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NONABSOLUTELY CONVERGENT SERIES 

DANA FRAŇKOVÁ, Praha 

(Received August 18, 1988) 

Summary. Assume that for any t from an interval [a, b] a real number u(i) is given. Summarizing 
all these numbers w(f) is no problem in case of an absolutely convergent series J ) u(t). The 

*e[a.->] 
paper gives a rule how to summarize a series of this type which is not absolutely convergent, 
using a theory of generalized Perron (or Kurzweil) integral. 

Keywords. Nonabsolutely convergent series, generalized Perron integral. 

AMS classification: 40A05, 26A42. 

Notation. N is the set of all integers, R is the set of all real numbers. [a,&], 
[a, b), (c, rf] etc. will be bounded intervals in R. If a point t e R and a set TeR are 
given, then dist (t; T) = inf {|t — s\; s e T}. If x e Rn is an n-dimensional vector, 
then (x)j denotes thej-th component of the vector x. 

We will make use of the notion of generalized Perron integral, which was defined 
in [K] in this way: 

A finite sequence A = {a0, TU ax,..., aLk-u Tk, ak} is a partition of the interval 
[a, b] if 

(1) a = a0 < ax < ... < <xk^t < ak = b and 
(2) «,_! ^ T, .^ al9 i = 1,2, ...,/c. 

An arbitrary positive function <5: [a, b\ -> (0, oo) is called a gauge on [a, &]. Given 
a gauge d on [a, b], a partition AL of the interval [a, b\ is called <5-fine if 

(3) [a,-!, a f] c [T | - <5(T,.), rf + 5(Tf)] , i = 1, 2,..., fc . 

The set of all 5-fine partitions of [a, b] will be denoted by s?(d; a,b)ox briefly s/(d). 
It is known that for any gauge 6 on [a, b~\ the set st(8) is nonempty (see [K], 

Lemma 1,1,1). 
Assume that a function U: [a, b] x [a, b] -• R and a partition A = 

= {ao> Ti» ai» •••» a*-i» T*> a*} a r e given. The finite sum 

(4) S(U, A) = £ [U(t„ a,) - U(Ti( a,..)] 
i = l 

is called the integral sum corresponding to the function U and the partition A. 
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A function U: [a, b] x [a, b] -* 0? is called integrable over [a, b] if there exists 
yeW such that for every e > 0 there exists a gauge S: [a, b] -* (0, oo) such that 
for every A e *s/(<5) the inequality 

|5(U, A) - y| < 8 

holds. The number 7 e R is called the generalized Perron integral of U pver the 
interval [a, b] and will be denoted by 

y = faDU(T,t). 

In [K] a definition of an integral using the concept of major and minor functions 
is given, and it is proved that such a definition is equivalent to the definition given 
above. 

The definition using major and minor functions may be formulated in the following 
way: 

A function U: [a, b] x [a, b] -> R is integrable over [a, b] if there exists ye R 
such that for every s > 0 there exists a gauge <5 on [a, b] and functions M, m: [a, b] -> 
-> ff such that 

(5) ( t ^ T ) ( M ( 0 - M ( T ) ) ^ ( r - T ) ( U ( r , r ) - U ( T , T ) ) ^ 

^ (f — T) (m(t) — m(r)) whenever t, T e [a, b] and 

I* - T{ ^ <5(T) a n d 

(6) y - e < m(b) - m(a) ^ M(b) - M(a) ^ y + 8. 

Then y = JJ DU(r, t). 
Let a function u: [a, b] -> W be given. The symbol £ 11(f) can be met usually 

tela,b} 

in the following situation: there is an at most countable set of indices D c [a, b] 
such that u(t) = 0 for any f e [a, b] \ D; this set D will be ordered into a sequence 

00 

in an arbitrary way, say D = [tu f2 , . . .}. If the series £ u(tk) is absolutely convergent, 
* = i 

00 00 

i.e. the series £ \u(tk)\ is convergent, we have V u{t) == £ w(rit). 
fc=l teta,b] fc=l 

However, if the series is not absolutely convergent, then in order to obtain a rea
sonable theory we have to give a rule how to order the index set D. In fact, this is 
the aim of the present paper. 

In the following we will deal only with real-valued functions u; if u is an /^"-valued 
function with n > 1, then the sum £ u(t) can be defined componentwise: 

te[-*,b] 

( E «(<)),= Z M0)y. ; - 1 , 2 , . . . , » . 
fe[a,b] *e[a,b] 

Definition 1. Assume that a gauge 8: [a, b] -> (0, 00) is given. By 1(5; a, b) or 
briefly 1(5) we denote the set of all finite nonempty sets B cr [a, b] such that the 
following holds: 
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(7) If t, t' eB, t < t' are neighbouring points, i.e. (t, t') n B = 0, then 
t' - t < S(t) + 5(t'). Denote I = min B, 1 = max B; then I - a < 5(f), 
b - l < 8(1). 

Lemma 1. (i) For every gauge 8 on \a, b] the set 1(8) is nonempty, (ii) If a gauge 
8: \a, fc] -»(0, oo) is given and a < c < b, then for any two sets B1 el(8; a, c) 
and B2 el(8; c, b) the set B± u B2 belongs to 1(8; a, b). 

Proof, (i) For every t e (a, b] such that t < a + 8(a) the set {a} obviously belongs 
to 1(8; a, t). Denote 

(8) c = sup {t e (a, b], 1(8; a, 0 * 0 } . 

