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Summary. A new criterion of asymptotic periodicity of Markov operators on L1, established 
in [3], is extented to the class of Markov operators on signed measures. 
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Let I be a <r-algebra of subsets of a set X. Let Ms be the Banach space of signed 
measures on I with the norm given by the total variations of measures. Let M c M r 

be a band (i.e. a Banach lattice such that yeM, v ^ ^ = > v e M). By the weak 
topology on M we understand the topology given by the duality <MI? M*>. Let D 
be the subset of nonnegative normalized elements of M. A linear operator P:M -> M 
is called a Markov operator if 

P(D) c D. 

Definition 1. We say that P is quasi-constrictive if there exist a weakly compact 
set F c M and a positive number x < 1 such that 

(1) lim sup d(P"n, F)^x for fie D 
fl~>00 

where d(v9 F) = inf {||v - Q\\: Q e F}. 
If P is quasi-constrictive for x = 0 then it is called constrictive. 

Remark. According to [4], a Markov operator P on I}(n) « MM = {veM-: 
v < p} (where \i is a tr-finite measure on I) is quasi-constrictive if there exist 
a set C e l(ft(C) <oo) and constants x < 1, 5 > 0 such that 

(2) lim sup Jfln(X-C) P"fdn^x 

for a l l / e D and J5 e J, /*(£) ^ 5. 
It is easy to observe that a Markov operator with this property is quasi-constrictive 

in the sense of our Definition 1. (The converse implication follows from the basic 
J) A substantial part of this research was done during the leave of the first author from 

Komensky University in Bratislava. 
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properties of weakly compact sets in l}{fi)) We show that P satisfies (1) with the 
same x and F = {gel}: 0 ^ g g g0}9 g0 = S'1 . lc. For any fe D and n e N 
put gn = P7" A 0O, 

B/I = { x G C : P V W > 5 " 1 } . 

Obviously 

Ai(x 6 C: P"f(x)> </*(*)} = A*(H.) <*, 

\\Pnf-9n\\ = Un(P
nf-*~1)^+h-cPnf<ln for n e N . 

Therefore (2) implies (l). 

Definition 2. We say that fie M is periodic if there exists a natural number n such 
that Pnfi = /*. 

We say that a periodic measure fie D is minimal, if for any periodic measure 
v <̂  fi there exists a scalar A such that v = Xfi. 

Theorem 1. Let P be a quasi-constrictive Markov operator on a band M. 
i) There exist a finite set F0 of pairwise orthogonal periodic elements of D9 

Po = {vi> •••> vr} ar1d the corresponding continuous linear functional {Xl9 ..., kr} 
on M such that 

(3) lim \\Pn{fi - J] ^(AI) V.(I )|| = 0 for any fi e M 
n-*ao i=l 

and 

(4) P(vt) = va(0 for i = 1, . . . , r , 

where a is a permutation of the integers 1,..., r. 
ii) The functional A; are nonnegative. Morevoer, 

£ A.(v) = 1 for veD 
i = l 

and 

(5) 1^)1 ^ H 
holds for fieM. 

iii) The measures vi9 i = 1,..., r are minimal. 
iv) The sets {vi9..., vr} and {kl9..., Ar} satisfying (3) and (4) are unique. 
In order to be able to utilize the result of [4], where part i) was proved for the 

case that M = Mv = {fi: fi < v} for some v e Ml9 we present some auxiliary results. 

Lemma 1. Let fie D. Let {ct} f=0 be a sequence of positive real numers such that 
oo 

Ic.-l. 
i = 0 
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Put 

(6) fi = ficiP
i(fi). 

i = 0 

Then Mfi = {v: v < fi} is the smallest P-invariant band containing fi. 

Proof. Mfi is isomorphic to the Banach lattice l}(fi), hence it is a band. 
We show that it is P-invariant. 
We have 

Pfi = tcipi + 1^<fi' 
i = 0 

Moreover, v e Mfi is equivalent to 

v = sup {vAn.fi}. 
n 

We show that this implies Pv e Mfi. P is a Markov operator, hence P(v A n . fi) g 
^ Pv A n. Pfi for any n. 

