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A PERIODIC BOUNDARY VALUE PROBLEM IN HILBERT SPACE 

BORIS RUDOLF, Bratislava 

(Received December 11, 1992) 

Summary. In the paper some existence results for periodic boundary value problems for 
the ordinary differential equation of the second order in a Hilbert space are given. Under 
some auxiliary assumptions the set of solutions is compact and connected or it is convex. 

Keywords: periodic boundary value problem, Leray-Schauder theorem, convexity of set 
of solutions 

AMS classification: 34G20, 34B15 

This paper deals with the problem 

(1) -x"(t) + a2x(t) + f(t,x(t),x'(t)) = /i(t), 

(2) X(-K) = rr(Ti), x'(-n) = x'fa), 

where h: (—K,K) -» H, / : (-TC,TC) X H X H -> H and H is real Hilbert space with 
a norm || • ||, a 6 R is a positive constant. 

We study the existence, uniqueness and some other properties of the set of solu
tions. 

Similar problems concerning two point boundary value problems are solved in the 
papers by Schmitt and Thompson [ST], Mawhin [M] and Gupta [G]. This paper 
generalizes some results given in [R]. 
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PRELIMINARIES 

We use the following function spaces: 

Li ((-m,TC),H) with the norm ||u||i = / \\u(t)\\2 dt, 
J—n 

L2((-K,it),.ff) with the norm ||u||2 = ( T H O I I 2 * ) , 

C( (-7C,TC) , .ff) with the norm ||u||o = sup ||u(t)ll) 
t€(-K,*> 

C\ ((—it, n) , .ff) with the norm ||u||0i = max {||u||o, ||ti'||o}. 

Throughout the paper we denote these spaces as L\, L2, C, Ci, and assume that 
heLx. 

First we give an abstract formulation of the problem (1), (2). 

Lemma 1 [ST, p. 281]. A periodic boundary value problem (1), (2) is equivalent 
to the operator equation 

x = Tx, 

where 

(3) Tx(t) = £ G(t,s)(h(s) - /(s,*(s),:r'(s))) da9 

and G(t, s) is the Green function associated with the homogeneous problem —x" -f 
a2x = 0, (2). (See [GSS, p. 143], [R, Lemma 1J.) 

When /(t , x, y): (—K, K) X H X H H• H is a completely continuous operator, then 
also the operator T: C1 -> C1 is completely continuous. 

To obtain the existence of a solution to (1), (2) we use the following results. 

Lemma 2 [R, Lemma 8]. Let y(t) € C, y'(t) e L2. Then there are such a, 6 € R 
that 

ll»(*)llo<a||u'(*)||2 + 6||w(*)ya. 

Lemma 3 (Nagumo type condition). Let R > 0 be a constant, let $R: R -¥ R 
be a positive nondecreasing continuous function such that 

s2 

И m 7ÏГ7-T = °°> 
в-łoo Фд(s) 
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and let (p(t) G L\. 
Then there is M > 0 such that, ifx(t) G C1, x"(t) G Iri, ||-z||o < R said for almost 

every t G (~K,TI) 

II^WIKIkWII + ̂ dk'WH), 
then ||x'||o < M. 

Proof. Denote g = ||z'||0 = max||x'(t)|| = \\x'(to)\\- Let u; G .ff, |M| = 
1 represent such a linear functional that (x'(to),u>) = ||x'(to)||. Denote z(t) = 
(z(t),cj). Let r G R, |r| ^ TC, be such that to + r € (-*,*). Then there is f G 
(to> *o + T)> such that 

z(to + r) = z(tQ) + r(z'(to)+ I *"(s)d$). 

We denote 8 = |r| and estimate 

8\\x'(to)\\^2R + 8\ [ ||< (̂s)|| -+ ^^(llx'^)!!) d̂  I -̂  2i? +- rfH^Hi -+ 52*«(g). 
1 Jt0 ' 

Let Q > 0 be such that - ^ y ^ 32/? holds for q > Q. 
Now for g > 0 we have 

Sq^2R + 6\\<p\\1+62^, 

i.e. 
^ 2_R „ „ ff g2 

^ T + IMIi + ^ . 
The right hand side function has its minimum at 8 = &8 

Now if Sfi ^ K, then ™ ^ q. If ^ < TC, then choosing 6 = ^ we obtain 
g ^ § + |Mliandg^2|M|1 . 

