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A GENERALIZATION OF WISHART DENSITY FOR THE CASE 

WHEN THE INVERSE OF THE COVARIANCE MATRIX 

IS A BAND MATRIX 
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Summary. In a multivariate normal distribution, let the inverse of the covariance matrix 
be a band matrix. The distribution of the sufficient statistic for the covariance matrix is 
derived for this case. It is a generalization of the Wishart distribution. The distribution 
may be used for unbiased density estimation and construction of classification rules. 

Keywords: Band inverse covariance matrix, Wishart distribution, unbiased density esti­
mation, discriminant analysis 
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1. INTRODUCTION 

Let X have a /^dimensional normal distribution _VP(M>£)> where E"""1 is a band 
matrix, that is, E""1 is of the form 

/ > ì i r l î 

E- ł = 

0 
r«l 

0 
V ø-P.P-Ç+1 

Ø.P-Ç+1.P 

a™ } 

The above form of E * occurs, for example, if the coordinates of X = (.Ki,..., Xp)' 
are successive observations of a time-dependent variable and the structure of depen-
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dency is Markovian of order q — 1. Indeed, in this case we have ioi j — i> q—l 

cov(A"i, Xj\X1,..., Xi-1, Xi+1,..., Kj_i, Xj+1,..., Xp) 

= cov(K , ,X i |X m , . . . ,X^ 1 ) = 0 

and the partial correlation coefficient of Xi and Xj, given all remaining variables, 
equals zero. But this implies aij = 0. 

This type of data occurs in medical experiments, e.g. when measuring a biochem­
ical characteristic of blood in newborns, at 10 fixed time instants, starting from the 
birth. 

Let Xi, .. . , X^ be a random sample from the above distribution and put 

N 

C = £(X.-X)(X.-XY. 
1 = 1 

For the matrix C (and similarly for other matrices), C(q) will denote the band of C 
with q — 1 nonzero subdiagonals: 

/ C 1 1 

C'1 

C(ч) = 

M \ 

0 

cp-«7-rl,p 

0 
V c P,p-И- l 

rPP ) 

If E" 1 is a band matrix, t ^ E ^ C ) = trCS" 1^,)) and the likelihood of Xi,.. . ,XJV 
equals x 

(2-.)-">>/2|Er"/2etr{ - \TT1[C + N(X - „)(X - n)'}} 

= (2It)-^/2|E|-^2etr{ - is- 1 ^,) + N(X - M)(X - „)']}. 

Clearly, (X,C(9)) is a sufficient statistic for the parameters (/x, E), and for the pur­
poses of inference, the distribution of C(q) is needed. This distribution we find from 
the characteristic function, thus generalizing the method of Ingham (1933) for de­
riving the Wishart distribution. 

1 etr(.) = exp tr(.) 

338 



2. THE DENSITY OF C(9) 

The matrix C has the Wishart distribution Wp(n> E) with n = N - 1 degrees of 
freedom and the characteristic function 

(2.1) Eexp{i^djkcjk}=Eexp{UrCr} = | J - tTE | - n / a , 

where f = (7ij)>7tj = (1 + <5tj)% and <$y is the Kronecker delta. Let T = (7tj) be 
a symmetric band matrix of order p, i.e. 7^ = 0 for |t — j \ ^ q. Since tr C(g)r = 
tr CT, the characteristic function of C(q) is obtained from (2.1) as 

<p(T) = Eexp { i t rC ( g ) r} = -Bexp {^trCr} = \I - i rE|-"/2 . 

First we have to prove two lemmas concerning the absolute integrability of the 
characteristic function. 

Lemma 1. Let x, y be vectors of length p, A = (ay) and y = Ax. Let 
J = {ii , . . . , i r} C {l,2, . . . ,p}, J = {ji , . . . , j r}C {l,2,. . . ,p}. Denote 

( ahji • • • ah; 

airh ••• <**-.;. 