Therefore, 

0 ^ Pv A n . P/Z - P(v A n . /Z) g Pv - P(v A n . fi) = 

= P(v — v A n . fi) 

and 

[[Pv - Pv A n . P/Zfl g [[P(v - v A n . /Z)[) = [)v - v A n . //[[ . 

Using the Lebesgue bounded convergence theorem we get 

Pv = sup {Pv A n . Pfi] , 
n 

hence 

Pv < Pfi < fi. 

Lemma 2. Two minimal periodic measures are either identical or orthogonal. 

Proof. Let fi, v e D be minimal and let n be their common period. We show that 
/i A vis periodic with period n. We have 

Pn(fi A V) ^ PnfX A PnV = fi A V , flP"(/| A V)fl = [[J* A vfl , 

hence 

Pn(fi A v) = n A v. 
Moreover, /* A v < \i and // A v < v. Thus there exist real numbers ki9 k2 such that 

fi A v = .At/i = A2v . 
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If fi A v # 0 then kx * 0, k2 * 0 and v = (k^k^. But) 

Nl - M - 1 . 
hence k2 = Ax and \x = v. 

Lemma 3. Lef F be a weakly compact subset of M and x < 1. 77ien f/ie neigh­
bourhood U(F, x) = {/x: d(/i, F) < x} does nof contain the infinite number of 
pairwise orthogonal densities. 

Proof. There exists veD such that Q < v for any QGF (cf. [2], Th. IV,9.2.), 
Hence there exists S > 0 such that v(B) < S implies Q(B) < 1 — x for any g e .£*, 
Let N > 5"1 and let C7(F, x) contain N pairwise orthogonal densities {xi9..., T^} 
mthsupportsBl9 ...,BN.LetQl9 ...,QNEFbosuchtheLtd(Qi9Ti) < xfori = 1, ...,iV. 
Then we have 

£vCfl,)-v(ui».)_;i. 
i = l i = l 

Thus there exists fce {1, ...9N} such that v(Bk) ^ N"*1. On the other hand, \rk\ =* 
= xk(Bk) ^ x + &(**) < 1. 

But this contradicts the assumption xk e D. 

Proof of Theorem 1. First we give the proof for the case that M = Mv = {/z < v}. 
Part 

i) of the theorem was proved in [3] and [4]. 
ii) In [4] it was shown that the functionals k( can be expressed in the form 

Uf) = hHx)/(*)*<*) 
for some nonnegative bounded functions ki9 which implies positivity of Af. From (3) 
and (4) we get ^(v,) = 1 and kj(vt) = 0 for i 4- j9 hence |Af|| ^ 1. 

Let /* e D. We have 

1 = lim \\Pnfi\\ = lim | £ kt(fi) va„(i)|| = £ kt(ii). 
n-*oo n-+oo i = l i = l 

Therefore 0 S ^,(10 g 1 for /*e D, which obviously implies that \k(\ ^ 1. 
iii) Let fie D be periodic and let fi <£ v,: for some i e {1,. . . , r}. For; #= i we have 

0 ^ kj(fi) ^ lim fc A/vj) = 0 . 
k-*oo 

From (3) we get that the norms of differences 

f F^/j) — ki([i) va»(0[] converge to zero for n -> oo . 

But they form a periodic function of n9 hence they are equal to zero for all n. There­
fore v = kt(v) V,-. 
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iv) The uniqueness of the set {vl5 ..., vr} follows from their minimality via 
Lemma 2. 

Let {X\,..., k)} be another set of functionals that satisfy (3). Then for any fie M 

11 W M O - M00 Mol = Z\Ur) - *M -o . 
*=-l i = l i = l 

Therefore 

*i00 = ^'(A1) for I = 1, . . . , r. 

Now we relinquish the assumption M = Mv for some v 6 M. 