That means we have obtained the estimate 

||x'||o = q < max (Q, -^ , 2|Mliì = M. 

D 

Lemma 4 (Krasnosel'skij's theorem) [Z, Theorem 13.4]. Let Tn, T: H C X -> X 
be completely continuous operators for each n ^ no, let fl be a nonempty open and 
bounded set in the Banach space X. Let 

sup |Tx — Tnx\x -> 0 for n -> oo, 
n 
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let the Leray-Schauder degree satisfy 

d(I-T,n,0)jtO, 

and let the equation 
x = Tx = Tnx+ (T(x) - Tn(x)) 

have for every x G fi and every n ^ no at most one solution. 
Then the set of the fixed points ofT is nonempty, compact and connected. 

MAIN RESULTS 

Theorem 1. Let f: (—rc,rc) xHxH->Hbea completely continuous operator 
and . 

(PI) let there be constants r > 0 and a, 6, c, a + ^- < a2, 6 ̂  0, c ^ 0, such that 

(/(*,*,»),*) >-a|Wla-6|NIII»H-c|N 

for every (t,x,y) € (-K,TC) X H X H, \\X\\ > r or \\y\\ > r, 
(P2) for each R > 0 let there exists a positive nondecreasing continuous function $R 

satisfying 

l im -r—-~T = 00 
s-»oo $R(S) 

such that if \\x\\ < R then 

||/(t,*,y)H*i.(||tf||). 

Then there is a solution to the problem (1), (2) for every h(t) G La. 

Proof . We estimate the solution to the equation 

(4) x = \Tx for AG (0,1). 

For x(t) a solution to (4), we obtain 

/ (-x",x)dt -f / a2(x,x)dt 4- / X(f(tyxyx
,)yx) dt = / X(hyx)dty 

J-71 J-K JMUN J-K 

where M = {*, ||s(t)|l ^ r and ||s'(t)|| ^ r} , N = (-K,TI) - M. Then 

H«,ll2 + aaINl2+ / A(/ (* .* ,*V)dt 
JM 

- A / (allx^ + fcllxllllx'll + clHDdi ^H/illxWIo 

JN 
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and 

\\x'\\l + <*2\\x\\l - m - A(a|NH + 6 j f ||x||||x'|| dř + cj^ l |*| |át) 

A f (a||x||2 + 6 | |x | | | | x ' | |+cW)dř ^ll^llilNIo, 
JM 

m 

+ 
JM 

where m = 2K max (/(t, x, y), x). 
II-IK-, ||v | |<r v ; 

If a||x||i + ft/*.. ||x||||x'|| d* + c/*,, ||x|| d* > 0, we estimate 

6| |x | | | |x ' |K(l-£)2 | |x ' | |2 + i ^ - - | | x | | 2 

and obtain 

(1 - (1 - £)2) ||x'||2 + (a 2 - a - j - j r ^ i ) IMP " ^ ' N - ~ 

- 2n\a\r2 - N i l ( ^ I W I - + V-^IMII*) < 0, 

that is 
Ai\\x'\\l + >MMI2 - 4,||.r||3 - A4||x'||2 -As<0, 

where Ai are constants. Supposing e > 0 is sufficiently small, A\, A2 are positive 
constants. 

Then the last inequality implies ||x||2 ^ Ci, \W\\2 ^ C2 and by Lemma 2 we have 

IWIo < \ficx + V2^72 = C. 
In case that a\\x\\\ + 6/*K ||a||||.r'|| d* + c/*TC ||g|| d* < 0, we substitute this term 

by zero and obtain the a priori estimate ||x||o ^ C as well. 
The assumption (P2) and Lemma 3 imply the estimate 

ll-r'Ho ^ M. 

This means we obtain the a priori estimate of the solution of (4) in the space C1. The 
Leray-Schauder theorem implies the existence of a solution to the problem (1), (2). 

