Mathematic Bohemia

Boris Rudolf

A periodic boundary value problem in Hilbert space

Mathematica Bohemica, Vol. 119 (1994), No. 4, 347-358
Persistent URL: http://dml.cz/dmlcz/126123

Terms of use:

© Institute of Mathematics AS CR, 1994

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

A PERIODIC BOUNDARY VALUE PROBLEM IN HILBERT SPACE

Boris Rudolf, Bratislava

(Received December 11, 1992)

Summary. In the paper some existence results for periodic boundary value problems for the ordinary differential equation of the second order in a Hilbert space are given. Under some auxiliary assumptions the set of solutions is compact and connected or it is convex.

Keywords: periodic boundary value problem, Leray-Schauder theorem, convexity of set of solutions

AMS classification: 34G20, 34B15

This paper deals with the problem

$$
\begin{gather*}
-x^{\prime \prime}(t)+\alpha^{2} x(t)+f\left(t, x(t), x^{\prime}(t)\right)=h(t), \tag{1}\\
x(-\pi)=x(\pi), \quad x^{\prime}(-\pi)=x^{\prime}(\pi), \tag{2}
\end{gather*}
$$

where $h:\langle-\pi, \pi\rangle \rightarrow H, f:\langle-\pi, \pi\rangle \times H \times H \rightarrow H$ and H is real Hilbert space with a norm $\|\cdot\|, \alpha \in \mathbb{R}$ is a positive constant.

We study the existence, uniqueness and some other properties of the set of solutions.

Similar problems concerning two point boundary value problems are solved in the papers by Schmitt and Thompson [ST], Mawhin [M] and Gupta [G]. This paper generalizes some results given in $[R]$.

Preliminaries

We use the following function spaces:

$$
\begin{aligned}
& L_{1}((-\pi, \pi), H) \text { with the norm }\|u\|_{1}=\int_{-\pi}^{\pi}\|u(t)\|^{2} \mathrm{~d} t, \\
& L_{2}((-\pi, \pi), H) \text { with the norm }\|u\|_{2}=\left(\int_{-\pi}^{\pi}\|u(t)\|^{2} \mathrm{~d} t\right)^{\frac{3}{2}}, \\
& C(\langle-\pi, \pi\rangle, H) \text { with the norm }\|u\|_{0}=\sup _{t \in\langle-\pi, \pi\rangle}\|u(t)\|, \\
& C_{1}(\langle-\pi, \pi\rangle, H) \text { with the norm }\|u\|_{01}=\max \left\{\|u\|_{0},\left\|u^{\prime}\right\|_{0}\right\} .
\end{aligned}
$$

Throughout the paper we denote these spaces as L_{1}, L_{2}, C, C_{1}, and assume that $h \in L_{1}$.

First we give an abstract formulation of the problem (1), (2).
Lemma 1 [ST, p. 281]. A periodic boundary value problem (1), (2) is equivalent to the operator equation

$$
x=T x
$$

where

$$
\begin{equation*}
T x(t)=\int_{-\pi}^{\pi} G(t, s)\left(h(s)-f\left(s, x(s), x^{\prime}(s)\right)\right) \mathrm{d} s \tag{3}
\end{equation*}
$$

and $G(t, s)$ is the Green function associated with the homogeneous problem $-x^{\prime \prime}+$ $\alpha^{2} x=0$, (2). (See [GŠŠ, p. 143], [R, Lemma 1].)

When $f(t, x, y):\langle-\pi, \pi\rangle \times H \times H \rightarrow H$ is a completely continuous operator, then also the operator $T: C^{1} \rightarrow C^{1}$ is completely continuous.

To obtain the existence of a solution to (1), (2) we use the following results.
Lemma $2\left[\mathrm{R}\right.$, Lemma 8]. Let $y(t) \in C, y^{\prime}(t) \in L_{2}$. Then there are such $a, b \in \mathbb{R}$ that

$$
\|y(t)\|_{0} \leqslant a\left\|y^{\prime}(t)\right\|_{2}+b\|y(t)\|_{2} .
$$

Lemma 3 (Nagumo type condition). Let $R>0$ be a constant, let $\Phi_{R}: \mathbf{R} \rightarrow \mathrm{R}$ be a positive nondecreasing continuous function such that

$$
\lim _{s \rightarrow \infty} \frac{s^{2}}{\Phi_{R}(s)}=\infty,
$$

and let $\varphi(t) \in L_{1}$.
Then there is $M>0$ such that, if $x(t) \in C^{1}, x^{\prime \prime}(t) \in L_{1},\|x\|_{0}<R$ and for almost every $t \in\langle-\pi, \pi\rangle$

