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ON THE STRUCTURE OF FIXED POINT SETS
OF SOME COMPACT MAPS IN THE FRECHET SPACE

ZBYNEK KUBACEK, Bratislava

(Received January 17, 1992)

Summary. The aim of this note is

1. to show that some results (concerning the structure of the solution set of equations
(18) and (21)) obtained by Czarnowski and Pruszko in (6] can be proved in a rather different
way making use of a simple generalization of a theorem proved by Vidossich in [8]; and

2. to use a slight modification of the “main theorem” of Aronszajn from [1] applying
methods analogous to the above mentioned idea of Vidossich to prove the fact that the
solution set of the equation (24), (25) (studied in the paper [7]) is a compact R;.

Keywords: compact Rs-set, compact map
AMS classification: 46N20

1. PRELIMINARIES

A non-empty subset F of a metric space X is said to be a compact Rs-set in the
space X if F' is homeomorphic to the intersection of a decreasing sequence of compact
absolute retracts (cf. [5, Section 3]).

(1.1) Lemma ([1, Théoréme B], [5, Lemma 5]). Let X be a metric space, {An}
a sequence of compact absolute retracts in X, F a non-empty subset of X such that

(i) VneN: F C A,;

(ii) for each neighbourhood V of F in X there exists an ng € N such that A, CV
for each n > ny.

Then F is a compact R;-set

(1.2) Theorem (cf. [1, Section 3]). Let M be a non-empty closed set in a Fréchet
space (X,d), T: M — X a compact map (i.e. T is continuous and T(M) is a relatively
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compact set); denote by S the map I — T, where I is the identity map on X. Let
there exist a sequence {Un} of closed convex sets in X fulfilling
(iii) YVn €N: 0 € Up;
(iv) "l_i_.nolo diamU, =0
and a sequence {T,} of mapsT,,: M — X fulfilling
(vV)VneNVzeM: Tz~ T,z € Uy,
(vi) the map S, := I — T, is a homeomorphism of the set S;;!(Uy,) onto Uy,.
Then the set F of all fixed points of the map T is a compact Rjs-set.

Proof. 1. First we shall prove the non-emptiness of the set F. The conditions
(vi) and (iii) imply
VneN3Iz, e M: Sz, =0.

By (iii) and (v) we have

~ d(Sz,,0) = d(Szp — Spzn,0) = d(Thzn — Tz,,0) =d(0, Tz, — Trzy)
S di&mUn,

so by (iv)
lim Sz, = lim (z, — Tz,) = 0.
n—+00 n-+00

As T is a compact map and the set M is closed, we must have Sy = 0 for some
y € M, i.e. the set F is non-empty; by the same argument F is a compact set.
2. Now we shall prove that the sequence {A,} defined by

) An = 571 (@50 (F))

and the set F fulfil the conditions (i) and (ii). The assumption (v) implies the
inclusion

) Vn €N: S2(F) C Un,

go by (vi) the set S,(F) is compact as a continuous image of the compact set F.
According to the Mazur theorem the set €6.5,(F) is convex and compact. As the
set U, is convex and closed, (2) implies :

(3 Vn €N: W@ Sy(F) C Un.

By (vi) and (1) the set A, is a homeomorphic image of a compact conv;'ex set in a
locallyconvex linear space, therefore A, is a compact absolute retract (see:[4, Chap-
ter 4, Theorem 2.1]). As the condition (i) is evidently fulfilled, it suffices to verify
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(ii). That will be done by a contradiction; let there exist an open neighbourhood V'
of the set F' and a sequence {n;} C N such that

(4) VkeN3Iz, € 4, \V.
Then

d(Sz,0) = d(Szi — Snuzk, —Sn,Tk) = d(Tn,z — T2k, —Sn, zt)
=d(Tz - TnoZk, SnuZk) € d(Tzy — Tn,zk,0) + d(Sn, &, 0)
< 2diam U,

(the inequality d(S,, zk,0) < diamU,, is a consequence of (4), (1), (3) and (iii)), so
due to (iv)

(5) kll.r{.lo Sz = 0.