We have just shown that c > a. There is t0e(a, b] such that 1(8; a, t0) 4= 0 and 
c — 8(c) < t0. If B el(8; a, t0) then B u {c} el(8; a, c) because denoting 1 = max B 
we have the estimate c — 1 = (c — t0) + (t0 — 1) < 8(c) + 8(T). 

Let us assume .that c < b; then for every c' e (c, b] such that c' < c + 8(c) we 
have B u {c} el(8; a, c') and consequently the set 1(8; a, c') is nonempty, but this 
is impossible because of (8). It means that c = b and 1(8; a, b) + 0. 

(ii) Denote t1 = maxi*^ and t2 = minB 2 , then c — tx < 8(t^) and t2 — c < 
< 8(t2) by (7). Then t2 — tt < <5(i/1) + 8(t2) and consequently the assumption (7) 
holds for B1 u B2 on the interval \a, b\. 

Definition 2. Assume that a function u: \a, b] -» R is given. We say that the series 
£ u(t) is convergent and that its sum is equal to u e R, if for every e > 0 there is 

1ela,b] 

a gauge 8 on \a, b] such that for every finite set of indices {tl912, ..., tm} belonging 
to 1(8) the inequality 

(10) |£u(t„)-u |< £ 
/ l = l 

holds. The series J] u(t) is defined as the series £ u(t) with u(b) = 0, similarly 
te{a,b) tela,b] 

I *(<)> Z ««• 
te(a,b] .e(a,6) 

Remark . For a given series £ u(f) and for any set B = {tu t2,..., fm} c [a, b] 
-e[a,fc] 

let us denote 

<B) = tu(t„). 
n = l 

Then (10) can be written in the form 

(10)' \s(B) - i«| < A 

for every B e 1(8). 
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Lemma 2. Let a finite set B0 c [a, b] and a gauge d on [a, b] be given. Assume 
that 

(11) <5(T) = dist (T; J50 \ {T}) for every x e [a, fe] . 

Then every set B e 1(6) includes B0. 

Proof. The condition (11) can be written also in the form 

|T — G\ ^ 8(z) holds for any G e B0 and T e [a, i ] such that 
T 4= G . 

Assume that there are B e 1(5) and G e B0 such that G $ B. Let us find neighbouring 
points t\ t" e B such that t' < G < f. Then 

8(t") + 8(f) > t" - t' = (t" - G) + (G - t') = 8(t") + <5(f), 

which is a contradiction. 

Proposition 1. Let real junctions u, v: [a, b] ~+ R be given. Assume that there are 
points sl9 s2, ..., sk e [a, b\ such that 

(12) u(t) = v(t) for every t e [a, ft] \ {sl9 s2 , . . . , sh} . 

If at least one of the series £ u(t), £ v(t) is convergent, then the other is also 
te{a,bj te{a,b} 

convergent and the equality 

I «(t)-I«(s,)= i <o-i*;) 
fe[fl.fr] j=l *e[a,&] i = l 

ho/ds. 

Proof. Assume for instance that the series £ u(t) — u is convergent. Then for 

every e > 0 there is a gauge d such that (10)' holds for every B el(d). Let us define 

<5'(T) = min {S(T), dist (T; C \ {T})} where C = {s1? s 2 , . . . , sfc} . 

Lemma 2 implies that an arbitrary set B = { t l 912 , . . . , tm) el(8f) includes all the 
points sl9 s2 , . . . , sh. 

From (12) it follows that u(tn) = v(tn) for every tne B which does not belong to C. 
We have an estimate 

11 * - ) - [ ! * , ) - 1 «to) + »]| = 
n = l i = l j = l 

= I I * . ) ~ 1 U(sj) + i «(tB)]| + | i U(t„) - «| -
n = 1 / = 1 n = l w = 1 

m m m m 

= II*.) - 1 * . ) | + I I«C.) - «l - ll«(0 - "I < *• 
n = l n = l n = l « = - l 

*n*c rn#c 
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Since the set B e J(<5') was arbitrary, we get the equality 

fefa.b] ; -=i . / = l 

The proof of the other implication is analogous. 

Corollary. Let a function u: [a, b] -> R be given. Then 

I "(') = E u(0 + «(ft) = u(a) + £ u(.) 
fe(a,b] fe[a,b) fe[a,b] 

provided at least one of the three series is convergent. 

Proof. By Definition 2 the series £ u(t) is identical with a series ]T v(t) where 
fe[a,b) fe[a,b] 

v(t) = u(t) for f e [a, ft), v(&) = 0, and the series ]T u(t) is defined as a series 
fe(a,b] 

£ w(0 where w(t) = u(t) for / e (a, ft], w(a) = 0. 
fe[a,b] 

Proposition 1 implies that 

I u(0 - *(<0 - u(b) = X v(0 - v(a) - v(b) = 
fe[a,b] fe[a,b] 

= Z W(0 - W(a) ~ W(b) > le-
fe[a,b] 

I u(r) - u(a) - u(b) = £ u(t) -u(a)= £ «(t) ~ "(l>) 
f€[a,b] fe[a,b) fe(a,b] 

provided at least one of the series £ u(0- Y, KO' X w(0 *s convergent. 
fe[a,b] fe[a,b] fe[a,b] 

Proposition 2. The series J] u(0 is convergent if and only if for every e > 0 
fe[a,b] 

there is a gauge S: [a, b] -> (0, oo) such fhaf f0r epery tw0 sets J5l9 B2 GI(<5) the 
inequality 

(13) ( s ^ ) - s(2*2)| < e 

holds. 

