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Summary. The problem of integrating factor for ordinary differential equations is inves
tigated. Conditions are given which guarantee that each solution of 

d1F(xyy) + y'd2F(xiy) = Q 

is also a solution of 

M(x, y) + yN(x, y) = 0 

where d\F = fiM and c^F = fiN. 
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Introduction. Let G be an open set in the Euclidean plane and let / be a function 
differentiate on a one-dimensional interval I such that the graph of / is a part of G. 
Let F be a function differentiate on G; let d\F and d2F be the first order partial 
derivatives of F. It follows from well-known elementary theorems that 

d1F(xJ(x))+f'(x)d2F(x,f(x))=0 

for each x G / if and only if the function F(x,f(x)) (x € /) is constant. Thus, the 
differential equation 

(1) d1F(xiy)+y'd2F(x,y)=0 

is, in this sense, equivalent to the "non-differential" equation 

(2) F{x,y)=c 
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Now suppose that M, IV and \x are functions on G such that 

(3) d\F = fiM, d2F = »N. 

It is obvious that each solution of 

(4) M(x,y)+y,N(x,y)=0 

is also a solution of (1). The present note investigates the question whether each 
solution of (1) is also a solution of (4). The function \i is usually called an integrating 
factor (i.f.) for the equation (4). 

Authors of elementary textbooks dealing with differential equations caution us 
that, in general, it is not easy to find an i.f. for a given equation. We could easily 
correct this statement writing "nontrivial i.f." instead of "i.f.", but this would not 
remove the main difficulty. If we wish to go from (2) to (4), we must cancel /i. We 
might, of course, suppose that IJL(Z) ^ 0 for each z E G, but this would be a loss of 
generality. A "reasonable" i.f. still may have "many" zeros. If, e.g., G is the whole 
plane and / a function differentiate on (-oo,oo), if, further 

(5) ti(x,y)=y-f(x) 

and if (3) holds, then, clearly, / is a solution of (1), but it is not obvious whether / 
is also a solution of (4). It follows, however, from the theorems proved in this note 
that this is the case, i.e. that we may cancel even integrating factors like (5). (The 
equation y + Ixy1 = 0 and the function F(x,y) = xy2 may serve as an illustration.) 
We suppose only that the functions M and IV are continuous and that the set of 
zeros of /i has no interior point. (It is easy to see that this condition is fulfilled 
by each "practical" nontrivial i.f.) Under this condition, equations (4) and (1) are 
equivalent, i.e. we can solve (4) by means of (2). 

Convent ions. The word function means a mapping to the set R = (—00,00). Let 
M and IV be functions on a set G C R x R. By a solution of the equation (4) we mean 
a function / differentiate on a nondegenerate interval I C R such that {x, f(x)) G G 
and M(x, f(x)) + f'(x)N(x, f(x)) = 0 for each i G I (If x belongs to the boundary 
of I, then, as usual, f'(x) denotes the corresponding unilateral derivative.) The 
meaning of a statement like " / is a solution of (4) on (0,1]" is obvious. When we 
say that an equation 

(6) M\(x,y)+yfN\(x,y)=0 

is equivalent to (4), we mean that Mi and N\ are defined on G and that the system 
of all solutions of (6) is the same as the system of all solutions of (4). 
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Lemma. Let a, b E R and a, /3, A E (0,oo). Let F be a function continuous on 
the set 

S = [a - a, a + a] x [6 - /J, 6 + 0] 

and let \F(z)\ -̂  A for each z e S. Let 0 < a < min(a, /?/A); define J = [a - a, a + <r]. 
Then there are £ E (0,cr), e E (0,/?) with the following property: If \a\ - a\ < S, 
|bi — b\ < e, then there is a function f on J such that f(a\) = &i and that 

\f(x)-b\<(3, f(x) = F(x,f(x)) 

for each x E J. 

(This is a special case of Corollary, p. 23, [1].) 

Theorem 1. Let G be an open set in R x R. Let F, M, N, /i be functions on 
G. Let F be differentiate, let M, N be continuous and let d\F = /J,M, fyF = /j,N 
on G. Let f be a solution of the equation (1) on an open interval I. Suppose that 
a € I and that 

(7) M(a,f(a))+f'(a)N(a,f(a))*0. 

Then \x = 0 on some neighborhood of the point (a, /(a)). 

Proof . Set b = /(a), P = (a, b). We distinguish two cases. 
1) N(P) ?- 0. For each z E G for which N(z) ^ 0 set V(z) = -M(z)/N(z). 

Further set A = V(P) - f'(a), rj = |A|/4. By (7) we have rj > 0. There are a, 0 > 0 
such that [a — a, a + a] C I and that 

l / W - b - ^ - a J / ^ ^ K ^ - a l ( | x - a | ^ a ) , 

\V(x,y) - V(P)| ^ V (\x - a| < a, |y - 6|< /?)• 

Let 0 < a < min (a,/3/(|V(P)| + 77)); set J = [a - a,a + a]. According to Lemma 
there are S E (0,cr), e E (0,/?) with the following property: If |ai - a\ < S and 
|bi — b\ < e, then there is a function g on J such that #(ai) = 61 and that 

(8) \g(x) - b\ < /3, g'(x) = V(x,g(x)) (x € J). 