Owing to (5) and to the fact that T is a compact map and the set M is closed, there
exist a y € F and a subsequence {z, } of {zi} such that '

(6) Jim_ 21, = y.
However, (6), (4) and the fact that V is an open set imply y ¢ V, which contradicts
the inclusion y € F C V. This completes the proof. , a

(1.3) Remarks. 1. From the preceding proof it is easy to see that the assertion
of Theorem (1.2) remains in force if the assumption “T'(M) is a relatively compact
set” is replaced by

(vii) every sequence {z,} such that nl_i‘ngo Sz, = 0 contains a convergent subse-
quence (Palais-Smale condition). '

2. In the case that only the proof of non-emptiness, compactness and connected-
ness of F is needed, it suffices to require that {Uy,} is a sequence of closed connected
sets and (iii), (iv), (v), (vi) and (vii) are fulfilled.

3. The “main theorem” in Aronszajn [1] was modified several times (see, e.g., [6,
Lemma (3.1)] or [9, Theorem 2.4]), but all modifications contain the requirement
that each “approximating” map S, is a homeomorphism of S;!(U,) onto Uy, where
U, is a neighbourhood of 0. A “main theorem” of this form cannot be used, e.g., to
prove Theorem (2.1) of this paper and therefore in our modification the condition
“Up is a neighbourhood of 0” is replaced by “Uy, closed and convex” and conditions
(iil) and (iv).
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(1.4) Corollary. Let X, d, T, M, I have the same meaning as in (1.1). If there
exists a sequence {Tp,} of continuous maps T,,: M — X fulfilling

(viii) I — T,,, is a homeomorphism of M onto X for each m € N;

(ix) {Tm} converges uniformly to T (i.e. ml}_r‘rgo sup{d(Tmz,Tz); z € M} = 0),
then the set F of all fixed points of T is a compact Rs-set. '

Proof. As X is a Fréchet space, there exists a sequence {Uyb} of closed convex
neighbourhoods of the point 0 € X such that U, C B(0,1/n) (where B(0, €) denotes
the closed ball of centre 0 and radius €), consequently diamU, < 2/n. As Uy, is a
neighbourhood of the point 0,

VneN3Ie, >0: B(0,6,) CUn
and nlim €n = 0. In view of (ix) there exists a subsequence {7, } such that
—00
d(Thm.z,Tz) < €n, z € M,

and 8o Tz — Ty z € Un, 2 € M. The sequences {Up}, {Tim. } fulfil (iii), (iv), (v),
(vi), thus our assertion is a consequence of Theorem (1.2). O

Remark. The statement of the preceding Corollary is known (it can be derived,
e.g., from [9, Theorem 2.4]); its simple proof based on Theorem (1.2) is given here
only for the sake of completness, as it is an essential part of the proof of Theorem
(2.1).

(1.5) Let K be an unbounded convex subset of a normed space (Z, |.|); let (Y, ]|.])
be a Banach space. Let X be the space of all continuous locally bounded maps
f: K = Y equipped with the topology of locally uniform convergence (i.e. X is a
Fréchet space whose topology is given by the metric

‘__ c- 1 pn(f - 9)
@™ W9 =2 3 T4 pa(F - )

where

pa(f) = sup{|If(t)ll; t € K, |t| < n}).

Theorem (cf. [8, Theorem 1.1]). Let T': X — X be a continuous map, S = I -T
(where I denotes the identity map on X). Suppose

(x)3to € KAy eYVz € X: Tz(to) = yo;

(xi) T'(X) is a set of locally equiuniformly continuous maps, i.e.

Ve>0Vn>036>0Vze XVt €K, :
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[th —ta] < 6 = ||Tz(t1) - Tz(ta)l| <,

where K, := B(to,€) N K and B(lo,¢) is the closed ball of center o and radius €;
(xii) Ve > 0V 2,y € X: z|K, = y|K, => (Tz)|K. = (Ty)|K..
Then there exists a sequence {Sn} of homeomorphisms of X onto X such that

(8) nlingo sup{d(S,z,Sz);z € X} = 0.

