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Summary. A new criterion of asymptotic periodicity of Markov operators on L1, established
in [3], is extented to the class of Markov operators on signed measures.
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Let X be a g-algebra of subsets of a set X. Let M; be the Banach space of signed
measures on X with the norm given by the total variations of measures. Let M = M,
be a band (i.e. a Banach lattice such that ue M, v < u=ve M). By the weak
topology on M we understand the topology given by the duality (Mj, My). Let D
be the subset of nonnegative normalized elements of M. A linear operator P: M — M
is called a Markov operator if

P(D)< D.

Definition 1. We say that P is quasi-constrictive if there exist a weakly compact
set F < M and a positive number % < 1 such that

(1) lim sup d(P"u, F) £ » for peD
where d(v, F) = inf {|v — ¢|: ¢ € F}.
If P is quasi-constrictive for » = 0 then it is called constrictive.
Remark. According to [4], a Markov operator P on L'(u) # M, = {ve M;:

v <€ pu} (where p is a o-finite measure on X) is quasi-constrictive if there exist
a set C € Z(u(C) (o) and constants x < 1, § > 0 such that

2 lim sup fBacx-c) Pfdp < %
for all fe D and Be %, u(B) < 6.

It is easy to observe that a Markov operator with this property is quasi-constrictive
in the sense of our Definition 1. (The converse implication follows from the basic

1) A substantial part of this research was done during the leave of the first author from.
Komensky University in Bratislava.
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properties of weakly compact sets in L'(u).) We show that P satisfies (1) with the
same x and F = {geL': 0 < g < go}, go=6""'.1c. For any fe D and neN
put g, = P'f A go,

B,={xeC: P"f(x) > 6"'}.
Obviously

u(xe C: P"f(x)) go(x)} = u(B,) < 6,

|P"f = gul| = Jo, (Pf — 6™ ) du + [x—c P'fdu for neN.
Therefore (2) implies (1).

Definition 2. We say that y € M is periodic if there exists a natural number n such
that P’y = u.

We say that a periodic measure pe€ D is minimal, if for any periodic measure
v < p there exists a scalar 4 such that v = Apu.

Theorem 1. Let P be a quasi-constrictive Markov operator on a band M.

i) There exist a finite set F, of pairwise orthogonal periodic elements of D,
Fo = {vy,...,v,} and the corresponding continuous linear functionals {4,, ..., 4,}
on M such that

(3) lim |[P"(n —_lei(u) Vei)| =0 forany peM
and
(4) P(v,-) = va(i) fOI‘ i = 1, cony r s

where o is a permutation of the integers 1, ..., r.
ii) The functionals 4, are nonnegative. Morevoer,

M\

A(v)=1 for veD

i=1

and
(5) JAw)] = [ul
holds for ue M.
ili) The measures v;, i = 1, ..., r are minimal.
iv) The sets {v, ..., v,} and {4, ..., 4} satisfying (3) and (4) are unique.
In order to be able to utilize the result of [4], where part i) was proved for the
case that M = M, = {u: u < v} for some v € My, we present some auxiliary results.

¢ o]

Lemma 1. Let pu€ D. Let {¢;} 7, be a sequence of positive real numers such that

s

Ci=1‘
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Put .

’ @
Q) A=Yl ().
Then M, = {v: v < ji} is the smallest P-invariant band containing p.

Proof. M is isomorphic to the Banach lattice L!(#@), hence it is a band.
We show that it is P-invariant.
We have

p

A

18

CiPi+1ﬂ < ﬁ’
0o

Moreover, v € M is equivalent to
v=sup{v An.ji}.
" n
We show that this implies Pv e M. P is a Markov operator, hence P(v A n. i) <

< Pv A n. Pj for any n.
Therefore,

OLSPvAn.Pi—PyAn.B)SPv—PhAn.jf)=
=Pv—vAn.fj

and

[Py —PvAan.Pa| < |Pv—van.@]=[v-van.ji.
Using the Lebesgue bounded convergence theorem we get

Pv =sup{Pv A n.Pji},

hence

Pv<LPi<p.
Lemma 2. Two minimal periodic measures are either identical or orthogonal.

Proof. Let u, ve D be minimal and let n be their common period. We show that
4 A v is periodic with period n. We have '
Puav)SPuanPv=pnav, [Purv)]=|pnav], '
hence

Plunv)y=pnav.
Moreover, u A v € pand p A v <€ v. Thus there exist real numbers ,, 1, such that
WAV =Au=Av.
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Ifu A v+ 0then iy % 0,1, + 0and v = (4,/4,u. But)

Jul = I = 1.

hence' A, = A, and u = v.

Lemma 3. Let F be a weakly compact subset of M and x < 1. Then the neigh.
bourhood U(F, x) = {u:d(u, F) < x} does not contain the infinite number of
pairwise orthogonal densities.

Proof. There exists ve D such that ¢ < v for any g€ F (cf. [2], Th. IV,9.2)),
Hence there exists 6 > 0 such that v(B) < & implies ¢(B) < 1 — x for any g€ F,
Let N > ™' and let U(F, x) contain N pairwise orthogonal densities {;, ..., Ty}
with supports By, ..., By. Letoy, ..., gy € F be such thatd(g;, 7;) < xfori = 1,..., N,
Then we have

.g::lv(B‘) = v(:QxB’) <1.

