Mathematica Bohemica

Dănuţ Marcu

Note on a Lovász's result

Mathematica Bohemica, Vol. 122 (1997), No. 4, 401-403

Persistent URL: http://dml.cz/dmlcz/126210

Terms of use:

© Institute of Mathematics AS CR, 1997

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

NOTE ON A LOVÁSZ'S RESULT

DĂNuT Marcu, Bucharest
(Received June 3, 1996)

Abstract. In this paper, we give a generalization of a result of Lovász from [2].
Keywords: hypergraphs, cycles, connected components
MSC 1991: 05C40

The terminology and notation used in this paper are those of [1]. So, let $\mathbf{H}=(X, \mathcal{E})$ be a hypergraph with X the set of vertices and $\mathcal{E}=\left\{E_{i}\right\}_{i \in I}$ the set of edges.

Theorem 1. If $\mathbf{H}=(X, \mathcal{E})$ is a hypergraph without cycles of length greater than two then there exists a vertex belonging to a single edge, or there exist two edges E_{i} and E_{j} such that $E_{i} \subset E_{j}$.

Proof. Suppose that no edge is contained in another one and that every vertex belongs to at least two edges. Let

$$
\left(x_{1}, E_{i 1}, x_{2}, E_{i 2}, \ldots, x_{p}, E_{i p}, x_{p+1}\right)
$$

be a chain of maximum length. We may suppose that $x_{1} \in E_{i 1}-E_{i 2}$, since otherwise x_{1} could be replaced by a vertex x such that $x \in E_{i 1}-E_{i 2}$ (such a vertex x exists and $x \neq x_{k}, k=2,3$, since $x_{2}, x_{3} \in E_{i 2}$ and $x \neq x_{k}, 4 \leqslant k \leqslant p+1$, since, by hypothesis, \mathbf{H} does not contain cycles of length greater than or equal to three). Obviously, there exists an edge E_{i} such that $i \neq i_{1}$ and $x_{1} \in E_{i}$. Since $x_{1} \notin E_{i 2}$ we have $i \neq i_{2}$. Moreover, if $i=i_{k}, 3 \leqslant k \leqslant p$, then there exists a cycle

$$
\left(x_{1}, E_{i 1}, x_{2}, \ldots, x_{k}, E_{i k}, x_{1}\right)
$$

of length greater than or equal to three, a contradiction. Thus, since the chain $\left(x_{1}, x_{2}, \ldots, x_{p+1}\right)$ is maximal, we have $E_{i} \subset\left\{x_{1}, x_{2}, \ldots, x_{p+1}\right\}$ and, since $i \neq i_{1}$, we
have $E_{i}-E_{i 1} \neq \emptyset$. Let k be the smallest index for which $x_{k} \in E_{i}-E_{i 1}$. Obviously, since $x_{k} \notin E_{i 1}$, we have $k \neq 1,2$. On the other hand, $k<3$, since otherwise there exists a cycle

$$
\left(x_{1}, E_{i 1}, x_{2}, \ldots, x_{k}, E_{i}, x_{1}\right)
$$

of length greater than or equal to three, a contradiction. The theorem is proved.
Theorem 2. If $\mathbf{H}=(X, \mathcal{E})$ is a hypergraph without cycles of length greater than two and with p connected components such that $\left|E_{i} \cap E_{j}\right| \leqslant q$ for every $E_{i} \neq E_{j}$, then

$$
\begin{equation*}
\sum_{i \in I}\left(\left|E_{i}\right|-q\right) \leqslant|X|-p q . \tag{1}
\end{equation*}
$$

Proof. We shall prove this theorem by induction. Obviously, the theorem is true for $\sum\left|E_{i}\right|=1$. So, suppose that it is true for hypergraphs \mathbf{H}^{*} for which $\sum_{i \in I^{*}}\left|E_{i}^{*}\right|<\sum_{i \in I}\left|E_{i}\right|$.
Obviously, by Theorem 1, only two situations are possible.
(a) There exists a vertex x_{1} which belongs to a single edge, say E_{1}. By induction hypothesis, the theorem is true for the subhypergraph \mathbf{H}^{*} induced by $X^{*}=X-\left\{x_{1}\right\}$. Thus, we have

$$
\sum_{i \in I^{*}}\left(\left|E_{i}^{*}\right|-q\right) \leqslant\left|X^{*}\right|-p^{*} q
$$

If $E_{1} \neq\left\{x_{1}\right\}$, then $I^{*}=I, p^{*}=p,\left|E_{1}^{*}\right|=\left|E_{1}\right|-1$ and (1) is verified.
If $E_{1}=\left\{x_{1}\right\}$, then $I^{*}=I-\{1\}, p^{*}=p-1$ and (1) is also verified.
(b) There is no vertex belonging to single edge, but there exist two edges $E_{i 0}$ and $E_{j 0}$ such that $E_{j 0} \subset E_{i 0}$. Since, by induction hypothesis, the theorem is true for the partial hypergraph $\mathbf{H}^{*}=\left(X, \mathcal{E}-\left\{E_{j 0}\right\}\right)$, it follows that

$$
\sum_{i \in I-\{j 0\}}\left(\left|E_{i}\right|-q\right) \leqslant|X|-p q
$$

(obviously, $p^{*}=p$). Moreover,

$$
\left|E_{j 0}\right|-q=\left|E_{i 0} \cap E_{j 0}\right|-q \leqslant 0
$$

and (1) is verified. The theorem is proved.
Obviously, Theorem 2 for $q=2$ yields

$$
\sum_{i \in I}\left(\left|E_{i}\right|-2\right) \leqslant|X|-2 p<|X|-p
$$

that is, the result of Lovász from [2].

References

[1] C. Berge: Graphes et Hypergraphes. Dunod, Paris, 1970.
[2] L. Lovász: Graphs and set-systems. Beitrage zur Graphentheorie (H. Sachs, H.S. Voss and H. Walther, eds.). Teubner, 1968, pp. 99-106.

Author's address: Dănuł Marcu, Str. Pasului 3, Sect. 2, 70241-Bucharest, Romania.