Then for the vectors of differentials, obviously dy = A dx and the wedge product 
/\ dy* of the eiements of dy equals 
iei 

(2.2) / \ dy< = £ |-4|/j da^ A .. . A drrir. 
i€1 JC{l,2,...,p};card(J)=r 

Proof . The assertion (2.2) follows immediately from the antisymmetric prop­
erty of the wedge product. D 

Lemma 2. The characteristic function ofC(q) is absolutely integrable for n > 2p. 

Proof . Clearly 

(̂r) = |/-ffi1/2rs1/2|-n/2. 
Let E1/2TE1/2 = HLH', L = diag{Zi,...,/p}, h > l2 > ... > lP be the spectral 
decomposition of E1/2TE1/2. Then a straightforward manipulation with differentials 
(see Muirhead (1982), Theorem 3.2.17) gives 

d(E1 /2rE1 / 2) = E 1 / 2 d r s 1 / 2 

= dHLH' + HdLH1 + HLdH1 
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and 

(2.3) tf'E1/2 dr E1/2tf = tf' dtf L - LH' AH + dL. 

Denote by dS = (dsij ) the symmetric matrix of differential forms on the right-hand 
side of (2.3); then 

ds^ ^Vi-lrftijdhi for i?j 

= dli for % = j , 

where hi, ..., hp are the columns of tf. For any matrix A, let vec (A) be the vector 
formed by the columns of A. According to the well known relations between the vec 
function and Kronecker product, we have from (2.3) 

vec(dS) = (tf'E1/2 <g> tf'E1/2)vec(dT), 

vec(dT) = (tf'E1/2 <g> tf'E1/2)"1vec(d5) 

= (E-1/2tf <g> E~1/2tf )vec(dS) 

(2.4) = (E~1/2 <8> E~1/2)(tf ® tf )vec(dS). 

The differential form needed for integration over symmetric band matrices T equals 
the wedge product of non-null distinct elements of dr, i.e. 

A d*;-
0<j-*<g 

Using (2.2) with the set J of double indices corresponding to the upper half-band of 
r , / = {( l , l ) , . . . , ( l ,g) , (2 ,2) , . . . , (2 ,g+l) , . . . , (p-g-r- l ,p~( / + l ) , . . . , (p -g -F 
I.P). • • •• iP,P)}> and the sets J C {(1,1),..., (l,p),..., (p, 1),..., (p,p)}, we obtain 
from (2.4) 

(2.5) f\ d7<i = £ |(E-1/2<8>E-1/2)(tfOtf)\u /\ dSij, 
0^j-i<q JC{(l,l>,...,(p,p)};card J=e (*\j)€J 

where € = p + (p - 1) + .. . + (p - q + 1) = § (2p - q -f 1). 
It follows from Hadamard's inequahty (e.g. Rao (1965), I.e. 3.3) that all minors 

in (2.5) are bounded by the same constant and thus do not affect the integrability 
of the form. Farther, all wedge products of the forms hj dh* are integrable due to 
the finite volume of the orthogonal group. Now the term of the highest order in h 
involved in the forms 

A *«= A (h-h)ti>dbiA A * 
(iJ)€J (»\i)€J;<9-i {ij)€J>i=j 
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equals, just as for the case of ordinary Wishart distribution, 

(nei-j«))<Bi, 
^ «=2 ' 

which in the expression for \<p(T)\ = Y\(l -f i?)~n/2 induces the term 

Uih-ii) 
a+/?)-«/-d/ l-

This, however, is integrable for | n — (p - 1) > 1, i.e. n > 2p. The same argument 
applies to fo etc. D 

R e m a r k . For the special case of ordinary Wishart distribution, the charac­
teristic function is absolutely integrable for n > 2p (cf. Herz (1955), p. 482) but the 
density exists and equals the result of the inverse Fourier transform for n}Z p. For 
band matrices, we have the same result concerning absolute integrability, n > 2p. 
We shall see below that the result of the inverse Fourier transform is defined for 
n ^ q and it may be conjectured that it equals the density even in this case. The 
proof would probably require other methods. 

