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ON CERTAIN TYPES OF CONVERGENCES 

JAN BORSICK, Kosice 

(Received November 28, 1988) 

Summary. Mappings preserving Cauchy sequences and certain types of convergences 
connected with these mappings are investigated. 
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Let (X, dx)j (Yy dy) be metric spaces. A sequence S in X is a mapping of the set 
N of all positive integers into X. Let Fx denote the set of all Cauchy sequences in X 
and let F(X, Y) be the set of all mappings / : X •—> Y preserving Cauchy sequences, 
i.e. 

F(XyY) = { / : X - y : S € Fx => / o 5 G Fy} . 

R. F. Snipes has shown in [2] that every uniformly continuous mapping belongs to 
F(X, Y) and every mapping from F(X> Y) is continuous. 

Definition 1. (See [2].) Sequences S and T in a metric space (X, dx) are called 
parallel (written S \\ T) if for every positive e there is a positive integer Jb such that 
dx(S(n))T(n)) <efoin^k. 

Sequences S and T are called equivalent (written S ~ T) if for every positive 
integer t such that dx(S(m),T(n)) < e for m, n ^ Jb. 
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We recall some properties of these notions from [2]. Let 5, T and P be sequences 
in a metric space (X,dx). Then we have 

(1) 5 || T & T || 5, S~T&T~S; 

(2) 5 - T =* 5 || T; 

(3) S~T^SeFx; 

(4) 5 || T&S £ F x <* 5 ~ T; 

(5) ( 5 || TkT || P) => 5 || P, (5 - T&T ~ P) => S ~ P] 

(6) if 5 € Fx and T is a subsequence of 5, then 5 ~ T. 

In [1] it is shown that the uniform limit of mappings from F(X, Y) belongs to 
F(X, Y). Example 1 shows that a similar assertion for quasiuniform, continuous and 
uniform on compact a convergences is false. 

E x a m p l e 1. Let X = { £ : n G N}, Y = (0,1), both with usual metric. Let 
/ ( £ ) = 0 for n even and / ( £ ) = 1 for n odd. Further, let for k even 

/ * ( " • ) = / ( " ) for n ^ ib and /*. [ ~ J = 0 for n > fc 

and let for k odd 
1 \ / 1 \ / l \ 

1 for n > k. 
л Ш = / Ш f o r n ° a n d л Ш = 

Then we observe that /* G P(K,Y) for all k G N, the sequence (/*) converges 
quasiuniformly, continuously and uniformly on compacta to /, however / £ F(X, Y). 

Now we shall define certain convergences. 

Definition 2. Let (X, dx), (Y, dy) be metric spaces and let / , / „ : X —•• Y be 
mappings (n = 1, 2, . . . ) . The sequence (/n) we shall denote F, i.e. F(n) = /„ for 
n G N. We shall denote F D 5 (for 5 G KN) the sequence, the n-th member of 
which is (F(n) o S)(n), i.e. (F D S)(n) = fn(S(n)). 

Further, we shall denote 

(A) fn —• / , if F converges uniformly to / ; 

(B) fn^f,ifSeFx implies F D 5 | | / o 5; 

(C) fn^f,ifSeFx i m p l i e s F D 5 ~ / o 5 ; 

(D) fn £ / , if / o 5 G FY (for 5 G -YN) implies F D 5 || / o 5; 

(E) / n —* / , if F converges uniformly on totally bounded sets to / ; 
F 

(F) /„ —• / , if F converges uniformly on countable totally bounded sets to / ; 
c* 

(G) /„ —• / , if F converges pointwise to / and S € Fx implies F D S e F y ; 
(H) /„ " Lif/oS<=Fy (for S € X N ) implies F D 5 ~ / o S ; 
(J) fn -* /> if -71 converges pointwise to / and / o S € Fy ( hi S 6 XN) implies 

FDS€FY. 
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R e m a r k 1. The assumption of pointwise convergence in the definition of G-
convergence and /-convergence is needed. If namely X = Y = (0,1 >, with the 
usual metric, f(x) = 1 and fn(x) = £ for all x G X , then F D S G Fy for every 
S G XN, however (/n) does not converge. 

Until further notice we shall assume that (X, dx) and (Y, dy) are arbitrary metric 
spaces and the mappings belong to Yx. 

Lemma 1. Every convergence (A) — (J) implies pointwise convergence. 

P r o o f . The assertion is obvious for convergences (A)} (E), (F), (G) and (J). 
TO 

Let fn —• / . The constant convergence 5, S(n) = x for n G N, is Cauchy in X, hence 
F D S || / o S. This implies c-y(/n(*),/(*)) ~* 0- Analogously for convergences 
(C), (D) and (H). D 

Lemma 2. For convergences (^4)-(J) it holds: if(fn) converges to f, then every 
subsequence of(fn) converges to f if the same sense, too. 