We say that v e D is admissible if Pv <.? v. Let us denote the set of all admissible 
densities by Da. Using the same arguments as in Lemma 1 we get that for v e Da 

Mv = {fi: fi < v} is a P-invariant band . 

We show that the restriction Pv of P to Mv is quasiconstrictive. For any fieM 
we can write fi = fiv + pi, where fiv < v and fi\ 1 v. 

The mapping iTv: fi -> \iv is linear and continuous, because of 

M = N + 1/41 = H-
Therefore, the image IIV(U(F9 x)) of the set U(F, x) from Lemma 3 is contained in 
the neighbourhood U(FIV(F), x) of the weak compact T1V(F). Moreover, for any 
fie M and QeF we have 

|A« - Q\ = |/* - 0v| + |e l | , hence (|j£ - I7V(^)[| ^ ||/x - Q\\ . 

Therefore 

lim sup d(P*ii, nv(F)) ^ lim sup d(Pnfi, F) < x for neMvnD. 
n n 

Hence Pv is a quasi-constrictive Markov operator on Mv. Using the validity of 
Theorem 1 for Pv on Mv we conclude that there exists a .finite set of pairwise ortho­
gonal measures in D n Mv that are minimal and periodic with respect to Pv, hence 
periodic with respect to P. 

The set D0 of minimal periodic elements of D is nonempty. The fact that P is 
quasi-constrictive yields that D0 c U(F, x). According to Lemma 2 and Lemma 3 
can write D0 -= {v1?..., vr}. This set of measures is P-invariant, hence there exists 
a permutation a such that (4) holds on D0. 

We say that v e Da is complete if the band Mv contains the set D0. Let us denote 
by Dc the set of all complete elements of D. It is obvious that v0 = (v + v1 + ... 

••• + vr)/(r + ! ) e Dc for ve Da. 
Combining this fact with Lemma 1 we conclude that for every fieM there exists. 

ve Dc such that fi e Mv. 
In other words 

M = U { M V : V G D C } . 
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Now we define continuous functional kl9. .,, Ar on M by first defining them on every 
band M v for v e Dc and then showing that they coincide on intersections MVl n MV2 

for vl9v2eDc. . . . .••. 
For every v e Dc we c&n use the validity of Theorem 1 on Mx that ensures the 

existence of continuous linear functions kl9..., kr on M v such that (3) and (5) hold 
for ft e M v. 

Let vl9 v2 e Dc. Let k[9 i = 1,..., r, j = 1, 2 be the corresponding families of 
linear functionals defined on the bands MVJ. Let /* e MV l n MV2. Since (3) holds in MV1 

as well as in M v, we have Ł V 2 

0 = lim \\P"f - £ XlQi) va„(í)|| + lim fP-ii - £ Af0) V ( i ) | = 
n-+oo 1=1 n-+oo i—i 

= lim Í BAÍO) v ^ 0 - A?(̂ ) van(i)| = f l/l1^) - A?(»| • 
* 0 0 1 = 1 

Hence Aj(^) = A?(̂ ) for i = 1 , . . . , r. 
Therefore, the real functions kl9 ...9kr are well defined on M. 
Their linearity follows from the fact that \x{ e Mv. for i = 1, 2 implies fil9 ji2E Mv 

for v = (vx + v2)/2. Finally, (5) holds on M because it holds on Mv, v e Dc. Therefore 
kl9 ...9kr are continuous functionals on M. The rest of the proof obviously follows 
from the fact that Theorem 1 is satisfied on Mv for v e Dc. 
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Súhrn 

ASYMPTOTICKA PERЮDIČNOSŤ MARKOVOVÝCH OPERÁTOROV 
NA ZOVŠEOBECNENÝCH MIERACH 

JOZEF KOMORNÍK, E. G. F. THOMAS 

Člånok vychádza z niektor ch nových výsledkov, udávąjúcich postačujúce podmienky asym-
ptotickej preiođičnosti Maгkovových opeгátorov na pгiestoroch L1 a zovSeobecňuje ich na tгiedu 
Markovových operátorov na priestoroch znamienkových mieг. 
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