Proof. The line of the proof is the same as in Vidossich (8]. Let n € N; for
tEK) It—t0| 2 1/7" put

an(t) =t — —— (t = to) (=(1 1)t+ 1 )

- t
njt — 1| njt — to| nlt—to] °

due to the convexity of K, we have a,(t) € K. Further
1 1
9) lan(t) —to] = |t — to| — o lan(t) = t| = o

The equality

Yo, if |t-—to l/ﬂ
1/n

<
. ! , T¢€X,
(Tz)(an(?)), if |t —to] >

(10) Taz(t) = {

defines a continuous map Ty, : X — X. Denote S, := I — T,,, where I is the identity
map on X.
To prove the injectivity of S, suppose

(11) z(t) - Toz(t) = y(t) - Tay(t) tEK,

and denote C; := {t € K; (i — 1)/n < [t — to] < i/n} (i € N). The equalities (11)
and
Taz(t) = Toy(t) =yo for t€Cy

imply
(12) z|C1 = y|C.

From (12) and (xii) it follows that Tz|C1 = Ty|C;. As by (9) we have a,(t) € C;
for t € C2, owing to (10) we have

Taz(t) = (Tz)(an(?)) = (Ty)(an(t)) = Tny(t)
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for t € C3; this and (11) imply lez = lez. Now we can proceed by induction.
To prove the surjectivity of S, let us choose y € X and look for an £ € X such
that S,z = y. From the equalities

z(t) - Tpaz(t)=y(t) for te K and Toz(t)=y for t€Cy
we have for such an z:
z(t)=y(t)+y for teC.

As C) is a bounded set and y € X, the set {y(t) + yo; t € C1} is bounded. C, is
a closed subset of the metric space K, so by the Dugundji extension theorem there
exists a bounded continuous map z,: K — X such that zIICI = lel + yo. For
t € Cy we have

§(t) = 2() ~ Taa(t) = 2(t) - (T2)(@n(t)) = 2(t) — (T21)(@n 1))
(the last equality is a consequence of (xii)), hence
z(t) = y(t) + Thz1(t) for teCh.

C) and C; are closed subsets of the metric space K, the map X, is continuous on
C1, the map y + T, z; is continuous on C; and for t € C; N C; (i.e. |t —to]| = 1/n)
we have

y(t) + Taza(t) = y(t) + w0,
8o the map T, defined by
_ z(t), ifteCy
32(1) = .
y(t) + Taz1(2), ifteCy

is continuous on C; U C3 and its range is bounded. Again due to the Dugund;ji
extension theorem there exists a bounded continuous map z3: K — X such that
zglCl U C3 = F;. Proceeding by induction we can construct a sequence {z,,}35_, of
bounded continuous maps such that zo = yo and

(13) ZTm41 ICm = zmlcm, mé€EN,;

(14) z2m(t) = yY() + Thzm-1(t) for tE€Cm, meN.
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Due to (13), there exists anz € X, z = mlin:o Z,, and for t € Cy, we have

Zm(t) = zmear(t) = ... = 2(2),

so by (14) and (xii) for t € Cn, m > 1,

2(t) = zm(t) = Y(t) + Tnzm-1(t) = Y(t) + (Tzm-1)(an(t))

u(t) + (Tz)(an (1)) = u(t) + Tnz(?),

i.e.
z-Thz =y,

the validity of the last equality for ¢ € C; beeing a consequence of the definition of
the map z;.
To check the continuity of S;!, we suppose

(15) lim (2, — Tpzm) =z —'T,.z

m=+00

and prove that lim z,, = z. Fort € C; we have
m—+00

Tazm(t) = yo = Thz(t),

therefore (15) implies that {z,,|C1} converges on the bounded set C; uniformly to
lel. Put
em = sup{[|lzm(t) — z(t)|l; t € C1}.

Due to the Dugundji extension theorem, there exists a continuous map ¥,,: K — X
such that §,,|Cy = (zm — z)|C1, sup{[|[Fn(®)ll; t € K} < €m. For the map %, :=
2+ Ym :

(16) Zm|C1 = zm|C1
and {i:',,.} converges uniformly on K to z, thus
(17) mli_lgo TaZm = Thz.
By (17) and (xii) for t € C3 we have
zm(t) = (zm(t) = Tazm (1)) + Tozm(t) = (2m(t) = Tazm(t)) + TnZm(t),

therefore by (15) and (17) {Zm } converges uniformly on C3 to z. Now we can proceed
by induction.