Proof. 1. If the series ]T u(0 is convergent and has the sum u, then for every 
fe[a,b] 

e > 0 there is a gauge S such that for every B el(5) the inequality |s(B) — u| < e/2 
holds. Then 

|s(Bx) - s(B2)\ g \sfij - u| + \s(B2) - u\ < e 

for every Bu B2 e 1(5). 
2. Assume that for every n e N there is a gauge Sn on [a, b] such that the inequality 

(14) |S(B.) - s(B2)\ < I 
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holds for every Bu B2 el(8n). We may assume that 

<5X(T) = 82(x) = <5 3 (T ) = . . . , T € [ a , 6 ] . 

For every n e /V let us choose a set Bw e J(<5„); then also Bnel(8k) for every fe ̂  n. 
For a given ;•/ > 0 let us find n0e N such that l/n0 gj ly. For every m, n e /V such 

that m > n = w0 we have an estimate 

(15) \s(Bn) - s(Bm) < ± £ , . 
n 

This means that {s(Bn)}n==1 is a Cauchy sequence in R9 which has a limit ueR. 
Passing to the limit with m -» oo in (15) we get 

K-».) - «l á -

Let e > 0 be given. Let us find n' e /V such that 1/n' g e/2; then for every B e 1(8*) we 
have the inequality 

\s(B) - u| £ KB) - <1».0| + K*»') - u| < - = e. 
n* 

Consequently ]T u(f) = u. 
fe[a,ft] 

Lemma 3. ALsswme fhaf a convergent series £ u(f) is given; for e > 0 let a gauge 
te[a,b] 

5 on [a, fr] be given such that the inequality (13) holds for every Bl9 B2el(5; a, b). 
Then 

\s(Cx) — s(C2)| < 8 for every interval [c, d] c [a> ft] and every 

C ^ C . e J ^ c d ) . 

Proof. Assume that Cx = {s1? s2,..., sfc}, C2 = {tl9 tl9..., fm}. Let us choose 
sets B = {T1? ..., TP} e J(<5; a, c) and J) = {<ri9..., <rj € 1(8; d, b) (if a -= c or d == b 
then B = 0 or D = 0, respectively). According to Lemma 1 (ii) the sets B u Cx u D 
and B u C2 u D belong to J(<5; a, ft). By (13) we get the inequality 

Kci)-s(c2)| = 114^-14^)1 = 
І - = l І - - 1 

- І [ £ - < - . ) + Ž-<*.) + Ï - < » . ) ] -
i = l i = l i=-l 

-[ľ«0«) + t^«) + І^«)]| = 
i = l i=-l i=-l 

= |s(B u C І u D) - s(B u C2 u D)| < e. 
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Proposition 3. (i) If the series ]T u(t) is convergent, then £ u(t) is convergent 
fe[a,fc] fe[c,d] 

for every interval \c, d] c [a, 6]. 
(ii) For e > 0 let a gauge 5 be given such that \s(B) — ]T u(t)\ < s holds for 

fe[a,fr] 

every Be 1(8; a, b). Then \s(C) — £ u(t)\ ^ e ho/ds for every C el(8; c, d), 

where \c, d~\ c [a, b]. 

Proof. This is a consequence of Proposition 2 and Lemma 3. 

Theorem 1. Assume that a convergent series £ u(t) is given. Let us define 
fe[a,b] 

(16) f(a) = u(a), f(x) = £ u(t) for xe(a,b\. 
fe[a,t] 

TAen the function f is regulated (i.e. has onesided limits) and 

(17) l i m / ( S ) = / ( T ) - u ( t ) , xe(a,b], 
S-+T-

limf(s) = / ( T ) , T e [ a , b). 
S-+T + 

Proof. Let e > 0 be given. Let us find a gauge 8 on [a, b] such that 

\s(B) - X KOI < e holds for e v e r y B el(d> a> *>)• 
a) Assume that T e (a, b~\. Let s e [a, T) be such that T — <5(T) < s. Take any set 

JBeJ(<5; a, s) such that s e £ . Since {T} €I(c5; s, T), by Lemma 1 the set J 5 U { T } 

belongs to I(<5; a, T). According to Proposition 3 (ii) the following estimate holds: 

(18) | / ( t ) - u(r) - / ( S ) | £ \f(x) - [u(r) + S(B)]| + |/(S) - s(B}\ = 

= | / ( t ) - s ( B u { t } ) | + | / ( S ) - S ( B ) | g 2 8 . 

b) Assume that a _̂  T < b, let C e/(<5; a, T) be such a set that T e C (if T = a 
then C = {T}). For every SG(T, b] such that s < T + <5(T) the set {T} belongs to 
1(8; T, s) and consequently C e 1(8; a, s). Then. 

(19) |f(s) - f(T)| = |f(s) - s(C)| +- |f(T) - s(C)| = 2a . 

The relations (18), (19) imply (17). 

Corollary 1. If the series ]T u ( 0 is convergent, then the set {t e [a, b]; u(t) 4- 0} 
fe[a,fc] 

is at most countable. 

Proof. Since the function f defined by (16) is regulated, it can be discontinuous 
only in an at most countable set; accordingto (17) 

f(T-) 4= f(x) if and only if u(x) * 0 . 
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Corollary 2. If the series £ u(i) is convergent then 
fe[o,fc] 

lim u(s) = 0 for every T G [a, b] . 
S-+T 

Proof. Let T G (a, fr] and 2 > 0 be given. There is A > 0 such that the following 
holds: If T - X < s < T, then | / ( r - ) - f(s)| = €. Then also | f vT-) - f(s-)| = a 
for every s e (T — A, T). Hence 

K-)l = IA-) -/(--)l ^ IA-) -A*-)l + |A*-) - A»-)l ^ 2a, 
if s G (T — A, T). This means that lim u(s) = 0. Similarly lim u(s) = 0 for every 

S - + T - S-+T + 

T e [a, b). 