P r o o f . We shall prove the assertion only for jB-convergence; proofs for the 
other convergences are similar. If u: N —• N is an increasing mapping and S G XN, 
we define T G XN as: T( l ) = T(2) = . . . = T(u(l)) = 5(1) and T(u(n - 1) + 1) = 
. . . = T(u(n)) = S(n) for n > 1. Then we have T o u = S and T G Fx for S G Fx. 
If /n -2. / and 5 G Fx, then F D T || / o T and hence also (F D T) o« || (foT)ou. 
Since (F D T) o ti = (F o u) D (T o u), we have (F ou)D (T ou) \\ f o (T o u) and 
(F o u) D 5 || / o S. Therefore fu(n) ^ f. D 

R e m a r k 2. Constant sequences converge for all these convergences but con
vergences (C) and (G) (for example, let X = { £ : n G N}, Y = (0,1) with the usual 
metric, / ( £ ) = 0 for n even, / ( £ ) -= 1 for n odd and / t = / for all fc G N). 

T h e o r e m 1. The convergences (D), (H) and (J) are equivalent. 

P r o o f . (D) => (H): Let fn ^ f. Let S G XN and / o S G Fy. Then 

F D 5 || / o S and by (4) F D 5 - / o 5, i.e. / n ^ / . 

(H) =>• ( J ) : Let /„ —• / . Then by Lemma 1 (/„) converges pointwise to / . Let 

S € XN and / o S € FY. Then F D S ~ / o S and by (3) F D 5 6 Fy, i-e. /„ --> / • 

(J) =>• (£>): Let us assume that there are mappings gn (n 6 N) and / such 
that < / „ - + / and (</„) does not D-converge to / • Therefore there is P 6 XN such 
that / o P G Fy, however sequences G • p (where G(n) = </„) and / o P are not 
parallel. Therefore there is 17 > 0 and an increasing mapping u: N —• N such that 
dY(((Gou) • (Pot.))(n), (foPou)(n)) > nfor all n € N. Put F = Gou, S = P o u . 
Then / o S G FY, by Lemma 2 /„ -^ / (/„ - F ( n ) ) and 

(7) <*r (/»(5(n)) f / (S(n))) ^ ,, for all n € N. 
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Since / o S € Fy, so F D S G FY. Therefore 

(8) 3m € N Vi,m> „ x : <.Y(/.(S(i)),/m(S(m))) < | . 

Since fn —• / , by definition (fn) converges pointwise to / . Therefore there is an 
increasing mapping Jfc: N —• N such that 

(9) Jfc(n)^Jfc(n-l) + 2 

and 

(10) dy(fkin)(S(n)),f(S(n)))<\. 

Define a sequence T as follows: 

(11) T(n) = S(p), if n = k(p) and T(n) = S(n) otherwise. 

Then T o Jfc = S and / o T E FY> Hence F D T G Fy. Therefore 

(12) 3n2 G N Vt,m > n2: dY(fi(T(t))Jm(T(m))) < | . 

By virtue of (9) there is r ^ max{ni, n2} such that r -̂  k(p) for each p € N. 
Therefore according to (11) T(r) = S(r). Then for each t ^ r in view of (12) and 
(8) we have 

(13) <.y(/.(r(i)),/ .(S(i))) ^ dy(fi(T(i)),fr(T(r))) + 

+ dy(fr(T(r)),fr(S(r)))+dY(fr(S(r)),fi(S(i))) < 

< 2 + 2 = l 
8 8 4 

Since foT€ Fy, so according to (6) / o T ~ foTok. Hence / o T ~ / o S and thus 

(14) 3s G N Vi^s-.dy (f(T(i)), f(S(i))) < | . 

Now, let t G N be such that k(t) ^ max{r, s}. Then (T o ib)(i) = S(t) and according 
to (13), (10) and (14) we have 

dy(fKt)(S(k(t))),f(S(k(t)))) $ dy(fkit)(S(k(t))),fk(t)(S(t))) 

+ dy(h(t)(S(t)),f(S(t)))+dY(f(S(t)),f(S(d(t)))) 
T) 77 I? 

However, this contradicts (7). • 
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Theorem 2. The convergences (B), (E) and (F) are equivalent 

P r o o f . (B) => (E): Let us assume that the assertion does not hold. Therefore 
there are a totally bounded set M and mappings hn (n = 1, 2, . . . ) and / such that 
hn —• / , however (hn) does not converge uniformly to / on M. Thus there is e > 0, 
a sequence P in M and an increasing mapping v: N —• N such that 

(15) dY (hv(n)(P(n)), f(P(n))) >e for all n € N 

Let us denote G = Hov, where H(n) = hn. Then dY(gn(P(n)), f(P(n))) > £ for all 

n e N and by Lemma 2 gn —* / . The set Af is totally bounded, hence the sequence 
P has a Cauchy subsequence. Therefore there is an increasing mapping u: N —• N 
such that Pou G Fx- We denote S = Po t i , F = Gou. Then S e Fx and according 
to Lemma 2 /„ —• / (where /„ = F(n)) . According to (15) we have 

(16) dY (fn(S(n)), f(S(n))) > e for all n € N. 