$$
\left\|x^{\prime \prime}(t)\right\| \leqslant\|\varphi(t)\|+\Phi_{R}\left(\left\|x^{\prime}(t)\right\|\right)
$$

then $\left\|x^{\prime}\right\|_{0} \leqslant M$.
Proof. Denote $q=\left\|x^{\prime}\right\|_{0}=\max \left\|x^{\prime}(t)\right\|=\left\|x^{\prime}\left(t_{0}\right)\right\|$. Let $\omega \in H,\|\omega\|=$ 1 represent such a linear functional that $\left(x^{\prime}\left(t_{0}\right), \omega\right)=\left\|x^{\prime}\left(t_{0}\right)\right\|$. Denote $z(t)=$ $(x(t), \omega)$. Let $\tau \in \mathbb{R},|\tau| \leqslant \pi$, be such that $t_{0}+\tau \in\langle-\pi, \pi\rangle$. Then there is $\xi \in$ $\left\langle t_{0}, t_{0}+\tau\right\rangle$, such that

$$
z\left(t_{0}+\tau\right)=z\left(t_{0}\right)+\tau\left(z^{\prime}\left(t_{0}\right)+\int_{t_{0}}^{\xi} z^{\prime \prime}(s) \mathrm{d} s\right)
$$

We denote $\delta=|\tau|$ and estimate

$$
\delta\left\|x^{\prime}\left(t_{0}\right)\right\| \leqslant 2 R+\delta\left|\int_{t_{0}}^{\xi}\|\varphi(s)\|+\Phi_{R}\left(\left\|x^{\prime}(s)\right\|\right) \mathrm{d} s\right| \leqslant 2 R+\delta\|\varphi\|_{1}+\delta^{2} \Phi_{R}(q)
$$

Let $Q>0$ be such that $\frac{q^{2}}{\Phi_{2}(q)} \geqslant 32 R$ holds for $q>Q$.
Now for $q>0$ we have

$$
\delta q \leqslant 2 R+\delta\|\varphi\|_{1}+\delta^{2} \frac{q^{2}}{32 R}
$$

i.e.

$$
q \leqslant \frac{2 R}{\delta}+\|\varphi\|_{1}+\delta \frac{q^{2}}{32 R}
$$

The right hand side function has its minimum at $\delta=\frac{8 R}{q}$.
Now if $\frac{8 R}{q} \geqslant \pi$, then $\frac{8 R}{\pi} \geqslant q$. If $\frac{8 R}{q}<\pi$, then choosing $\delta=\frac{8 R}{q}$ we obtain $q \leqslant \frac{q}{2}+\|\varphi\|_{1}$ and $q \leqslant 2\|\varphi\|_{1}$.

That means we have obtained the estimate

$$
\left\|x^{\prime}\right\|_{0}=q \leqslant \max \left(Q, \frac{8 R}{\pi}, 2\|\varphi\|_{1}\right)=M .
$$

Lemma 4 (Krasnosel'skij's theorem) [Z, Theorem 13.4]. Let $T_{n}, T: \bar{\Omega} \subset X \rightarrow X$ be completely continuous operators for each $n \geqslant n_{0}$, let Ω be a nonempty open and bounded set in the Banach space X. Let

$$
\sup _{\bar{\Omega}}\left|T x-T_{n} x\right|_{x} \rightarrow 0 \quad \text { for } n \rightarrow \infty
$$

let the Leray-Schauder degree satisfy

$$
d(I-T, \Omega, 0) \neq 0
$$

and let the equation

$$
x=\bar{T} x=T_{n} x+\left(T(\bar{x})-T_{n}(\bar{x})\right)
$$

have for every $\bar{x} \in \Omega$ and every $n \geqslant n_{0}$ at most one solution.
Then the set of the fixed points of T is nonempty, compact and connected.

Main results

Theorem 1. Let $f:\langle-\pi, \pi\rangle \times H \times H \rightarrow H$ be a completely continuous operator and
(P1) let there be constants $r>0$ and $a, b, c, a+\frac{b^{2}}{4}<\alpha^{2}, b \geqslant 0, c \geqslant 0$, such that

$$
(f(t, x, y), x) \geqslant-a\|x\|^{2}-b\|x\|\|y\|-c\|x\|
$$

for every $(t, x, y) \in\langle-\pi, \pi\rangle \times H \times H,\|x\|>r$ or $\|y\|>r$,
(P2) for each $R>0$ let there exists a positive nondecreasing continuous function Φ_{R} satisfying

$$
\lim _{s \rightarrow \infty} \frac{s^{2}}{\Phi_{R}(s)}=\infty
$$

such that if $\|x\|<R$ then

$$
\|f(t, x, y)\| \leqslant \Phi_{R}(\|y\|)
$$

Then there is a solution to the problem (1), (2) for every $h(t) \in L_{1}$.
Proof. We estimate the solution to the equation

$$
\begin{equation*}
x=\lambda T x \quad \text { for } \lambda \in(0,1\rangle . \tag{4}
\end{equation*}
$$