Corollary 3. Assume that the series £ u(t) is convergent. Let us define 
t e[a,J>] 

(20) a(a) = 0 , a(T)= X "(i) / ^ Te (a , o ] . 
•e[«.0 

Then the function a is regulated and 

(21) lim a(s) = a(T), T e (a, a] , 
S->T — 

lim g(s) = g(r) + U(T) , T G [a, b). 
S-+T + 

Proof. By Proposition 1 we have g(x) — f(t) — U(T) for every T G [a, 6]. If 
T G (a, b] then 

lim ^(s) = limf(s) - lim u(s) = / ( T - ) = / ( T ) - U(T) = #(T) ; 
S-*T— S-»T— S-+T — 

if T G [a, b) then 

lim g(s) = limf(s) + lim u(s) = f(T) = g(x) + U(T) . 
S-+T+ S~>T + S->T + 

Theorem 2. Assume that a function u: [a, b] -» W is given. Let us define a function 
U: [a, b] x [a, b] -+ R by 

U(t, t) = u(t) for T < t, 

t/(T? r) = o for T = t, 

U(r91) = -M(T) for x > t. 

Then the series £ u(t) is convergent if and only if U(t,t) is integrable over 
-e0-»-»] 

[a, b\. We have the equality 

j * D U ( M ) = ! « ( . ) . 
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Proof, (i) Assume that the function U is integrable and denote 

r = JjDi/(T,0. 

For a given e > 0 there is a gauge <5 on [a, b] such that 

\S(U,A)-y\<e 

holds for every A e s4(5; a, b). Let us define 

<5'(T) = min {<5(T), b - T, T - a} for T e (a, b), 

<5'(T) = min |<5(T), b - a} for T = a, b . 

Let an arbitrary finite set B = {tx, t2,..., tm} e 1(5') be given. By Lemma 2 the set B 

contains the points a, b. Assume that 

a = t, < t2 < ... < tm = b. 

For any i = 1, 2,..., m — 1 we have by (7) 

ii+1 - ti < S\ti) + <5'(f i+1), i.e. * i + 1 - <5'(*i+1) < tt + $'(*,) . 

Hence the open interval (f|, ti+l) n ( t i + 1 - <5'(fi+1), tt + <5'('0) is nonempty. 
Corollary 1 of Theorem 1 implies that there is (xie(ti, ti+1) n (ti+i — <5'(fi+1), 
U + ^'(ff)) s u c ^ * a t tt(ai) = 0. Denote a 0 = a, am = fr. 

The set .4 = {a0, tu at,..., tm, am} obviously belongs to s/(5'; a, b). Consequently 

Ц-ifg-W^ + т l l - I Z - ÍO- r l -
л = l л = 2 

-|[f«(0+"l-<«0]-т|-
л = 2 л = l 

= |[ £ 4 0 + ľ «W] - r| = \S(U,A) -y\<в. 
*n-l<t„ t„«Xn 

According to Definition 2 the series £ u(t) is convergent and £ u(f) = u(a) + y. 
t€[a,b] te[a,b] 

Hence y = J] u(f). 
t*e(a,b] 

(ii) Assume that the series £ u(f) = w is convergent. For every gauge <5 and 
f6[a ,b] 

f e (a , b] let us denote by It(S) the set of all Be 1(5; a, t) such that teB. For f = a 
the set Ir(<5) will consist of a single element {a}. 

Let e > 0 be given. There is a gauge 5 on [a, b] such that 

(22) \s(B) - u| < e holds for any B e 1(5; a, b) . 

Let us define m(t) = inf s(B), M(t) = sup s(B), t e [a, b]. Let us notice that 
Bett{S) BeIt(S) 

m(a) = u(a), M(a) = i#(a). From (22) it follows that u - e < s(B) < u -f- e for 
every Belb(5) cz I(<5; a, &), and consequently 
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u - £ ^ m(b) ^ M(b) ^ u + £, 

(23) u - u(a) - £ ^ m(b) - m(a) ^ M(6) - M(a) g u - u(a) + £ . 

Assume that a <^ T < t ^ b and t < T + <5(T). For arbitrary A > 0 there are 
B1,B2eIr(d) such that 

s(B±) < m(x) + k , s[B2) > M(T) - k. 

Since {T, t} el(5; T, r), by Lemma 1 (ii) thes sets Bx u {T, t} = Bx u {*} and £ 2 U 
u {T, f} = B2 u {t} belong to I(S; a, t); these sets also belong to It(5) because they 
contain t. Hence 

m(t) ^ s(Bx u {t}) = s(Bt) + u(t) < m(x) + k + u(t) , 

M(f) ^ s(£2 u {*}) = s(J52) + u(t) > M(x) - k + u( t). 

Since the number k > 0 was arbitrary, we get inequalities . 

(24) m(t) - m(x) g u(t) = C/(T, t) - E/(T, T) ^ M(t) - M(x). 

Similarly, if a rg t < x g b where T — &(x) < t, then for an arbitrary i/ > 0. we can 
find Cl5 C2 eIf(<5) such that 

s(Cx) < m(t) + ^ , s(C2) > M(r) - ^ . 

Since {T} el(3; t, T), the sets C1 u {T}, C2 u {T} belong to It(<5) and consequently 

m(T) S s(Ci ^ M ) = s(Ci) + U(T) < m(t) + ^ + u(x) , 

M(T) ^ s(C2 u {T}) = s(C2) + U(T) > M(t) - ^ + U(T) . 

