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1. INTRODUCTION 

Clearly, the classic result about outerplanar graphs is valid even if the graph is 
infinite and thus a planar graph is outerplanar (it admits an embedding where all its 
vertices lie on the same face) if and only if has no subvision of K4 or -#2,3. But, as 
was pointed out by many authors (see [6]), when dealing with embeddings of finite 
graphs it is interesting to ensure embeddings without vertices or edges accumulation 
' (p-embeddings) and in this case the previous result fails as Figure 1 shows. 

The p-embeddings of the graphs pictured in Figure 1 are unique (see [5]) and so, 
since they are not outerplane, we have that those graphs are not p-outerplanar (on 
the other hand, if they are outerplanar, it is possible to shorten some of the infinite 
rays accumulating the vertices and edges of these rays to a point in the plane). 
We are going to prove that the two graphs given in Figure 2 are the two forbidden 
subgraphs for outerplane p-embeddings. 

As it happens with other results on p-embeddings (see [3]), it can be remarked 
that the one-point compactifications of the underlying topological spaces to those 
graphs are homeomorphic to the two forbidden graphs for outerplane embeddings. 

By an infinite graph we mean a connected graph such that its vertex set is count
able and the deg. e at every vertex is finite (a locally finite countable graph). We 
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Figure 1: Two outerplanar graphs with no outerplane p-embeddings. 

will Use the notation and definitions of [4], except for using vertex instead of point 
and edge instead of line. 

We will use an invariant of non-compact spaces, namely, the ends of Freudenthal. 
An infinite ray in a graph G is a morphism <p: J —•> G inducing an injection on both 
the vertex set and the edge set, where J represents a graph such that its underlying 
topological space is homeomorphic to the positive half-line -R+. Two rays in G define 
the same Freudenthal end if for any finite subgraph H of G, there exist vertices of 
both rays in G — H. The set of Freudenthal ends of G is denoted by T(X) and its 
cardinal by e(X) (see [1] for details). 

2. P-OUTERPLANAR GRAPHS 

Definition 1. A graph G is said to be p-outerplanar if it can be embedded in 
the plane without vertices or edges accumulation so that all its vertices lie in the 
same face (a face is a connected component of the complement of the embedding 
with respect to the whole plane). 

Observe that all blocks of the graphs given in Figure 1 are outerplanar (actually, 
the two graphs are outerplanar) but those graphs are not p-outerplanar, in fact it is 
possible to give graphs which are not p-outerplanar graphs and have a finite number 
of p-outerplanar blocks as is shown in Figure 2. 
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Figure 2: A outerplanar and non-p-outerplanar graph with two p-outerplanar 
blocks. 
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Nevertheless, we have 

Lemma 2. A graph G with only one end and infinitely many cut-vertices is p-
outerplanar if and only if is outerplanar. 

Proof . G is outerplanar if and only if all its blocks are, and we can number 
those blocks in such a way that block Bi is joined in G with blocks .Bt_i and f?t+i 
(block J3i is only joined to block £2). In this way we can glue each block to its 
adjacent blocks and we can ensure that all the vertices are in the unbounded face. 

• 

Theorem 3. A graph G is p-outerplanar if and only if it has no subdivision of 
K4, K2,3, L4 or L2)3 (see Figure 1). 

Proof . Obviously the four graphs given in the theorem are not p-outerplanar 
and thus it only remains to show that any p-outerplanar graph has no subdivision 
of K4, K2l3, L4 or L2)3. 

As any p-outerplanar graph is outerplanar, it suffices to prove that an outerplanar 
graph is p-outerplanar if it has no subdivision of L4 or L2|3. 

First, suppose that there exists a subgraph H of G homeomorphic to R1 (the 
1-dimensional Euclidean space). Then the restriction to H of any p-embedding of G 
if R2 splits the plane in two half-planes. Thus it is straightforward to check that the 
two possible obstructions to be p-outerplanar are 

• There exists a path in G - H connecting two non-consecutive vertices of H. In 
this case, we have a subdivision of L2>3. 

• There exists an infinite ray in G — H. In this case, we have a subdivision of L4. 
If there is not such an H, then G has only a Freudenthal end and, as a consequence 

of Menger's theorem for infinite graphs (see [2]), in any H representative of that end 
(a representative of an end is a subgraph homoemorphic to the half-line [0, -Foo) such 
that there exist its elements in the component of the complement of any compact 
defining that end), there exist infinitely many cut-vertices. Let C = { î, v2,...} be 
that set of cut-vertices sorted as they appear in H and let G, be the block of G 
which contains Vi-i and Vi (G\ is the block of G which contains only vi). Then, by 
Lemma 2, G is p-outerplanar if and only if G is outerplanar and, this happens if and 
only if all G^s are outerplanar. • 

Obviously if G has more that two ends, it is always possible to find a subgraph 
homeomorphic to L4. Then G cannot be p-outerplanar and so we have 

Corollary 4. IfG is p-outerplanar, fc.he.r2 e(G) < 2. 
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