For $x(t)$ a solution to (4), we obtain

$$
\int_{-\pi}^{\pi}\left(-x^{\prime \prime}, x\right) \mathrm{d} t+\int_{-\pi}^{\pi} \alpha^{2}(x, x) \mathrm{d} t+\int_{M \cup N} \lambda\left(f\left(t, x, x^{\prime}\right), x\right) \mathrm{d} t=\int_{-\pi}^{\pi} \lambda(h, x) \mathrm{d} t,
$$

where $M=\left\{t,\|x(t)\| \leqslant r\right.$ and $\left.\left\|x^{\prime}(t)\right\| \leqslant r\right\}, N=\langle-\pi, \pi\rangle-M$. Then

$$
\begin{aligned}
& \left\|x^{\prime}\right\|_{2}^{2}+\alpha^{2}\|x\|_{2}^{2}+\int_{M} \lambda\left(f\left(t, x, x^{\prime}\right), x\right) \mathrm{d} t \\
- & \lambda \int_{N}\left(a\|x\|^{2}+b\|x\|\left\|x^{\prime}\right\|+c\|x\|\right) \mathrm{d} t \leqslant\|h\|_{1}\|x\|_{0}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left\|x^{\prime}\right\|_{2}^{2}+\alpha^{2}\|x\|_{2}^{2}-m-\lambda\left(a\|x\|_{2}^{2}+b \int_{-\pi}^{\pi}\|x\|\left\|x^{\prime}\right\| \mathrm{d} t+c \int_{-\pi}^{\pi}\|x\| \mathrm{d} t\right) \\
+ & \lambda \int_{M}\left(a\|x\|^{2}+b\|x\|\left\|x^{\prime}\right\|+c\|x\|\right) \mathrm{d} t \leqslant\|h\|_{1}\|x\|_{0}
\end{aligned}
$$

where $m=2 \pi \max _{\|x\| \leqslant r,\|y\| \leqslant r}(f(t, x, y), x)$.
If $a\|x\|_{2}^{2}+b \int_{-\pi}^{\pi}\|x\|\left\|x^{\prime}\right\| \mathrm{d} t+c \int_{-\pi}^{\pi}\|x\| \mathrm{d} t \geqslant 0$, we estimate

$$
b\|x\|\left\|x^{\prime}\right\| \leqslant(1-\varepsilon)^{2}\left\|x^{\prime}\right\|^{2}+\frac{b^{2}}{4(1-\varepsilon)^{2}}\|x\|^{2}
$$

and obtain

$$
\begin{aligned}
& \left(1-(1-\varepsilon)^{2}\right)\left\|x^{\prime}\right\|_{2}^{2}+\left(\alpha^{2}-a-\frac{b^{2}}{4(1-\varepsilon)^{2}}\right)\|x\|^{2}-c \sqrt{2 \pi}\|x\|_{2}-m \\
- & 2 \pi|a| r^{2}-\|h\|_{1}\left(\sqrt{\frac{1}{2 \pi}}\|x\|_{2}+\sqrt{2 \pi}\left\|x^{\prime}\right\|_{2}\right) \leqslant 0
\end{aligned}
$$

that is

$$
A_{1}\left\|x^{\prime}\right\|_{2}^{2}+A_{2}\|x\|_{2}^{2}-A_{3}\|x\|_{2}-A_{4}\left\|x^{\prime}\right\|_{2}-A_{5} \leqslant 0
$$

where A_{i} are constants. Supposing $\varepsilon>0$ is sufficiently small, A_{1}, A_{2} are positive constants.

Then the last inequality implies $\|x\|_{2} \leqslant C_{1},\left\|x^{\prime}\right\|_{2} \leqslant C_{2}$ and by Lemma 2 we have $\|x\|_{0} \leqslant \sqrt{\frac{1}{2 \pi}} C_{1}+\sqrt{2 \pi} C_{2}=C$.

In case that $a\|x\|_{2}^{2}+b \int_{-\pi}^{\pi}\|x\|\left\|x^{\prime}\right\| \mathrm{d} t+c \int_{-\pi}^{\pi}\|x\| \mathrm{d} t<0$, we substitute this term by zero and obtain the a priori estimate $\|x\|_{0} \leqslant C$ as well.