Let B = {r = (7^); 7^ G (-00,00), \i - j \ < q] denote the set of all symmetric 
band matrices I\ Lemma 2 allows us, for n > 2p, to obtain the desired density of 
C(9) as the result of the inverse Fourier transform: 

W9)) = 2w/Betr{-ic(,)r}¥,(r)dr 

<2-6> = 2 ^ l ~ n / 2 (2^F j H - l ^ > r } ' S _ 1 - ir'"n/2dr' 
where e is as in (2.5). Put A = |o ( , ) , k = §. Similarly as Ingham (1933), we trans­
form (2.6) to a complex integral by changing the sign of T and using the substitution 
V = S - 1 + i r : 

w.)) = 'h^rk-^JB
etl{irA}^~1+irrkdr 

(2.7) = 2-p|S|-fcetr{-E-1.4}7(A,p,g), 

where 
(2.8) J(A,p,q) = - L - / etr{>W}|Vr*dV. 

341 



R e m a r k . J (A, p, q) is a further generalization of the formula 

(2.9) _L i a+*oo J f e - 1 

eC8s'kds = ^—, c > 0 , a > 0 , fc>l 
a—íoo 1 (fc) 

whose multivariate analog was considered by Ingham (1933). 

For any matrix J9, Bj will denote the j-th diagonal block of order q: 

( bJj • • • bj,j+q-i 

) , j = l, . . . ,p-<z + l. 
bJ+q-lj • • • b3+q-U+q-l -

Further, let Bj be the lower right-hand subblock of order q - 1 taken from the 
matrix By. 

(2.11) 
pj+i,i+i °i+i,i+g-i 

B i = 

, Ьj+g-l,j+l • • • 6 j+ g - l , j+ g _l 

Lemma 3. The integral J(A,p,q) does not depend on E (if only E is positive 
definite,) and equals 

J(Л,p,q) = i = i 

i = i 

2«n(p-«)(«-i)/-(r(fc--=i))i-«r,(fc) ^ ' | i i | i . - § ' 

where a = (p — g)(g — 1) + flfo^1' and 

rq(k) = ^-wf[r(k-i^) 
3=1 

is the multivariate gamma function. 

Proof . For p = g, the matrices A and V are no more band matrices and it 
suffices to compare (2.7) with the density of Wq(n, E). 

Let p = q + 1 and let us partition A and V as 

л = I b 
0 

b' 0 

, V= | w 
0 

w' 0 

W 
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where B = A2, W = V2. Then 

etr{AV}\V\-k = exp{ov + 2b'w}etr{BW> W KXУ 
As the upper left-hand block of order q - 1 in B equals A\, 

J(A, q + l,q) = ( — ) / exp lav + 2b'w + - w ' i i w \ v " k 

the integrals being according to (2.8) complex integrals taken over lines parallel to 
the imaginary axis; e.g. v G {v = a11 + i7u; 711 € (-00,00)}. 

Again, B and W are ordinary symmetric matrices; the expression in brackets does 
not depend on v, w and equals J(B,q,q) = J(A2,q,q). It remains to carry out 
integrations, first for the coordinates of w and finally for v. We have 

f exp {av + 2b'w + ^w'iiw} dw = (i^Y^A^^v^ exp{v(a - b ' i f xb)} 

= (i^riii1r
i/2^exp{,J44} 

1 l-4i|J 

(Cauchy's theorem allows to replace every line parallel to the imaginary axis by the 
imaginary axis itself, then formula (5) of Wishart and Bartlett (1933) is applied) and 

j _ [exp{vm}v-^dv=(i^i)*-^-1--* 
21-L p t K r Mi-iK r ( fc - - f - ) ' 

which follows from (2.9). Thus J(A,q + l,g) does not depend on £ and equals the 
desired expression; proceeding by induction completes the proof. • 

R e m a r k . The previous proof partially rephrases the original derivation of 
Ingham (1933), where more details are to be found. 

Returning back to C(q) and n/2 = k, we obtain 

/(C(9)) =
 2/^ l £ ; : s^(r(-^))P-<'r,(f) 

(2.12) x lEI-SetrJ- iE- 1 ^, )}^ 
ПVil^ 

j = i 
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where 0 = p - (p - q)(q - l)--=f-- + -<-f-- + (p - g + 1) q^f-^. 
For p = g, the expression (2.12) yields the Wishart density. For arbitrary p and 

q = 1, the density is that of a vector of p independent chi-squares (the matrices Cj 
degenerate and drop out). 