Since S e Kx, we have from J5-convergence F • 5 || / o S. Therefore there is 
k e N such that for n ^ fc we have cfy (fn(S(n)), f(S(n))) < e. However this 

contradicts (16). (E) => (F) : This is obvious. (F) =t> (B): Let / n £ / . Let 
S e Fx and £ > 0. Then the set M = {S(n): n G N} is countable and totally 
bounded. Thus fn\\t --3 / | M • Hence there is k G N such that for n ^ k we have 
dy (/n(5(n)), f(S(n))) < e and therefore F • 5 || / o 5, i.e. / n ^ / . D 

L e m m a 3. If/n -^ / , then f G F ( K , r ) . 

P r o o f . Let S G Fx • Since / n —• / , so (/n) converges pointwise to / . Therefore 
there is an increasing mapping k: N —• N such that dy (fk(n)(S(n)), f(S(n))) < n-

for all n G N. Therefore (F o k) • S \\ f o S. By Lemma 2 /* ( n ) -^ / , too. Therefore 
(F o k) D 5 G FY and hence according to (4) / o S G FY. Thus / G F(.K, Y). D 

L e m m a 4. If/n —• / then fn —• / . 

P r o o f . Let us assume that the assertion does not hold. Therefore there are 
mappings gn(n G N) and / such that gn —• / but (gn) does not .B-converge to / . 
Therefore there is a sequence P G Fx such that sequences GOP (where G(n) = gn ) 
and foP are not parallel. Thus there is 6 > 0 and an increasing mapping ti: N —• N 
such that 

dY(((Gou)D(Po u ) ) (n ) , ( foPo u)(n)) > 6 for all n G N. 

Denote F = Go t i , S = Pou. Then 5 G FXl by Lemma 2 / n -^ / and 

(17) dy (/n(5(n)), / (5(n))) > « for all n G N. 
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r* 

Since fn —• / , so (fn) converges pointwise to / . Hence there is an increasing mapping 

k(n) Ž -" 

Är:N^ • N such that 

(18) 

and 

(19) dү( 

Define a sequence T as: 

(20) T(n) = S(p) if n 

dү(fHn)(S(n)),f(S(n)))<t 

k(p) and T(n) = S(n) otherwise. 

Then T o k = S. It is easy to see that T € Fx- With respect to (18) and (20) 
there is an increasing mapping j : N —* N such that j(n) ^ k(p) for each p, n G N. 
Then / i ( f l )(T(i(n))) = / i („)(S(i(n))), therefore (F • T) o j = (F • S)oj. Since 
S, T £ Fx, so from G-convergence we have F • S G Fy and F D T G FY. 
Hence by (6) (F D T) o j ~ F • T, (F D 5) o j ~ F D 5 and by (5) F D T ~ 
F D S and hence by (2) F • T || F • 5. Therefore there is nx E N such that 
dy(/m(r(m)) , /m (5(m))) < f for m ^ nx. Since / n -* / , so according to Lemma 3 
f€F(X,Y). H e n c e / o T G F y . According to (6) foS = (foT)ok ~ / o T . Hence 
/ o 5 || / o T and therefore there is n2 G N such that dY(f(T(m))J(S(m))) < £ for 
m ^ n2. Now, let s G N be such that k(s) ^ max{ni, ri2}. Then 

dy(/*(.)(r(*(«))),/*(.)(-?(*(«)))) < J-

dY(f(T(k(s))),f(S(k(s))))<t. 

Since T(.t(«)) = S(s), so by virtue of (19) we have 

dY{fk(,)(S(k(s))),f(S(k(s)))) < dY(fk^(S(k(s))),fk(,)(S(s))) 

+ dY (fk(.)(S(s)), f(S(s))) + dY (f(S(s)), f(S(k(s)))) 

6 6 6 . 

< 4 + 4 + 4 < 5 -

However this contradicts (17). Ĵ 

Lemma 5 . Let f G F(A\ Y) and let /„ -^ / . Then fn -* /• 

P r o o f . L e t s G F y . Then F D 5 | | / o 5 . Since / € F(X,Y), so / o s 6 FY 

and hence by (4) F D 5 ~ / o S, i.e. /„ -^ / . D 
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Theorem 3. The convergences (C) and (G) are equivalent. 