The assumption (P2) and Lemma 3 imply the estimate

$$
\left\|x^{\prime}\right\|_{0} \leqslant M
$$

This means we obtain the a priori estimate of the solution of (4) in the space C^{1}. The Leray-Schauder theorem implies the existence of a solution to the problem (1), (2).

Theorem 2. Assume (P2),
(P3) H is a separable Hilbert space and $\left\{e_{i}\right\}$ is an orthonormal basis in H,
(P4) the operator $f:\langle-\pi, \pi\rangle \times H \times H \rightarrow H$ is continuous and bounded,
(P5) $h(t) \in L_{2}$,
(P6) there are constants $a, b, a+\frac{1}{4} b^{2}<\alpha^{2}, b \geqslant 0$ such that
(5) $\quad(f(t, x, y)-f(t, u, v), x-u) \geqslant-a\|x-u\|^{2}-\frac{b^{2}}{4}\|x-u\|\|y-v\|$
for every $x, y, u, v \in H$ and every $t \in\langle-\pi, \pi\rangle$.
Then there is a unique solution to the problem (1), (2).
Proof. Uniqueness.
Let x_{1}, x_{2} be two solutions to (1), (2). Then

$$
-x_{1}^{\prime \prime}+x_{2}^{\prime \prime}+\alpha^{2}\left(x_{1}-x_{2}\right)+f\left(t, x_{1}, x_{1}^{\prime}\right)-f\left(t, x_{2}, x_{2}^{\prime}\right)=0
$$

and .

$$
\left\|x_{1}^{\prime}-x_{2}^{\prime}\right\|_{2}^{2}+\alpha^{2}\left\|x_{1}-x_{2}\right\|_{2}^{2}+\int_{-\pi}^{\pi}\left(f\left(t, x_{1}, x_{1}^{\prime}\right)-f\left(t, x_{2}, x_{2}^{\prime}\right), x_{1}-x_{2}\right) \mathrm{d} t=0
$$

The assumption (P6) implies that

$$
\left(1-(1-\varepsilon)^{2}\right)\left\|x_{1}^{\prime}-x_{2}^{\prime}\right\|_{2}^{2}+\left(\alpha^{2}-a-\frac{b^{2}}{4(1-\varepsilon)^{2}}\right)\left\|x_{1}-x_{2}\right\|_{2}^{2} \leqslant 0
$$

and then

$$
\left\|x_{1}^{\prime}-x_{2}^{\prime}\right\|_{2}^{2}=0, \quad\left\|x_{1}-x_{2}\right\|_{2}^{2}=0
$$

Hence $x_{1}(t)=x_{2}(t)$ for each $t \in\langle-\pi, \pi\rangle$.
Existence. Let $E_{n} \subseteq H$ be a finite dimensional subspace $E_{n}=\left[e_{1}, \ldots, e_{n}\right]$, let $P_{n}: H \rightarrow E_{n}$ be an orthogonal projection on $E_{n}, F_{n} \subset L_{2}$ a subspace $F_{n}=\{x(t) \in$ $\left.L_{2}, x(t):\langle-\pi, \pi\rangle \rightarrow E_{n}\right\}$, let $Q_{n}: L_{2}((-\pi, \pi), H) \rightarrow F_{n}$ be an orthogonal projection on F_{n}. Further denote $x_{n}=Q_{n} x, \operatorname{dom} L=\left\{x \in C^{1}, x^{\prime \prime} \in L_{2}\right\}$, let $L: \operatorname{dom} L \rightarrow L_{2}$ be an operator

$$
L x=-x^{\prime \prime}+\alpha^{2} x
$$

and $N: C^{1} \rightarrow C$ an operator

$$
N x(t)=f\left(t, x(t), x^{\prime}(t)\right)
$$

We consider a system of finite dimensional problems

$$
\begin{gather*}
-x_{n}^{\prime \prime}+\alpha^{2} x_{n}+P_{n} f\left(t, x_{n}, x_{n}^{\prime}\right)=P_{n} h(t) \tag{6}\\
x_{n}(-\pi)=x_{n}(\pi), \quad x_{n}^{\prime}(-\pi)=x_{n}^{\prime}(\pi)
\end{gather*}
$$