We get the inequality 

(25) m(T) - m(t) ^ u(x) = U(x, x) - U(x, t) = M(T) - M(t). 

According to the definition of integral using major and minor functions (see (5), 
(6)) it follows from (23), (24), (25) that the function U is integrable over [a, b\ and 

| »DU ( r , 0 = u - u ( a ) = £ "(') • 
fe(a,&] 

Theorem 3. Assume that real functions w, v: \a, b\ -> R are given. Let us define 
a function V: [a, b] x [a, b\ -> R by 

(26) F(T, t) = u(t) + v(x) for x < t, 

V(T, t) = 0 for T = t, 

V(x, t) = - U ( T ) - v(t) for x > t. 

Then the series £ (u(t) + v(t)) is convergent if and only if the function V is 
te[a,b] 

integrable over [a, b~\. We have the equality 

\b
a DV(T, t) = v(a) + £ («0) + t<0) + u(b) . 

te(a,b) 
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Proof. Let us define 

JR(T, t) = u(t) + v(t) for T < t, 

K(T, *) = 0 for T = f, 

JR(T, t) = - U ( T ) - I;(T) for T > t. 

By Theorem 2 the series £ (u(f) + v(t)) is convergent if and only if R is integrable 
te[a,b] 

over [a, &], and 

(27) ft D % , o = I MO + f(0) 
*6(fl,b] 

holds. Using the definition of the generalized Perron integral, it can be easily proved 
that the function V(T, t) — R(x, t) = v(x) — v(t) is integrable over [a, &], and 

(28) ftD[V(x,t) - R(x,t)] = v(a) - v(b). 

Then the function Vis integrable if and only if R is integrable. From (27), (28) we 
obtain 

ft DV(T, 0 = ft DR(T, 0 + ft D[V(T, 0 - R(r, tj] = 

= ( I («0 + »(')) + «b) + <&))} + («<„) - t(b)) = 
-e(a,b) 

= <*) + I («(<) + »(0) + "(ft) • 
tE(a.b) 

Corollary 4. The series £ M(0 *s convergent if and only if the function 
fe[a,fc] 

U': [a, b] x [a, ti]-+R defined by 

U'(x, t) = U(T) for x < t, 

L/'(T, I) = 0 for T = f, 

IT(T, f) = -u ( t ) f0r T > r 

is integrable over [a, &]; the equality 

J»Dir(t,0- I«( ' ) 
te[a,b) 

is satisfied. 

Theorem 4, Assume thaf functions u, i>: [a, fe] -* ff are #n;en. Let us define 
a function W: [a, b] x [a, b]-+ R by 

W(x, t) = I>(T) for x < t, 

JP(T, /) = 0 / o r T = r , 

>V(t, 0 = - U ( T ) for T > t. 
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If the function W is integrable over [a, ft], then the series ]T (u(r) 4- v(t)) is 
tela,ft] 

convergent, and the equality 

ft DW(x, t) = v[a) + £ (u(.) + t<0) + «(&) 
•e(a,b) 

holds. 

Proof. Denote J"* DJV(T, t) = y. Since the values u(a), v(b) have no influence on 
the values of W(x, t), we can assume that 

(29) u(a) = v(b) = 0 . 

For a given e > 0 there is a gauge 5 such that \S(W, A) — y| < e holds for every 
A e s/(S; a, ft). Let us define 

<5'(T) = min (<5(T), ft — T, T - a} for T e(a, ft) , 

<5'(T) = min (<5(T), ft - a} fot T = a,b . 

Let an arbitrary set {ti9 t2,..., tm) eI(S'; a, ft) be given. Lemma 2 implies that this 
set includes the points a, ft. We can assume that 

a = tt < t2 < ... < tm = ft. 

Define a0 = a, am = ft; for every i = 2, 3, . . . , m - 1 it follows from (7) that there 
exists a point af e (tt, ti+1) n (fi+1 - 8(ti+1), tt + <$(*,)) similarly as in the proof of 
Theorem 2. Then A — {a0, tl9 a l5..., aw_l5 tm, am} e jtf(<5; a, ft). Let us note that 
a0 = tt < <xx; am_! < tm = am; oci^l < tt < af for i = 2,... , m - 1. We have the 
estimate 

£ > \S(W,A) - y| = |[W(*i, a i ) - PV(fl5 rx) + 

+ I W ' I . a 0 - ^ «i-i)) + ^ ' . ) - W(tm, a-.*)] - y| = 
i = 2 

- .MO + i W i ) + «(.«)) + «(<-)] - r| = 
i = 2 

- I £(«(«.) + <( '«))-r | -
i-= 1 

Consequently, 

r = I MO + <*)) = («(«) + *«)) + I WO + "(0) + 
te[a,b] te(a,b) 

+ (u(b) + v(b)) = v(a)+ I (u(t) + v(t)) + u(b) 
te(a,b) 

(we take (29) into consideration). 

If we use the known properties of the integrals of functions U or Uf as defined 
in Theorem 2 or Corollary 4, we can obtain several properties of the series £ u(t): 
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Proposition 4. Let aeR be given. If the series £ u(t) is convergent then the 
te{a,b\ 

series £ (a u(t)) is convergent and 
t€[a,b\ 

X (a «(;)) = a X «( . ) . 
te[a,b\ te{a,b\ 

(See [S], Th. 1.5.) 

Proposition 5. If the series £ w(t), £ v[t) are convergent, then 
te{a,b\ te{a,b\ 

I («W + -<»)) = X "(0 + X <t). 
te{a,b\ te{a,b\ te{a,b\ 

(See [S], Th. 1.6.) 