• 

Theorem 2. Assume (P2), 
(P3) H is a separable Hilbert space and {e^} is an orthonormal basis in H, 
(P4) the operator f: {—n,n) x H x H -+ H is continuous and bounded, 
(P5) h(t) € L2, 
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(P6) there are constants a, b, a + \b2 < a2, b ̂  0 such that 

b2 

(5) (/(*, x% y) - /(*, t*, v),* - u) £ -a\\x - u\\2 - - | | x - u||||y - v|| 

for every x,y,u,v € H and every t G (—rc,rc). 
Then there is a unique solution to the problem (1), (2). 

Proof . Uniqueness. 

Let a?i, £2 be two solutions to (1), (2). Then 

-x" + x'i + a2(xi - x2) + f(t,xux[) - /(*,x2,X2) = 0 

and . 

IK -^2111 + a2WXl -^2111+ / (f(t>Xi,Xi)-f(t,X2,X2),Xi-X2)dt =0 . 
J—n 

The assumption (P6) implies that 

(1 - (1 - e)a)||.ri - a-iHS + (o- - a - 4^37-a ) INi ~ *2ll2 < 0, 

and then 
INi- 4112 = 0, ||-rx-x2||2 = 0. 

Hence x\(t) = x2(t) for each t £ (—K,K). D 

Existence. Let i?n C LT be a finite dimensional subspace En = [ei, . . . , en], let 
P n : H -> En be an orthogonal projection on En, Fn C L2 a subspace Fn = {#(£) £ 
L2, x(t): (—71,K) -> 25n}, let Q n : L2((-TC,rc),.flr) —> Fn be an orthogonal projection 
on Fn . Further denote xn = Q^x, domL = {x e C1, x" € L2}, let L: domL -> L2 

be an operator 
Lx = —x" + a2x 

and N: C1 -> C an operator 

jVx(*) = /(*,x(*),z'(*)). 

We consider a system of finite dimensional problems 

(6) - x n + a2xn + Pnf(t, xn ,xn) = Pnh(t), 

(2) xn(-rc) = Xn(Tl), x'n(-7t) = x'n(n). 
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Obviously F n / : (—*>•*) x En x En ~i> En is a completely continuous operator. 
The assumption (P6) implies by virtue of u = v = 0 

(7) (Pnf(t,x,y),x) > -a\\x\\2-b\\x\\\\y\\-c\\x\\, 

where c = max ||Pn/(*,0,0)||. 

The preceding theorem implies the existence of a solution to the problem (6), (2). 
Moreover, the a priori estimates from the proof of this theorem hold. This means 
that there are constants independent on n such that 

(8) IMMo i , IKHâ Ca, IWo^C 

for every solution xn to (6), (2). 
A priori estimates (8) and the complete continuity of each of the operators 

Tnx(t) = f G(t,s)Pn(h(s) - f(s1xn(s)1x
f
n(s))) ds 

imply that the set of solutions to each problem (6), (2) is compact both in C1 and L2. 
As we have proved the uniqueness, this last statement is trivial. We use the idea 

of this proof also without uniqueness. 
0 0 

Denote the set of solutions to each problem (6), (2) as Un and denote Vn = (J (7*. 
.fc==n 

Obviously Vn+\ C Vn and each Vn is a bounded set. Let Wn = Vn be a weak closure 
of the set Vn in the space L2- Then Wn is weakly compact and Wn+i C Wn. Hence 
there is 

0 0 

x0 € n wn 
n=l 

and a sequence xn E Vn such that xn —v XQ. 
The equation (6) and the a priori estimates (8) imply that ||a:n||2 ^ c, where c is a 

suitable constant. Now we choose a subsequence, we denote it again by {xn}, such 
that 

Lxn = —x^ + a2xn —v v in L2. 
As the graph of the linear operator L is a closed and convex set, it is also weakly 
closed and 

v = LXQ. 

Thus xn € domL. 