Obviously $P_{n} f:\langle-\pi, \pi\rangle \times E_{n} \times E_{n} \rightarrow E_{n}$ is a completely continuous operator.
The assumption (P6) implies by virtue of $u=v=0$

$$
\begin{equation*}
\left(P_{n} f(t, x, y), x\right) \geqslant-a\|x\|^{2}-b\|x\|\|y\|-c\|x\|, \tag{7}
\end{equation*}
$$

where $c=\max _{t \in(-\pi, \pi)}\left\|P_{n} f(t, 0,0)\right\|$.
The preceding theorem implies the existence of a solution to the problem (6), (2). Moreover, the a priori estimates from the proof of this theorem hold. This means that there are constants independent on n such that

$$
\begin{equation*}
\left\|x_{n}\right\|_{2} \leqslant C_{1}, \quad\left\|x_{n}^{\prime}\right\|_{2} \leqslant C_{2}, \quad\left\|x_{n}\right\|_{0} \leqslant C \tag{8}
\end{equation*}
$$

for every solution x_{n} to (6), (2).
A priori estimates (8) and the complete continuity of each of the operators

$$
T_{n} x(t)=\int_{-\pi}^{\pi} G(t, s) P_{n}\left(h(s)-f\left(s, x_{n}(s), x_{n}^{\prime}(s)\right)\right) \mathrm{d} s
$$

imply that the set of solutions to each problem (6), (2) is compact both in C^{1} and L_{2}.
As we have proved the uniqueness, this last statement is trivial. We use the idea of this proof also without uniqueness.
Denote the set of solutions to each problem (6), (2) as U_{n} and denote $V_{n}=\bigcup_{k=n}^{\infty} U_{k}$. Obviously $V_{n+1} \subset V_{n}$ and each V_{n} is a bounded set. Let $W_{n}=\bar{V}_{n}$ be a weak closure of the set V_{n} in the space L_{2}. Then W_{n} is weakly compact and $W_{n+1} \subset W_{n}$. Hence there is

$$
x_{0} \in \bigcap_{n=1}^{\infty} W_{n}
$$

and a sequence $x_{n} \in V_{n}$ such that $x_{n} \rightharpoonup x_{0}$.
The equation (6) and the a priori estimates (8) imply that $\left\|x_{n}^{\prime \prime}\right\|_{2} \leqslant c$, where c is a suitable constant. Now we choose a subsequence, we denote it again by $\left\{x_{n}\right\}$, such that

$$
L x_{n}=-x_{n}^{\prime \prime}+\alpha^{2} x_{n} \rightharpoonup v \quad \text { in } L_{2} .
$$

As the graph of the linear operator L is a closed and convex set, it is also weakly closed and

$$
v=L x_{0} .
$$

Thus $x_{0} \in \operatorname{dom} L$.
Now we prove the inequality

$$
\begin{equation*}
\left\langle(L+N) u-h, u-x_{0}\right\rangle \geqslant 0 . \tag{9}
\end{equation*}
$$

First let $u \in \operatorname{dom} L \cap F_{m}, x_{n} \in F_{n}$ and $n \geqslant m$. We use the inequality (5) to obtain

$$
\begin{aligned}
\langle(L+N) x-(L+N) y, x-y\rangle= & \left\|x^{\prime}-y^{\prime}\right\|_{2}^{2}+\alpha^{2}\|x-y\|_{2}^{2} \\
& +\int_{-\pi}^{\pi}\left(f\left(t, x, x^{\prime}\right)-f\left(t, y, y^{\prime}\right), x-y\right) \mathrm{d} t \\
\geqslant & \left(1-(1-\varepsilon)^{2}\right)\left\|x^{\prime}-y^{\prime}\right\|_{2}^{2} \\
& +\left(\alpha^{2}-a-\frac{b^{2}}{4(1-\varepsilon)^{2}}\right)\|x-y\|_{2}^{2} \geqslant 0 .
\end{aligned}
$$

Then

$$
\begin{aligned}
0 \leqslant\left\langle(L+N) u-(L+N) x_{n}, u-x_{n}\right\rangle= & \left\langle(L+N) u-h, u-x_{n}\right\rangle \\
& -\left\langle(L+N) x_{n}-h, u-x_{n}\right\rangle
\end{aligned}
$$

As $H=E_{n} \oplus E_{n}^{\perp}, u-x_{n} \in F_{n}, Q_{n}\left((L+N) x_{n}-h\right) \in F_{n}$ and x_{n} is a solution to (6), we have

$$
\left\langle(L+N) x_{n}-h, u-x_{n}\right\rangle=\left\langle Q_{n}(L+N) x_{n}-h, u-x_{n}\right\rangle=0 .
$$