Thus there exists k € {1, ..., N} such that v(B,) < N~'. On the other hand, |5, =
= Tk(Bk) é ® + Qk(Bk) < 1.
But this contradicts the assumption 7, € D.

Proof of Theorem 1. First we give the proof for the case that M = M, = {u < v},
Part

i) of the theorem was proved in [3] and [4].

ii) In [4] it was shown that the functionals 4; can be expressed in the form

A(f) = [x ki(x) f(x) dv(x)
for some nonnegative bounded functions k;, which implies positivity of A;. From (3)

and (4) we get A,(v,) = 1 and A,(v;) = 0 for i # j, hence ﬂl | = 1.
Let ue D. We have

1 = tim [Pl = lim | 3 2) v = 3, 20

Therefore 0 < A,(u) < 1 for pe D, which obviously implies that |1, < 1.
iii) Let u € D be periodic and let 4 < v, for some i€ {1, ..., r}. For j # i we have

k= o0
From (3) we get that the norms of differences

[P*(1) = Ai() Vangiy]] converge to zero for n — oo .

But they form a periodic function of n, hence they are equal to zero for all n. There-
fore v = A,(v) v;.
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iv) The uniqueness of the 'set {v,,..., v} follows from their minimality via
Lemma 2. '
Let {4}, ..., 4/} be another set of functionals that satisfy (3). Then for any pe M

|3, 2400 Yoo = 3,216) veroll = 3 40) = (0] = .

Therefore
M) =Ap) for i=1,..,r

Now we relinquish the assumption M = M, for some v € M.

We say that v e D is admissible if Pv < v. Let us denote the set of all admissible
densities by D,. Using the same arguments as in Lemma 1 we get that for ve D,

M, = {u: p < v} isa P-invariant band .

We show that the restrlctlon P, of P to M, is quasiconstrictive. For any ue M
we can write u = u, + ps, where u, < vand p! L v.
The mapping IT,: u — u, is linear and continuous, because of

[l =l + ] 2 || -

Therefore, the image IT,(U(F, x)) of the set U(F, x) from Lemma 3 is contained in
the neighbourhood U(IT,(F), x) of the weak compact IT,(F). Moreover, for any
peM and g € F we have

le —el = |n = | + |ei|, hence [u—11()] < |u—e].
Therefore ‘
lim sup d(P"u, IT,(F)) < lim sup d(P"u, F) < % for peM,nD.

Hence P, is a quasi-constrictive Markov operator on M,. Using the validity of
Theorem 1 for P, on M, we conclude that there exists a finite set of pairwise ortho-
gonal measures in D n M, that are minimal and periodic with respect to P,, hence
periodic with respect to P.

The set D, of minimal periodic elements of D is nonempty. The fact that P is.
quasi-constrictive yields that D,  U(F, x). According to Lemma 2 and Lemma 3.
can write Dy = {v,, ..., v,}. This set of measures is P-invariant, hence there exists
a permutation o such that (4) holds on D,

We say that v € D, is complete if the band M, contains the set D,. Let us denote:
by D, the set of all complete elements of D. It is obvious that vy = (v + v; + .

.+ v,)/(r + 1)€ D, for ve D,.

Combmmg this fact with Lemma 1 we conclude that for every u € M there exists.
v e D¢ such that ue M,.

In other words

M= {M,:veDs.
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Now we define continuous functionals 4,, ..., 4, on M by first defining them on every
band M, for v€ D¢ and then showing that they coincide on intersections M, n M,,
for v, v, € D¢. : AR

For every ve D, we can use the validity of Theorem 1 on M, that ensures the
existence of continuous linear functions.4,, ..., 4, on M, such that (3) and (5) hold
for ue M,.

Let vi,v,e€Dc. Let A, i=1,...,r, j =1,2 be the corresponding families of
linear functionals defined on the bands M, . Let u € M,, n M,,. Since (3) holds in M,,.
as well as in M, we have

0 = lim [P = 3 21(6) v + lim [P = 3 50) o] 2

>,.1»IT.Z [468) vercy = 2 (W) Voo | = 146 = 4]
Hence Aj(n) = Aj(p) fori=1,...,r

Therefore, the real functions A, ..., 4, are well defined on M.

Their linearity follows from the fact that u; € M,, for i = 1, 2 implies puy, p, € M,
forv = (v; + v,)[2. Finally, (5) holds on M because it holds on M,, v € D,. Therefore
A1, ..., 4, are continuous functionals on M. The rest of the proof obviously follows
from the fact that Theorem 1 is satisfied on M, for v € D.
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Sdhrn
ASYMPTOTICKA PERIODICNOST MARKOVOVYCH OPERATOROV
NA ZOVSEOBECNENYCH MIERACH
Jozer KoMoORrNIik, E. G. F. THOMAS
Clanok vychédza z niektorych novych vysledkov, udavajucich postalujice podmienky asym-

ptotickej preiodi&nosti Markovovy"ch operatorov na priestoroch L! a zovieobeciiuje ich na triedu
Markovovych operitorov na priestoroch znamienkovych mier.
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