Now we prove the inequality 

(9) <(L -F N)u -h,u-xQ)^0. 
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First let u G domL fl Fm , xn G Fn and n ^ ra. We use the inequality (5) to obtain 

((L + N)x - (L + 1V)y,x - y) = \\x' - y'||i + a2\\x - y||i 

+ / ( / ( t , x ,x ' ) - / ( t , y ,y ' ) , x -y )d t 

^ ( l - ( l - e ) 2 ) | | x ' - y ' | | l 

+ ( a 2 - a " i ( T ^ ^ 

Then 

0 < ((L + iV)u - (L + N)xn>u- xn) = ((L + iV)u - /i,u - xn) 

- ((L + JV)xn - ft, u - x n ) . 

As H = En® E^, u-- xn € Fn, Qn{(L + 1V)xn - /i) G Fn and xn is a solution to 
(6), we have 

((L + N)xn - h, u - xn) = (Qn(L + 7V>n - ft, u - xn) = 0. 

Then 
0 ^ ((L + N)u-h,u-xn), 

and by n —r oo we obtain (9). 
Now we prove that (9) holds for each u G domL. Prom the Fourier series for u(t) 

we obtain (cf. [R, Lemma 4, 5]) 

oo oo oo 

"(t) = I > W e . . u'(t) = £a '£( t )e; and u"(t) = X>V(t)e*, 
t = i t = i i = i 

where a»(t) = (u(t),et) G C1 and a"(t) G L2. Denote 

n 
un(*) = X]ai(t)ei. 

t = i 

Then un(t) -¥ u{t) in H for every t G (-7t,rc). Since 

IK00 - tl»(*)ll = ||P„«(«) " Pnt-WH < IK*) " «(*)II 

and a similar inequality holds also for u'n, we have convergences 

un -r u in C, u'n -> u' in C, un —> u" in L2. 
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The inequality 

((L + N)un-h,un-x0) ^ 0 

for un G Fn and the convergences Lun —r Lu, Nun -+ Nu imply 

((L + 1V)ii-/i,tx-x0) ^ 0 

for every u G dom L. 

Let now v G dom L, r ^ 0 and u = x0 + TV. Then 

((L + N)(x0 + TV) -h,v)^0 

and for r —•> 0 

((L + N)x0 - h,v) > 0. 
The density of dom L in L2 implies 

(L + 1V):zo - ft = 0. 

Theorem 3. Let f be a completely continuous operator. Suppose the assump
tions (PI), (P2) and 

(P6;) there are constants a, b, a + | 6 2 = a2, 6 ^ 0 such that (5) holds for every 
x,y,u,v G H and every t G (—TC, n) are fulfilled. 

Then the set of solutions to the problem (1), (2) is nonempty, compact and con
nected. 

Proof . We prove that the assumptions of Lemma 4 are fulfilled. The operator 
T is defined by (3). 

We choose an open bounded set ft = {x(t) G C1, ||T(£)IIOI < C}, where C is the 
estimate of the norm of the solution of (4). The existence of such an estimate follows 
from Theorem 1. 

The a priori estimate ||x(£)||oi < C for a solution x(t) of the equation (4) implies 
that 

d(I - XT, ft, 0) = const 7- 0 for every A G (0,1). 

Denote fn(t,x,y) = / / n / ( ^ #>:?/)> where 0 < /in < 1 and fjtn -» 1 for n -+ 00. The 
sequence of operators Tn is given by 

Tnx(t) = £ G(t,s)(h(s) - fn(s,x(s),x'(s))) ds. 
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The complete continuity of T implies that Tn: C1 -+ C1 also is a completely contin
uous operator for every n € N. Now we estimate 

sup ||rna?(t) - Tx(t)\\ = sup / G(M)U ~ fin)f(s)x1x')ds < 2K(1 - »n)G • F, 

sup ||T»s'(i) - IV (t)|| = sup II r 9G^;5)(1 - ix)f(s,x,x') ds ^ 2TC(1 - //n)Gi • F, 

where F, G, Gi are upper bounds of / , Green's function and its derivative. 
The assumption (P6') implies the inequality 

{fn(t,x,y) - fn(t,u,v),x-u) > -fj,na\\x - u\\2 - finb\\x - u\\ \\y - v||, 

where \xna + nn\b
2 < a2. 

Hence (P6) holds for fn. In a similar way as in the proof of the preceding theorem 
the uniqueness of the solution to the problem 

-x"(i) +a2x(t) +fn{t,x(t),x'(t)) = h(t)+g(t), (2), 

is proved for every g,h€ L\. 