It remains to prove (8). With respect to (7) it suffices to prove the equality
(”lig.nosup{pm(s,,z -Sz);z€ X} =) Jlim sup{pm(Tnz — Tz);z € X} =0
for each m € N. We have

/n

Tha(t) - Ta(t) = { Tz(to) - T=(1) it - "’: : g

<
(Tz)(an(t)) — T2(t),  if |t - to] >

and simultaneously (see (9)) |an(t) — t| = 1/n. For a given € > 0 the assumption
(xi) (for n = m) implies

dno e NVn > noVz € XVt € Kpy: |Thz(t) — Tz(t)| < &,

which completes the proof. O

(1.6) Remark. Vidossich proved in [8] the same theorem for the case “K convex
and bounded”. From [9, Theorems 1.1, 2.2 and 2.4] the following statement can be
obtained (identically as in [8]):

Let X, T, I, S have the same meaning as in (1.5). If T is a closed map and
conditions (x), (xi) and (xii) are fulfilled then the fixed points of T' form a nonempty
connected set which is a compact R; whenever it is compact.

The following Theorem (2.1) is than a simple consequence of this statement.

2. THEOREMS

(2.1) Theorem. Let X, Y, Z, K have the same meaning as in (1.5). If the
compact map T': X — X satisfies (x), (xi), (xii), then the set F of all its fixed points
is a compact R;.

- Proof. The assertion is a consequence of Corollary (1.4) and Theorem from
(1.5). ()

(2.2) Theorem (cf. [7, Theorem 1]). Let X be the Fréchet space of all continuous
functions f: [b,00) — R equipped with the topology of locally uniform convergence
(i.e. the topology on X is given by the metric

L=l opm(f-9)
d(f’g)—,?;lT’"Hpm(f—y)’



where :
Pm(2) = sup{|z(®)]; ¢ € [6,b+ m]}
and |.| denotes the norm in R”). Let ¢, ¢, € C([b,0),(0,00)), n € N, and let the
following condition be satisfied

(xiii) for each t € [b, 00) the sequence {n(t)} is non-increasing and ”llngo en(t) =0.
LetreR and M = {z € X; |z(t) — r| < ¢(t), t 2 b, z(b) = r}. Suppose that T':
M — X is a compact map and there exists a sequence {T,,} of compact maps Tn:
M — X such that

(xiv)

[Taz(t) — Tz(t)| < palt), z€ M, t 2 b;

(xv) for every n € N there exists a function p.n, € C([b,0),[0,00)) such that
pentpn<p on [boo)

and
[Toz(t) — r| < pun(t), z€ M, t2>b;

(xvi) the map Sy, := I — T, is injective on M.
Then the set F of all fixed points of the map T is a compact R;.

Proof. The set
Un :={z € X; |z(t)] < pnlt), t 2> b}

is convex and closed; we shall show that the sequence {Uy,} satisfies (iii), (iv), (v),
(vi). The condition (iii) is evidently fulfilled. For a given € > 0 there exists an

00
mo € Nsuch that Y~ 1/2™ < ¢/2. (xiii) and the Dini theorem imply that {¢n}

m=mo+
converges on [b, 00) locally uniformly to 0, therefore for € and mg there exists an

ng € N such that p,(pn) < €/4mg for n 2 ngand m = 1, 2, ..., mp. Thus for
n 2> ng and f,g € U, we have

d(f,9) = 22,,,1?"‘(! 9) \il’m(f"y)‘f' 3 _2_1;

m=1 +Pm (f g) m=1 m=mo+1

E2Pm(¢n)+ E 2m<2m0 r‘l’i

m=1 m=mg+1

<6

which implies that the condition (iv) is fulfilled. The assumption (v) is true by (xiv).
To fulfil (vi) it suffices to verify the inclusion Un C Sn(M); (xvi) then implies that Sy
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is a bijection of S;!(Un) onto U, and the continuity of S;! IU,. is then a consequence
of the compactness of T,,. Thus we have to prove