We may suppose that e + 6\V(P)\ < r\o. Set U = (a - S,a + S) x (b - e,b + e). Let 
(oi, 61) € U, let 5 be as above and let x € J. Define 

6 = (a - ai)V(P) + fX (g'(t) - V(P)) dt, 

h = f(x)-b-(x-a)f'(a), 
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f = bx - b + ft - ft. As y(x) = bi + (a? - a)V(P) + ft, we have 

y(x) - / (x) = bi - b + (x - a) (V(P) - f'(a)) + ft - & = (x - a)A + ft 

It is easy to see that 

|f| < e + S\V(P)\ + 2r/cr + 77<r < 4r?r/ = <r|A|. 

Therefore one of the numbers g(a + a) - / ( a + a), #(a - a) - / ( a - a) is positive 
and the other negative. It follows that / (x 0 ) = g(x0) for some xo G J. According 
to (8), the function F(x,g(x)) (x G J) is constant; since / is a solution of (1), the 
function F(x,f(x)) (x £ J) is constant as well. Thus F(ai,6i) = -F(ai,y(ai)) = 
F(xo,g(x0)) -= F ( x 0 , / ( x 0 ) ) = F(a,f(a)). We see that F is constant on U. Since 
1V -̂  0 on U, we have \x = N~1d2F = 0 there. 

2) 7V(P) = 0. Then, by (7), M(P) £ 0. For each z £ G for which M(z) # 0 set 
W(z) = -N(z)/M(z). Define A = | / ' ( a ) | + 1. There are a,/3 > 0 such that 

| / (x) - 6 |< A|x - a| ( | r r - a | < a ) , 

|KV(x,y)| < (S^)" 1 (|x - a| ^ a, \y -b\ < /?). 

Let 0 < T < min(/?,a>l); set if = [ 6 - T , 6 + T], L = ( a - T ^ l ' ^ a + TA"1). According 
to Lemma there are S £ (0, a ) , e G (0, T) with the following property: If |ai - a\ < S 
and |&i —b\<e, then there is a function h on K such that h(bi) = ax and that 

(9) \h(y)-a\<a, h'(y) =W(h(y),y) (y G K). 

We may suppose that S < T/(3A). Let U = (a-S,a+6)x(b-e,b+e). Let (ai,&i) G U 
and let h be as above. For y £ K we have |/i(y) - a\ ^ |/i(y) - ft(bi)| + |ai - a\ < 
2T/(3A) + S < T/A, thus h(y) £ L. For x G L we have | /(x) - 6| < r . Set 
Sj = {(x,y) ; x G L,sgn ( y - / ( x ) ) = j } (j = - 1 , 0,1), T = {(h(y),y) ;y£K}. The 
sets 5 - i , Si are open and disjoint; the set T is connected, (h(b + T) , b + T) G T fl 5 I , 
(h(6 - T) ,6 - T) G T n S - i , T C 5_iU5 0 U5i . It follows that TnS0 ^ 0. This means 
that there are x0 £ L, y0 £ K such that y0 = / (x 0 ) , x0 = h(y0). According to (9), the 
function F(h(y),y) (y £ K) is constant; the function F(x,f(x)) (x £ L) is constant 
as well. Thus F(a1,b1) = -F(M^),6i) = F(h(y0),y0) = F (x 0 , / ( x 0 ) ) = F(a,f(a)). 
We see that F is constant on U. Since M ^ 0 on [/, we have // = M~ld\F = 0 
there. D 

Theorem 2. Let G, F , M, -V, /x be as in Theorem 1. Let the set {z\ p(z) ̂  0} 
be dense in G. Then (1) is equivalent to (4). 
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Proof . It is obvious that each solution of (4) is also a solution of (1). Now 
suppose that Jo is a nondegenerate interval, ao E Jo, / is a solution of (1) on IQ and 
that M(ao,f(a0)) + f'(ao)N(ao,f(ao)) ^ 0. Let J be the interior of J0. It is easy 
to see that there are ai, 02,... € J such that an -> ao and f'(an) -* /'(ao). If we 
choose a = an with n sufficiently large, then (7) holds. Prom Theorem 1 we get a 
contradiction. • 

R e m a r k . We may easily construct "unreasonable" integrating factors as fol
lows: Let G and F be as in Theorem 1 and let ip be a function differentiable on R. 
It is easy to see that ip'(F(-)) is an integrating factor for (1). Let e.g., %l>(t) = t3 

for t > 0, ip = 0 on (-00,0] and let M = 0, N = 1 on R x R. Then (4) becomes 
y' = 0 and the function /J>(x,y) = tp'(y) is an i.f. Even the well known equation 
Ndi/j, - M#2/4 = (d<2M - d\N) • /x is fulfilled. Multiplying by /i we get yV'(y) = 0 
which is satisfied, for instance, by each nonpositive function differentiable on R. 
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