Consequently, the operator equation 

x = Tnx + (Tx - Tnx) 

has a unique solution for every x € fl. D 
Now Lemma 4 implies the statement of our theorem. 

Theorem 4. Suppose the assumptions (P1)-(P5), (P6') hold. 
Then the set of solutions to the problem (1), (2) is nonempty and convex. 

Proof . The proof is similar to that of Theorem 2. We consider the finite 
dimensional problem 

(10) - < + a2xn + Pnf(t,xn,x'n) = Pnh + hn, 

(2) xn(-n) = *n00. < ( - * ) = <W> 

where ||hn(-OII ^ n *or e a c ^ t e (~~K>K)> hn € Fn . 
The assumption (P6) implies the inequality (7). Using Theorem 3 on the subspace 

F n we obtain that the set of solutions to each boundary value problem (10), (2) is 
nonempty, compact and connected. Moreover, the proof of Theorem 1 implies the a 
priori estimates (8) for each solution xn to the problem (10), (2). 
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Denote by Un the set of solutions to (10), (2), where hn satisfies ||ftn||2 ^ *n, 
oo 

where kn is a given sequence with kn -> 0 for n -> oo. Denote Vn = (J Uk and let 
fe=n 

Wn = conv yn be the weak closure of the convex hull of the set Vn in L2. Then Vn, 
Wn are bounded sets, Wn is weakly compact, VVn+i C Wn and there is 

x0ef]Wn 
n = l 

k 
and a subsequence xn 6 convFn such that xn -*• xo in L2. Moreover, xn = ^ A»j/i, 

t=i 
A; 

where y* G Vni \i G (0,1), ]T) A» = 1. The equation (10) implies that there is c such 
t= i 

that \\yn\\ < c, hence also \\x^\\ < c. Prom this estimate we obtain similarly as in the 

proof of Theorem 2 that x0 £ domL. We again prove the inequality 

(11) ((L + N)u-h,u-x0) ^0. 

By the same method as in the proof of Theorem 2 we obtain that 

0 *S ((L + N)u - h - hni,u- Vi). 

Then 

0 ^ ^ A t ( ( L + iY)w-/i-/in ť,íi-í/ i> 
t = i 

k 

^ ((L + N)u-h,u-xn)-Y^\i(Ki,u-yi) 
. = 1 

k 

^ ((L + N)u-h,u- xn) + knY A»||w - y{\\2. 
i = i 

For n -> oo we obtain for each u, ||w||2 < 2Ci the inequality (11). Now again similarly 
as in the proof of Theorem 2 we choose u = XQ + rv and derive the inequality 

((L + N)(xo + rv)-h,v)^0 

which, with respect to \\x0\\ < Ci, holds for each v, ||v|| < C\ and r G (0,1). For 
r -» 0 we obtain 

((L + N)x0-hJv)>0 
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for every v € domL, ||t;|| < Ci, and then (L + N)xo — h = 0. Hence for every 
oo oo 

XQ € f) Wn> xo is a solution to (1), (2). Moreover, f| Wn is the intersection of a 
n=l n= l 

decreasing sequence of convex sets. 
Now let #i, X2 be two solutions to (1), (2). To prove the convexity of the set of 

oo 

solutions we show that there is a sequence kn such that x» G f| Wn for i = 1,2. 
n=l 

Denote xni = -Pn-̂ i, i = 1,2. Then 

-a& + a2xn; + Pn/(t,ar«(*),-r{(t)) = -PnM*), 

- - C + a2Xn» + Pnf{t,Xni{t)yXni(t)) = Pnh(*) + ftn<(t), 

where 

аnd 

M*) = -'«/(*,««.(*).<*(*)) -P»/(-,-я(*),«.(-)). 

||M*)|| < ||/(*,*»<W,*U*)) ~ /(M.(*),*;(t))|| = fcm 

for every t € (—it,rc). Obviously kni -* 0 for n -> oo. Now if we choose fcn = 
oo 

max(feni, &n2), then x< 6 f| Wn for i = 1,2. This means that the set of solutions is 
n=l 

convex. • 
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