VyeU,3z, e M: 2y — Tz, = y,
i.e. for every y € U, the map P,(z) = y + Tn(z) has a fixed point. (xv) implies
¥(t) + Taz(t) — r| < [W(&)] + [Tnz(t) — vl < on(t) + @un(t) < 0(2), > b,

therefore P,(M) C M. As M is a closed convex bounded set.and P, is a compact
map, due to the Tichonov fixed point theorem, P, has a fixed point, which completes
the proof. a

Remark. The line of the proof of Theorem (2.2) is the same as in {7, Theorem 1],
but in our paper Theorem (1.2) is used instead of [7, Lemma 1] which requires U, to
be a neighbourhood of 0 (cf. Remark 3 in (1.3)) and guarantees only nonemptiness,
compactness and connectedness of the set F.

3. APPLICATIONS

(3.1) Let X be the space from paragraph (1.5), where Z = R?, |(z,y)| =
max{|z|, |y|}, K = [0,00) x [0,00), Y = R” with the Euclidean norm |||| We say
that a map w: [0,00) x [0,00) — R” given by the formula w(t) = (w1(¢t),...,wn(t))
is absolutely contmuou.s, if w;: [0,a] x [0,a] = R is absolut.ely continuous for each
a>0andi=1,.

Theorem (see [6, Theorem 2. 8]) Suppose tbat amap M : [0,00) x [0, oo) xRY —
R satisfies the following assumptions:

* (xvii) the map M(z,y,.) is continuous for each (z,y) € [0, 00) x [0, oo),

(xviii) the map M(., ., u) is Lebesgue measurable for each u € R";

(xix) there exist locally integrable functions p,c: [0, 00) x [0,00) — [0,00) such
that ||M(z,y, u)|| € p(z, v)llull + c(z,y) for all (z,y,u) € [0,00) x [0,00) x R. Let
g,h: [0,00) — R” be absolutely continuous functions such that g(0) = h(0). Then
the set of all solutions of the problem :

u(0,9) = 9(y), u(z,0)=h(z) forz,y€[0,00)

tzy(2,¥) = M(z,y,u(z,y)) for a.a. (z,y) € [0,00) x [0, 0)
- (18)
u: [0, oo) x [0 oo) — R" is absolutely continuous

is a'compact Rs-set in the space X.
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Proof. We use Theorem (2.1), for more detail of the following considerations
see [6, paragraph (4.5)].
The set of solutions of (18) coincides with the set of solutions of the equation

19 ) =he)+90) - hO)+ [ [ M(Enulem)dedn

The Sssumption (xix) and the Wendroff inequality (seé [2]) implies the existence
of a continuous function a: [0,00) x [0,00) — [0, 00) such that for each continuous
solution u of (19)

luz, v)ll < a(z,v), (z,) € [0,00) x [0, 0).

Then the set of solutions of (19) coincides with the set of solutions of the equation
obtained by replacing the function M in (19) by the function |

~ u : .
M 1 I = — | M z,Y,u),
(z,y 9) ¥ (a(z,y)+l) (z,9,)
where ¢: R¥ — [0, 1] is a continuous function, ¥(u) = 1 for ||u|| < 1, qb(u) = 0 for
[lu]| > 2. The map T: X — X given by

Ty .
(20) Tu(z,y) = h(z) + 9(y) — h(0) + / j B (€, m, u(€, m))dédn

is compact (the relative compactness of the set T'(X) is a consequence of the inequal-
ity
IIM (=3, u(@ I < 22 1) (2a(z,9) +2) + (2, 4)-

Its compactness 1mphes the fulfilling of the condltlon (XI), the assumpt.lon (x) is valid
for to = (0,0), yo = g(0); the fulfilling of (xii) is evident owing to (20). Thus by
Theorem (2.1), the set of solutions of (18) is a compact R;. a

Remark. The statement of the preceding theorem is identical with [6, Theorem
(2.8)] the proof of which in [6] is based on Corollary (1.4), too, but the existence
of the sequence {Tn} (which in our paper is a consequence of (1.5)) is proved in a
different way and the proof of the fact that I — T;, is a homeomorphism is based
on the Lasota-Opial condition. Similarly the difference between the proofs of the
following Theorem (3.2) and (6, Theorem (2. 8)] (whose statements are 1dentlcal too)
is only in the method of constructmg the sequence {Tm}. :
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(3.2) Let X be the space from paragraph (1.5), where Z =R, |.| is the Euclidean
norm on R, K = [0,00), Y = R”, ||| is the Euclidean norm on R".