3. AN APPLICATION TO DENSITY ESTIMATION AND DISCRIMINANT ANALYSIS 

The density (2.12) may be used for the construction of an unbiased estimate of 
the normal density in the case when E""1 is a band matrix. Unbiased estimates of 
densities are based on the fact that for a density function g and a sufficient statistic 
T for the corresponding distribution, an unbiased estimate of g(x) is 

(3.1) ff(x)=5(x|T) = fl(x,T) 

9(T) 

since obviously 

Бff(x) = jg(x\t)g(ť)àt = g(x). 

Moreover, for exponential-type densities an unbiased estimate expressed in terms of 
a sufficient statistic is unique and the estimate is the best unbiased estimate (see 
Vapnik (1982) and the references therein). For the multivariate normal density with 
general E, the estimates have been derived by Lumeiskil and Sapozhnikov (1969) (see 
also Vapnik (1982), Ch. 3, Section 10). Classification rules based on these estimates 
appear in Abusev and Lumeiskil (1980). 

Clearly g(x | T) does not depend on the parameters and the estimates can be 
obtained from the right-hand side of (3.1) with any suitable values of the parameters, 
e.g. /i = 0 and E = / for the normal distribution. 

Let Xo, Xi , . . . , XJV be a random sample from -VP(M> E) of size IV +1 = n -f 2 and 
let E""1 be a band matrix with q — 1 nonzero subdiagonals. The sufficient statistic 
for the parameters /i, E is 

0.2) r=(£x.f£;x.x::) Y 
VS) ^i=o '(«K 

We can now follow the lines of Abusev and Lumeiskil (1980) with the sufficient 
statistic (3.2), i.e. using the density (2.12) with S = I instead of the Wishart density 
Wp(n,I). 
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Proposition. Let Xo» X1 ? . . . , XN and E be as above. Let g(X) be the density 
ofNp(fx, E), X = (Xi + . . . + XN)/N and S the sample covariance matrix 

s^jff^(Xi-x)(Xi-xy. 
t = l 

Put d = (6i,...,5py = X0 - X , dj = (<$,,...,<Ji+9_i)', dj = (* i + l f . . . ,* i + g_1) / . 
Finally, let Sj and Sj be defined from S according to (2.10) and (2.11). Then an 
unbiased estimate of the density g(.) at the point XQ is 

g(X0) = c(N) 
T F I5i|-1/2d + jfaqsf %)-*** 
i=- 

"ff \šj\-imi+7^1^.57^)- v 
.7=1 

where 

cm = fJLtll^ (r(^^))!^_r(jv) c W I »' > ( r (^) ) ' -» r ( « ) -

The estimator p(Xo) may be used for the construction of a classification rule in 
a usual manner. Suppose we want to decide whether Xo comes from 1Vp(/ii, Ei) or 
JVp(/x2, E2) and EJ"1, EJ1 are band matrices. Let the parameters be unknown and let 
us have a training sample from each of the two populations. Denote by <)(Xo; d1, S1) 
the estimator £(Xo) computed from Xo and the training sample from IVp(/i1,E1), 
similarly g(Xo; d2 ,S2). Then we decide that Xo comes from -Vp(/i1}Ei) if 

, , , , g(Xp;d2,52) 

where k is a suitable constant depending on the prior probabilities and costs of 
misclassification. 

The rule (3.3) with q = 2 has been tested on several data. Even if the matrix E""1 

is not a band matrix, the rule may be applicable. Thus, for the famous Fisher Iris 
data, our rule performed two percent worse than the quadratic discriminant function 
(the probabilities of misclassification have been estimated by means of the usual one-
leaving-out estimate). On the other hand, it seems that a similar phenomenon occurs 
as in the case of ridge rules; namely, neglecting some non-diagonal elements in the 
sample covariance matrix has a similar effect as growing its diagonal. In both cases, 
the resulting rule should be more robust against ill-conditioned covariance matrices. 
The performance of the rule will be subject to further investigation. 
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