Then

$$
0 \leqslant\left\langle(L+N) u-h, u-x_{n}\right\rangle
$$

and by $n \rightarrow \infty$ we obtain (9).
Now we prove that (9) holds for each $u \in \operatorname{dom} L$. From the Fourier series for $u(t)$ we obtain (cf. [R, Lemma 4, 5])

$$
u(t)=\sum_{i=1}^{\infty} a_{i}(t) e_{i}, \quad u^{\prime}(t)=\sum_{i=1}^{\infty} a_{i}^{\prime}(t) e_{i} \quad \text { and } \quad u^{\prime \prime}(t)=\sum_{i=1}^{\infty} a_{i}^{\prime \prime}(t) e_{i}
$$

where $a_{i}(t)=\left(u(t), e_{i}\right) \in C^{1}$ and $a_{i}^{\prime \prime}(t) \in L_{2}$. Denote

$$
u_{n}(t)=\sum_{i=1}^{n} a_{i}(t) e_{i}
$$

Then $u_{n}(t) \rightarrow u(t)$ in H for every $t \in\langle-\pi, \pi\rangle$. Since

$$
\left\|u_{n}(s)-u_{n}(t)\right\|=\left\|P_{n} u(s)-P_{n} u(t)\right\| \leqslant\|u(s)-u(t)\|
$$

and a similar inequality holds also for u_{n}^{\prime}, we have convergences

$$
u_{n} \rightarrow u \text { in } C, \quad u_{n}^{\prime} \rightarrow u^{\prime} \text { in } C, \quad u_{n}^{\prime \prime} \rightarrow u^{\prime \prime} \text { in } L_{2}
$$

The inequality

$$
\left\langle(L+N) u_{n}-h, u_{n}-x_{0}\right\rangle \geqslant 0
$$

for $u_{n} \in F_{n}$ and the convergences $L u_{n} \rightarrow L u, N u_{n} \rightarrow N u$ imply

$$
\left\langle(L+N) u-h, u-x_{0}\right\rangle \geqslant 0
$$

for every $u \in \operatorname{dom} L$.
Let now $v \in \operatorname{dom} L, \tau \geqslant 0$ and $u=x_{0}+\tau v$. Then

$$
\left\langle(L+N)\left(x_{0}+\tau v\right)-h, v\right\rangle \geqslant 0
$$

and for $\tau \rightarrow 0$

$$
\left\langle(L+N) x_{0}-h, v\right\rangle \geqslant 0 .
$$

The density of dom L in L_{2} implies

$$
(L+N) x_{0}-h=0
$$

Theorem 3. Let f be a completely continuous operator. Suppose the assumptions (P1), (P2) and ($\mathrm{P} 6^{\prime}$) there are constants $a, b, \bar{a}+\frac{1}{4} \bar{b}^{2}=\alpha^{2}, \bar{b} \geqslant 0$ such that (5) holds for every $x, y, u, v \in H$ and every $t \in(-\pi, \pi\rangle$ are fulfilled.
Then the set of solutions to the problem (1), (2) is nonempty, compact and connected.

Proof. We prove that the assumptions of Lemma 4 are fulfilled. The operator T is defined by (3).

We choose an open bounded set $\Omega=\left\{x(t) \in C^{1},\|x(t)\|_{01}<C\right\}$, where C is the estimate of the norm of the solution of (4). The existence of such an estimate follows from Theorem 1.

The a priori estimate $\|x(t)\|_{01}<C$ for a solution $x(t)$ of the equation (4) implies that

$$
d(I-\lambda T, \Omega, 0)=\text { const } \neq 0 \quad \text { for every } \lambda \in\langle 0,1\rangle
$$

Denote $f_{n}(t, x, y)=\mu_{n} f(t, x, y)$, where $0<\mu_{n}<1$ and $\mu_{n} \rightarrow 1$ for $n \rightarrow \infty$. The sequence of operators T_{n} is given by

$$
T_{n} x(t)=\int_{-\pi}^{\pi} G(t, s)\left(h(s)-f_{n}\left(s, x(s), x^{\prime}(s)\right)\right) \mathrm{d} s
$$