Theorem (see [6, Theorem (2.9)]: Suppose that a map M : [0,00)x [0, co) x R” —
R” satisfies the following conditions: . »

(xx) the map M(s, ., .): [0,00) x R — R is continuous for each s € [0,00); °

(xxi) the map M(.,t,z): [0,00) — R” is Lebesgue measurable for each (t,z) €
[0,00) x RY; _

(xxii) there exist locally integrable functions p,c: [0,00) — [0, 00) such that

(I1M(s,t, 2)|| < p(s)l|z|| + c(8) for all (s,t,z) € [0,00) x [0,00) x R.

Then the set of all continuous solutions of the integral equation

@) 2(t) = /o M(s,t,2(s)) ds

is a compact R in the space X.

Proof. Theorem (2.1) is applied again; more detail can be found in [6, para-
graph (4.6).

The assumption (xxii) and the Gronwall inequality imply the existence of a con-
tinuous function a: [0,00) — [0, 00) such that for each continuous solution z of the
equation (21)

(22) l2(0)l < a(®), ¢ > 0.
Put
. M(s,t,z) = (a(s;+ 1) M(s,t, z),

where ¢: R* — [0,1] is a continuous function, ¥(u) = 1 for |ju|| < 1, ¥(u) =0
for [lul| > 2. Then the set of continuous solutions of (21) coincides with the set of
continuous solutions of the equation’

z(t) = /o M(s,t,z(s))ds.
The map T: X — X defined by
' t
Tz(t) = / M(s,t,z(s))ds
]

is whput and fulfils (x), (xi), (xii), so by Theorem (2.1) the set of continuous
solutions of (21) is a compact Rj. « a
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(3.3) Remark. The crucial point of the preceding proof is the existence of the
bound for solutions given in (22). A generalization of the Gronwall inequality (wthh
was used to obtain (22)) is the following Bihari inequality. : "

Lemma (see [3]). Let u: [a,b] — [0,00) be a continuous fnnction; p: [a; b) —
(0,00) a locally integrable function, k > 0, w: [0,00) — [0,00) a non-decreasing
function; suppose

t . '
Q(k) + / p(s)ds < ‘]ix?" Q(s) for each t€ [a,b],
where

* dt .
Q(s).—[lom, u>0,820.

Then the inequality

wy<k+ [ p(eye(u(s))ds, 1€ [a,b),

implies the inequality

u(t) < Q7! (ﬂ(k) + /o‘ p(s) ds) , t€la,b].

Replacing in the proof of Theorem from (3.2) the use of the Gronwall inequality
by the preceding lemma, we can generalize the assertion of that theorem as follows:

Theorem. Suppose that a map M : [0,00) x [0,00) xR — R satisfies (xx), (xxi)
and

(xxiii) there exist locally mtegrable functions p,c [0 00) — (0 oo) and a non-
decreasing function w: [0, 00) — [0, 00) such that

1M (5,1, 2)I| < p(s)w(llzl]) + c(s) for all (s,t, ) € [0,00) x [0,00) x R”

u 00 ds h »
sdsS/ —— foreach u>0,
./o p(e) ku) w(8)

where Ic(u) Iy c(s)ds.
Then the set of all continuous solutions of the equation (21) is a compact Rs

(3.4) Let h > 0, b € R, H = C([~h,0},R?), |jzll = max{|z(s)]; s € [~h, 00} for
z € H (|.| denotes the Euclidean norm in R¥), let X* be the space C([b — h, o), R¥)
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eﬁqipped with the'tqulogy of locally uniform convergence. For z € X* denote by
zy € H the function z4(s) := z(t 4 5), s € [~h,0]. Let X have the same meaning as
in paragraph (2.2).