Proposition 6. If c e (a, b) and the series ]T u(t) and £ u(t) are convergent then 
te{a,c\ te{c,b\ 

X «(') = X "(0 + X «(') • 
te{a,b) te{a,c\ te(c,b\ 

(See [S], Th. 1.10.) 

Proposition 7. Assume that for every ce(a, b) the series £ u(t) is convergent 
te{a,c\ 

and that there exists a finite limit Urn ]T u(t) = a. Tften t/te series ]T w(t) is 
' c-+b- fe[a,c] te[a,b] 

convergent and a = ]T u(f). 
fe[c,b] 

(See[S], Th. 1.13.) 

Proposition 8. Assume that for every c e (a, b) the series ]T u[t) is convergent 
te{c,b\ 

and that there exists a finite limit lim £ u(t) = /?. Then the series £ u(t) is 
c-*a+ fe[a,b] te[a,b\ 

convergent and f$ = £ u(t). 
te(a,b\ 

(See [S], Remark 1.14.) 
Proposition 9. Assume that <p: [a, b] -> [c, d\ is a continuous strictly monotone 

function such that cp(a) = c, cp(b) = d, or cp(a) = d, cp(b) = c. If one of the series 
.£ u(0> X u((P(t)) ls convergent, then also the other is convergent and 

te[c,d\ fe[a,b] 

X «(0 = X «W0) • 
fe[c,d] te{a,b\ 

(See [S], Th. 1.24.) 

Theorem 5. Assume that a convergent series ^ u(t) = u is given. Then there 
te{a,b\ 

is a sequence {t^^i of pairwise different points from \a, fc], such that 260 



/e[a,d] n = l 

and {re [a, &]; u(f) 4= 0} c {fl5 f2, f 3 , . . . } . 

Proof. Let us denote M = {t e [a, b\; u(i) + 0}. Since the set M is at most 
countable, there is a sequence {(Tn}^l cz [a,b] such that M cz {<ru <r2t<r3,...}. Let 
us denote Ck = {<ru <r2,..., <rfr} for every ke N. For any fc = 1, 2, 3 , . . . there is 
a gauge <Sfc on [a, b\ such that 

(30) \s(B) - u\ < - holds for any finite set B e I(Sk) . 
/c 

Let us choose a set Bx e I ^ j ) . There is an integer px such that J5X n M cz CPl. Let 
us define 

A2vT) = min {<52(T), dist (T; BX U CPl \ {T})} for any T e [a, b] . 

Let us choose a set B2 el(A2); then £ 2 cz Bx u Cpi holds according to Lemma 2. 
Further, if the set Bk has been defined for an integer fc, we can find an integer pk 

such that Bkn M cz CPk, and we will denote 

Ak+ X(T) = min {<5fc+t(x), Ak(x), dist (T; J3fc u CPk \ {x})} 

for any T e [a, b] . 

Then let us choose a set Bk+ x e I(Ak+l). 
In this way we can obtain a sequence {pk} of integers, a sequence {Ak} of gauges 

and a sequence of finite sets Bx cz B2 cz ... cz Bk cz J3fc+1 cz ... cz [a, b] such that 
^ e I ( A f c ) a n d 

(31) BknMnCPkczBk + 1 

hold for any integer k. 
Let us denote the elements of Bx by tx < t2 < . . . < tmr If ^ , f2,..., tmk have 

been defined for an integer k, let us denote the elements of Bk+1 \Bk by tmk+1 < 
< tmk+2 < ... < tmk+l. We obtain a sequence of pair wise different points {tn}„°=l 

such that Bk = {tx, t2,..., fMJ. (31) implies that 

oo oo 

{tut2,t3,...} ={JBkcz\JCPk = M. 
& = i k = i 

oo 

Let us prove that ]T w(tw) = w. For a given e > 0 let us find an integer k0 such that 

l/fc0 ^ e. If an arbitrary integer jV ^ mko is given, we will find such k ;> fc0 that 
mk < N = m*+1. In case that N = mk+1, the set {^, f2,..., tN} coincides with .Ak+1 

which belongs to I(Ak+1); hence 

1 
|ZЧ<.)-«l-Kв,ł,)-»l<^<,-s-
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Now assume that N < mk+1. Let tr be the neighbour of tN inside Bk+l n [tN9 fc], i.e 
a point from Bk+1 satisfying (tN, tr)nBk+1 = 0. Then tr - tN < Ak+1(tr) + Ak+1(tN) 
according to Definition 1. There is ce(tN, tr) such that tr — Ak+1(tr) < c < tN + 

+ -4*+i(**)-
It is quite evident that {tl9129..., tN} n [a9 c] eI(Ak+1; a9 c), while {tl9 tl9..., tN} n 

r\ [c, 6] = {tl91%9..., tmk} n [c, b] eI(Ak; c, 6). According to Lemma 1 (ii) we can 
conclude that {tl9t2,..., tN} eI(Ak; a9 b); consequently 

I £ **<*„> 
»=i k k0 

holds by (30). 

CO 

Proposition 10. Assume that a convergent series of real numbers £ an is given. 
n-* l 

If {tn}n
K>

ssl cr [a, b] is any increasing sequence and we define 
"(0 = «« for t = tn9 

u(f) = 0 for te[a9b]\{tl9t2,...} 9 

00 

ffte.n the series £ u(f) is convergent and ]£ u(f) = £ a„. 
fe[a,b] ^e[a,b] n = l 

QO 

Proof. Denote £ a n = a. Since the sequence {fn} is increasing in the compact 
n = l 

interval [a, 6], it has a limit c e (a9 6], For any £ > 0 there is an integer 1V such that 
m 

(32) I £ an - a| < e holds for any m = N . 

n = l 

Let us define 

<$(T) 8= f! — T for T e [a, f-J; 
% ) = '2 - h ; 

5(r) = min{T - tn9 tn+1 - T} for Te(fn, fn+1), n 6 l\l; 

5(tn) = min {tn+1 - /„, fn - tn„x} for n = 2 ; 

5(c) = c - f jy ; 

$(T) = T — c for T e (c, fc] . 