The complete continuity of T implies that $T_{n}: C^{1} \rightarrow C^{1}$ also is a completely continuous operator for every $n \in N$. Now we estimate

$$
\begin{aligned}
\sup _{x \in \Omega}\left\|T_{n} x(t)-T x(t)\right\| & =\sup _{x \in \Omega}\left\|\int_{-\pi}^{\pi} G(t, s)\left(1-\mu_{n}\right) f\left(s, x, x^{\prime}\right) \mathrm{d} s\right\| \leqslant 2 \pi\left(1-\mu_{n}\right) G \cdot F, \\
\sup _{x \in \Omega}\left\|T_{n} x^{\prime}(t)-T x^{\prime}(t)\right\| & =\sup _{x \in \Omega}\left\|\int_{-\pi}^{\pi} \frac{\partial G(t, s)}{\partial t}(1-\mu) f\left(s, x, x^{\prime}\right) \mathrm{d} s\right\| \leqslant 2 \pi\left(1-\mu_{n}\right) G_{1} \cdot F,
\end{aligned}
$$

where F, G, G_{1} are upper bounds of f, Green's function and its derivative.
The assumption ($\mathrm{P} 6^{\prime}$) implies the inequality

$$
\left(f_{n}(t, x, y)-f_{n}(t, u, v), x-u\right) \geqslant-\mu_{n} \bar{a}\|x-u\|^{2}-\mu_{n} \bar{b}\|x-u\|\|y-v\|,
$$

where $\mu_{n} \bar{a}+\mu_{n} \frac{1}{4} \bar{b}^{2}<\alpha^{2}$.
Hence (P6) holds for f_{n}. In a similar way as in the proof of the preceding theorem the uniqueness of the solution to the problem

$$
\begin{equation*}
-x^{\prime \prime}(t)+\alpha^{2} x(t)+f_{n}\left(t, x(t), x^{\prime}(t)\right)=h(t)+g(t), \tag{2}
\end{equation*}
$$

is proved for every $g, h \in L_{1}$.
Consequently, the operator equation

$$
x=T_{n} x+\left(T \bar{x}-T_{n} \bar{x}\right)
$$

has a unique solution for every $\bar{x} \in \Omega$.
Now Lemma 4 implies the statement of our theorem.
Theorem 4. Suppose the assumptions (P 1)-(P 5), (P^{\prime}) hold.
Then the set of solutions to the problem (1), (2) is nonempty and convex.
Proof. The proof is similar to that of Theorem 2. We consider the finite dimensional problem

$$
\begin{gather*}
-x_{n}^{\prime \prime}+\alpha^{2} x_{n}+P_{n} f\left(t, x_{n}, x_{n}^{\prime}\right)=P_{n} h+h_{n}, \tag{10}\\
x_{n}(-\pi)=x_{n}(\pi), \quad x_{n}^{\prime}(-\pi)=x_{n}^{\prime}(\pi), \tag{2}
\end{gather*}
$$

where $\left\|h_{n}(t)\right\| \leqslant \frac{1}{n}$ for each $t \in\langle-\pi, \pi\rangle, h_{n} \in F_{n}$.
The assumption (P6) implies the inequality (7). Using Theorem 3 on the subspace E_{n} we obtain that the set of solutions to each boundary value problem (10), (2) is nonempty, compact and connected. Moreover, the proof of Theorem 1 implies the a priori estimates (8) for each solution x_{n} to the problem (10), (2).

Denote by U_{n} the set of solutions to (10), (2), where h_{n} satisfies $\left\|h_{n}\right\|_{2} \leqslant k_{n}$, where k_{n} is a given sequence with $k_{n} \rightarrow 0$ for $n \rightarrow \infty$. Denote $V_{n}=\bigcup_{k=n}^{\infty} U_{k}$ and let $W_{n}=\overline{\operatorname{conv} V_{n}}$ be the weak closure of the convex hull of the set V_{n} in L_{2}. Then V_{n}, W_{n} are bounded sets, W_{n} is weakly compact, $W_{n+1} \subset W_{n}$ and there is

$$
x_{0} \in \bigcap_{n=1}^{\infty} W_{n}
$$

and a subsequence $x_{n} \in \operatorname{conv} V_{n}$ such that $x_{n} \rightharpoonup x_{0}$ in L_{2}. Moreover, $x_{n}=\sum_{i=1}^{k} \lambda_{i} y_{i}$, where $y_{i} \in V_{n}, \lambda_{i} \in\langle 0,1\rangle, \sum_{i=1}^{k} \lambda_{i}=1$. The equation (10) implies that there is c such that $\left\|y_{n}^{\prime \prime}\right\|<c$, hence also $\left\|x_{n}^{\prime \prime}\right\|<c$. From this estimate we obtain similarly as in the proof of Theorem 2 that $x_{0} \in \operatorname{dom} L$. We again prove the inequality

$$
\begin{equation*}
\left\langle(L+N) u-h, u-x_{0}\right\rangle \geqslant 0 . \tag{11}
\end{equation*}
$$