Theorem (cf. [7, Theorem 2]). Let ¥ € H, f € C([b,o0) x H,R"), w €
C([b, 0), (0,0)), let g € C([0, 00), (0,00)) be a non-decreasing function and

(xxiv)
' o * dv
J i< [ s
Let
(xxv)
1£(t, )1 < w(t)g(llxl]) for each (¢, x) € [b,00) x M**,
wbe;e ’

M** = {z € H;z € X*, |2(t) - ¥(0)| € (1) on [b,00), 23 = ¥)
and ¢ is tbe solution of the equation
(23) ¥ () = w(t)g(y + [¥(0)]), y(b) =0, t € [b, 00).
Then the problem

(24) () = f(tae), tE[b,00),

(25) zy =9,
bas a solution satisfying the inequality
lz(t) — ¥(0)] < ¢(t), te€[b,00),

and the set F* of all such solutions is a compact Rs in the space X*.

Remark. (xxiv) is a sufficient condition for the existence of a solution of the
equation (23).

Proof of the T heorem. For more detail concerning the following con-
siderations see (7],

The set
M= {z € X; |2(t) — %(0)] < ¢(t). on [b, ), z(b) = ¥(0)}



is a non-empty closed subset of X. Put
M* = {z € X*; |z(t) - ¥(0)| < ¢(t) on [b,00), z, = ¢}.

Evidently the map P: X* — X given by Pz = z|[b, c0) is a homeomorphism of M*
onto M. Let the map T: M — X be defined by

Tz(t) = ¥(0) + /b’ f(s,(Pz),)ds, te€ [b,o0).

Then F* = P~!(F), where F is the set of all fixed points of the map T'. As a
homeomorphic image of a compact R;-set is again a compact R;-set, it suffices to
prove that F is a compact Rs-set. That can be done using Theorem (2.2), we put
r = 9(0). The maps T,,: M — X defined by

¥(0), ifte[b,db+1/n]

)= { $(0)+ ;71" f(s,(Pz).)ds,  ift€[b+1/n,00)

are compact (it is a consequence of (xxv)) and again by (xxv) we have
1Tnz(t) - T2(8)] < a(?),

where

onl(t) = {fb‘ w(s)g(w(s) + [¥(0)]) ds, ift€b,b+1/n] |
n ./:—1/» w(s)g(w(s) + [¥(0)]) ds, ift €[b+1/n,00)

The sequence {yn} evidently satisfies the condition (xiii); the last inequality implies

the condition (xiv).
For the functions ¢, : [b,00) — [0, 00) defined by

0, ift€b,b+1/n]
Pen(t) =4 Ci-1/n )
s w(s)g(e(s) + [¥(0)))ds, ift€[b+1/n,00)
we have [T, 2(t) — ¥(0)] < Pen (t) on [b,00) for.z € M, and as p is z;solntion. of (23),
we obtain

Gon() + gn(t) = [ w(e)g(p(s) + [H(O)]) ds = p(t), t € [5,00),

thus the condition (xv) is fulfilled.
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It remains to check the validity of (xvi): if z,y € M, z # ¥, then there exists a
to € [b,00) such that z(to) # y(to). Two cases may occur:

a) If to € [b,b+ 1/n), then z(to) — Tnz(to) = z(to) — ¥(0) # y(to) — ¥(0) =
y¥(to) — Tuy(to)

b) There exists a:t;: > b+ 1/n such that t; = sup{r > b; z(t) = y(t) for t €
[b,7)}. Then there exists a to € (1, + 1/n) such that z(to) # y(to). This implies
Taz(to) = ¥(0) + [;°"'/" f(s,(Pz)s)ds = $(0) + [;°7'/" f(s,(Py),) ds = Tay(to),
therefore z(to) — Tnz(to) ;é y(to) — Tuy(to)-

As all assumptions of Theorem (2.2) are fulfilled, our assertion is a consequence
of this theorem. v a

(3.5) Remark. The statement of Theorem in (3.4) is rather stronger as that of
[7, Theorem 2] (which guarantees only the fact that F'* is a continuum), though the

ideas of the proofs are the same. The reason for this difference is the replacing of [7,
Lemma 1] by Theorem (2.2) (cf. Remark in (2.2)).
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