Let an arbitrary set Be 1(5; a9 b) be given. Since <5(T) <jj IT - C| holds for any 
xe[a9b] \{c} and S(x) ^ |T - /^l holds for any re [a, b]\{tN}9 the points tN 

and c belong to B. 
Let us denote m = max {nelM; tneB}. Then m = AT. The gauge <5 is defined 

so that 
<J(T) = dist(T;{r1,r2,...,rm}\{T}) 
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holds for any xe [a, fw]. By Lemma 2 the set B contains all points ti9 t2,..., tm, 
consequently 

s(B) = £ u(tn) = £ a„ . Since m = N , (32) yields 
n = l n = l 

|5(B)-a| = | f ; a „ - a | < e . 
n- 1 

00 

Theorem 6. Let an absolutely convergent series £ a„ 0/ ra*/ numbers and a se-
n = l 

quence of pairwise different points {sn}n=zi cz [a, b) be given. Let us define u(t) = <xn 

ift = sn,ne N, u(t) = 0 ift e [a, b] \ {s,,}^!. Then the series £ u(f) is convergent, 
re[a,&] 

f/ie function W: [a, b] x [a, fo] -> R defined by 

W(x, t) = U(T) I / T < f, W(x,t) = 0 if T = * 

is integrable over [a, b], and 

?aDW{T,t)= £ «(.)--£«-. 
*e[a,fc] n = l 

oo 

Proof. Denote a = £ a„. Let e > 0 be given. There is an integer n0 such that 
n = l 

00 

5] |an| < e. Let us define 
n — «o + 1 

(33) 5(T) = min{|T-s,. |; n = l,2,. . . ,n0} for x e[a, b]\{sn}
n

nli ; 

5(x) = min {|T - sn\; n = 1, 2,. . . , n0, n # fc} for T = sk , 

fc = 1,2, . . . ,n 0 . 

Let a partition -4 e .s/(<5; a, &) be given, A = {a0, T15 ..., xk, ak}. Lemma 2 implies 
that the set {sl9 s2, ..., sno} is contained in the set {T1? T2, ..., xk}. Moreover, for 
every sn, n = 1, 2, . . . , n0 there is an integer i such that sn = xt < cct (if sn = xt = 
= af < Ti+1 then sne(T i+1 — <5(Ti+1), Ti+1) which contradicts (33)). Denote J = 
= {n e N; sn = Tf < af for some i}; then J c= {s1? s2,..., sWo}. We have the estimate 

\S{W,A) - «| = |iu(rO - «| = |I>(V> - £a„| = 
1 = 1 neJ n = l 

t | < « < 

= IE«»|<- E W < « . 
n—l » = » o + l ' 

Consequently, the function Wis integrable over [a, b] and J* DW(T, t) = a. Theorem 
4 (with u(x) and 0 instead of v(x) and M(T)) implies that the series ]£ w(f) is convergent 

and has the sum a. 
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Theorem 7. Assume that functions u, v: [a, b] -> R satisfy \u(t)\ ^ v(t) for 
t e [a, b]. If the series ]T v(t) is convergent, then 

tela,b] 

(i) the series £ u(t) is convergent and | £ u(t)\ ^ £ v(t); 
teta,b] tela,b] t€latb] 

(ii) for every sequence of pairwise different points {s„}„c
=1 a [a, b] such that 

{t e [a, b]; u(t) 4= 0} c {sx, s2, s3,...} the equality 

£ « < - . ) - 1 »w 
» = 1 te[a,b] 

holds. 

Proof, (i) Let e > 0 be given. By Proposition 2 there is a gauge <5 on [a, b] such 
that 

m k 

I X r ( 0 "-* Z KT1)| < e holds for every two sets 
n = l y = i 

{tu<t2, ..., rm}, {T1? T2, ...,Tk}e(<5). 

Let J50 = {rl9 r2 , . . . , tm} eI(<5) be fixed. Let us denote 

5'(T) = min {<5(T), dist (T; B0 \ {T})} for any T e [a, b] . 

Then by Lemma 2 arbitrary sets {sl5 s2 , . . . , sk}, {o^, <T2, ..., 07} e/(5') contain all 
points from .80. We have an estimate 

\i«'t)-i<*j)\-\i'<>,)-£»(;)\s 
i = l 7 = 1 i = l J=l 

S|#Bo ffj^Bo 

^ I Z «<-.)l + I Z «K)I = Z «<-.) + Z « -
» = i y = i i = i J=i 

s<#Bo ojtBo srfBo OjiBo 
k m I m 

= [ I •<-.) - 1 *.)] + [ Z «fa) - Z *.)] < * • 
i = l n = l j=i n = l 

According to Proposition 2 the series X "(0 *s convergent. Since for every finite 
fe[a,b] 

set {tl9t2,..., tm} c [a, b] the inequality 

IZV-JI-SZ"^) 
n- -1 n = 1 

holds, we conclude that 

I Z «(0I ^ Z <*) • 
te[a,b] fe[a,b] 

(ii) By Theorem 5 there is a sequence {*„}*--1 c [a, b] of pairwise different points 
such that 

{t G [a, b]; v(t) * 0} c {/lf ra, t3,...} and £ i<r) = J t>(f„). 
fe[a,b] n=*l 
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Let an arbitrary sequence of pairwise different points {sy}*=1 cr [a, b] be given 
such that 

{te[a9b]; u(t) * 0} c {s1} s2, s3,...} . 