By the same method as in the proof of Theorem 2 we obtain that

$$
0 \leqslant\left\langle(L+N) u-h-h_{n i}, u-y_{i}\right\rangle
$$

Then

$$
\begin{aligned}
0 & \leqslant \sum_{i=1}^{k} \lambda_{i}\left\langle(L+N) u-h-h_{n i}, u-y_{i}\right\rangle \\
& \leqslant\left\langle(L+N) u-h, u-x_{n}\right\rangle-\sum_{i=1}^{k} \lambda_{i}\left\langle h_{n i}, u-y_{i}\right\rangle \\
& \leqslant\left\langle(L+N) u-h, u-x_{n}\right\rangle+k_{n} \sum_{i=1}^{k} \lambda_{i}\left\|u-y_{i}\right\|_{2} .
\end{aligned}
$$

For $n \rightarrow \infty$ we obtain for each $u,\|u\|_{2}<2 C_{1}$ the inequality (11). Now again similarly as in the proof of Theorem 2 we choose $u=x_{0}+\tau v$ and derive the inequality

$$
\left\langle(L+N)\left(x_{0}+\tau v\right)-h, v\right\rangle \geqslant 0
$$

which, with respect to $\left\|x_{0}\right\|<C_{1}$, holds for each $v,\|v\|<C_{1}$ and $\tau \in\langle 0,1\rangle$. For $\tau \rightarrow 0$ we obtain

$$
\left\langle(L+N) x_{0}-h, v\right\rangle \geqslant 0
$$

for every $v \in \operatorname{dom} L,\|v\|<C_{1}$, and then $(L+N) x_{0}-h=0$. Hence for every $x_{0} \in \bigcap_{n=1}^{\infty} W_{n}, x_{0}$ is a solution to (1), (2). Moreover, $\bigcap_{n=1}^{\infty} W_{n}$ is the intersection of a decreasing sequence of convex sets.

Now let x_{1}, x_{2} be two solutions to (1), (2). To prove the convexity of the set of solutions we show that there is a sequence k_{n} such that $x_{i} \in \bigcap_{n=1}^{\infty} W_{n}$ for $i=1,2$. Denote $x_{n i}=P_{n} x_{i}, i=1,2$. Then

$$
\begin{aligned}
-x_{n i}^{\prime \prime}+\alpha^{2} x_{n i}+P_{n} f\left(t, x_{i}(t), x_{i}^{\prime}(t)\right) & =P_{n} h(t) \\
-x_{n i}^{\prime \prime}+\alpha^{2} x_{n i}+P_{n} f\left(t, x_{n i}(t), x_{n i}^{\prime}(t)\right) & =P_{n} h(t)+h_{n i}(t),
\end{aligned}
$$

where

$$
h_{n i}(t)=P_{n} f\left(t, x_{n i}(t), x_{n i}^{\prime}(t)\right)-P_{n} f\left(t, x_{i}(t), x_{i}^{\prime}(t)\right)
$$

and

$$
\left\|h_{n i}(t)\right\| \leqslant\left\|f\left(t, x_{n i}(t), x_{n i}^{\prime}(t)\right)-f\left(t, x_{i}(t), x_{i}^{\prime}(t)\right)\right\|=k_{n i}
$$

for every $t \in\langle-\pi, \pi\rangle$. Obviously $k_{n i} \rightarrow 0$ for $n \rightarrow \infty$. Now if we choose $k_{n}=$ $\max \left(k_{n 1}, k_{n 2}\right)$, then $x_{i} \in \bigcap_{n=1}^{\infty} W_{n}$ for $i=1,2$. This means that the set of solutions is convex.

References

[D] K. Deimling: Ordinary differential equations in Banach spaces. Springer-Verlag, Berlin-Heidelberg-New York, 1977.
[GŠŠ] M. Greguš, M. Švec, V. Šeda: Ordinary differential equations. Alfa, Bratislava, 1985. (In Slovak.)
[G] Chaitan P. Gupta: Boundary value problems for differential equations in Hilbert spaces involving reflection of the argument. JMAA 128 (1987), 375-388.
[M] J. Mawhin: Two point boundary value problems for nonlinear second order differential equations in Hilbert spaces. Tohoku Math. J. 32 (1980), 225-233.
[R] B. Rudolf: Periodic boundary value problem in Hilbert space for differential equation of second order with reflection of the argument. Mathematica Slovaca 42 (1992), 65-84.
[ST] K. Schmitt, R. Thompson: Boundary value problems for infinite systems of sec-ond-order differential equations. J. Differential Equations 18 (1975), 277-295.
[Z] E. Zeidler: Functional analysis and its applications I. Springer-Verlag, 1986.
Author's address: Boris Rudolf, Katedra matematiky, Elektrotechnická fakulta STU, Mlynská dolina, 81219 Bratislava.