For a given e > 0 there is such an integer N that 

I I HO - 1 KOI <« 
te[a,b] n = l 

holds for any m ^ N. There is such an integer K that 

N , s 2 , ...9sK} n ^ } ^ c {r1? r25..., . 

Let us mention that if t $ {tn}n=l then v(t) = 0. For any k = K we have 

[a, b]\({Sl,52, ...,sfc} n{t/J}n
w

=1) e [a, b ] \ { ^ , r 2 , . . . ,t„} . 

Then 

1 1 <o - i>(s,)i = I z «(oi = i <o = 
t€[a,b-ji 1=1 fe^.bJUsj}!^ fe^.b^is, /}^ 

= £ , ( 0 ^ i <o= z x o - £ « < . • . ) < « • 
fe[a,b]\({sJ}ikn{fn{ico) fe[a,b]\{fn}i* fe[a,b] n = l 

00 

Consequently ]T u[sj) = ]T u(r). 
1=1 fe[a,b] 

Definition 3. Assume that for every cc from some index set C a series ]T u\t) 
f€[a,b] 

is given. We say that the series ]T ua(t) = ua, a e C are equiconvergent, if for 
fe[a,b] 

every e > 0 fftere is a gauge d on [a, b] sucft that 

m 

| £u a ( t ) - ua| < 8 for every {tl9 f2,..., fm} el(5) and a e C . 
« = I 

Theorem 8. Let for every a e C a series £ wa(f) be given. Assume that there 
fe[a,b] 

are convergent series ]T v(f) = v9 ]£ w(t) = w such that v(t) ^ ua(t) ^ w(f) 
fe[a,b] fe[a,b] 

for every t e [a, ft], a e C. Then the series £ w<*(0> a € ^ a r e equiconvergent and 
te[a,b] 

there is a sequence {*„},?= i such that 

{tn}n=i <= {t e [a, b]; ua(t) * 0 for some a e C} ; 
CO 

t* * tm if n * m ; ^ u\t) = £ u"(f„) jar every a e C . 
te[a,b] n = l 

Proof. Let e > 0 be given. Let S0 be a gauge such that 
k k 

| £ i?(rM) - v\ < e and | £ w(fn) - w| < e for all 
n = l n = l 
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{Wl>.-->'*}€/(*o). 
Let S -= {su s2,..., sp) sl(d0) be a fixed set. Let us define 

<5(T) = min {<S0(T), dist (T; {sl9..., s,} \ {T})} for x e [fl, b] . 

An arbitrary set {tl912,..., fOT} el(8) includes all the points si, s ,̂ ..., V Then for 
every ot e C we have estimates 

f «%) - I «"(**) = f «*(.,) <. f wfc) = 
« = 1 fc = l n = l « = 1 

t»#S *„#S 

P 

= 1 4 0 - IЧ s*) = ( W ' . ) - w) + (w - IҶs,)) < 2в. 
л = l * = 1 л = l J f c = 1 

p 

Analogously £ «"('-) - I «*(**) ^ ( I < 0 - » ) + ( » - I «<-*)) > ~2 e-
11 = 1 * = 1 n = l J k = 1 

Consequently 

(34) |f»*(0-I«"(st)i<2e. 
* = 1 11=1 

Proposition 2 implies that £ ua(f) is a convergent series and has a sum ua. From 
fe[a,fc] 

m 
(34) it follows that I £ ua(f,,) - u J = 2e, hence the series £ ua(f), a € C are equi

n a fe[a,&] 
convergent. 

By Theorem 5 and Corollary 1 there is a sequence {*„},?_-. i such that tn =t= tm for 
n 4= m, 

(35) I-KO-XXO. 
f6[a,f>] n = l 

(36) W i i c ^ f a ^ ] ; *(*) * 0} , 

and 
(37) W r . i c { r 6 [ a , k ] ; w(f) * 0} . 

Let a e C. Then u*(t) = t>(*) + (u\t) - t;(r)) where u*(t) - t;(f) = 0. By Proposition 
5 the series ]T (u*(t) — t>(f)) is convergent. Since u*(t) — t>(r) ^ 0 for f e [a, b] 

te[a,b] 

and ua(f) — v(t) = 0 for every t e {*„},?.--1. according to (36), (37), Theorem 7 implies 
that 

l(u\t)-v(t)) = i(u*(tn)-v(tn)). 
-era,*] » = 1 

Then 
I u*(t) = I »(.) + I (u«(t) - t<0) -

fe[a,ft] fefa.fr] fe[a,&] 

= I »('») + f («"('-) -"('-)) = f «"('.)• 
it --1 » = 1 » = 1 
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Souhrn 

NEABSOLUTNĚ KONVERGENTNÍ ŘADY 

DANA FRAŇKOVÁ 

Nechť pro každé t z intervalu [a, b] je dáno reálné číslo u(t). Není problém sečíst všechna 
tato čísla u(ť) v případě, že řada £ u(t) je absolutně konvergentní. Článek podává návod, jak 

t€[a,b] 

sečíst řadu tohoto typu, která však není absolutně konvergentní. Používá se zde teorie zobecně
ného Perronova (neboli Kurzweilova) integrálu. 

Author's address: Lužická 1054, 250 82 Úvaly u Prahy, Czechoslovakia. 
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