P r o o f . (C) => (G): Let fn —• / . The pointwise convergence follows from 
Lemma 1. Let S G Fx. Then F D 5 ~ / o S a n d hence by (3) F D 5 G FY, i.e. 
fn —• f. (G) =-> (C): This follows from Lemma 4, Lemma 3 and Lemma 5. 

Therefore we have only four convergence (i.e. (A), (B), (C), (D)). D 

Lemma 6. If /„ —• / , then fn —• / . 

P r o o f . Let S G XN and / o S G FY. Let e > 0. Since / n =t / , there is 
no G N such that for n ^ no and each x G X: dy (/n(x),/(ar)) < e. Therefore for 

each n ^ n0 we have dY(fn(S(n)),f(S(n))) < e. Hence F D 5 || / o 5 and fn £ f. 
D 

A /? 

Lemma 7. If fn —» / , then / n —• / . 

P r o o f . It follows from Theorem 2. D 

T h e o r e m 4. Let (X, (f;r)> (y, dy) be metric spaces. Then for convergences (A), 
(B), (C), (D) we have the following diagram: 

A =• D 

5 <= C 

P r o o f . It follows from Theorem 3, Lemmas 4, 6 and 7 and Examples 2, 3 
and 4. D 

E x a m p l e 2. Let K = N, Y = (0,1) with the usual metric. Let fk(n) = 0 for 
n ^ k, fk(n) = 1 for n > k and / (n ) = 0 for all n G N. Then Y is a totally bounded 
space, fk, f G F(X, y ) , (/*) converges to / in the sense (B) and (C) and (/*) does 
not converge to / in the sense (A) and (JD). 

E x a m p l e 3. Let X = { £ : n G N}, y = (0,1) with the usual metric. Let 
/ ( I ) = 0 for n odd, / ( £ ) = 1 for n even and /* = / for all it G N. Then X and Y 
are totally bounded spaces, (fk) converges to / in the sense (A), (B) and (D) and 
(fk) does not converge to / in the sense (C). 

E x a m p l e 4. Let X = {£ : n G N}, y = N with usual metric. Let /*(£) = 
min{Ar,n} and / ( £ ) = n. Then K is totally bounded space, fk G F(.X",y) for all 
k G N, / 0 F(-X, y ) , (/*) converges to / in the sense (D) and (/*) does not converge 
to / in the sense (A), (B) and (C). 
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From Theorems 2 and 4 and Examples 3 and 4 we get 

Theorem 5. Let (X, dx) be a totally bounded metric space and let (Y, dy) be a 
metric space. Then we have 

A => D 

B «= C 

Lemma 8. Let (Y^dy) be a totally bounded metric space. Then D-convergence 
implies A-convergence. 

P r o o f . Let us assume that the assertion does not hold. Therefore there are 
mappings gn, f such that gn —•• / , but (gn) does not uniformly converge to / . Thus 
there is e > 0, S € XN and an increasing mapping Jb: N —• N such that 

dY (9k(n)(S(n)), f(S(n))) > e for all n <E N. 

Denote F = G o u> where G(n) = gn. Then we have 

(21) dY(fn(S(n)), f(S(n))) > e for all n € N. 

By Lemma 2 we have fn —• / . Since Y is a totally bounded space, there is and 
increasing mapping m: N —• N such that (f o S) o m £ Fy. Since / n —> / , so 
according to Lemma 2 /m(n) —*• / . Hence (F o m) D (S o m) \\ f o (S o m). Thus 
there is no G N such that 

dy(/m(n)(5(m(n))),/(S(m(n)))) < e for n ^ n0. 

However this contradicts (21). • 

From Theorem 4, Lemma 8 and Examples 2 and 3 we obtain 

Theorem 6. Let (Y^dy) be a totally bounded metric space. Then we have 

A <* D 

C => B 

From Theorems 5 and 6 and Example 3 we get 

Theorem 7. Let (K, dx) and (Y, dy ) be totally bounded metric spaces. Then we 
have 

C 

A <& B <-> D 
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Now we shall investigate the case when the mappings fn belong to F(X,Y). 

Theorem 8. Let (X, dx) &nd (Y, dy) be metric spaces. Let fn G F(X, Y) for all 
n G N. If(fn) converges to f in the sense (A), (B) or (C), then f G F(X,Y). 

P r o o f . According to Theorems 2 and 4 it is sufficient to prove for E-
convergence. Let S G Fx. Then the set M = {5(n): n G N} is totally bounded, 
hence / n | M =» f\M. Since fn\M G F(M, Y) we have by [I] f\M € F(M, Y). Therefore 
/ o S = /|Af o S G Fy and / G -F(-X\ V). Example 4 shows that this assertion is not 
true for D-convergence. • 

From theorems 8 and 6 we obtain 

T h e o r e m 9. If (Y,dY) is a totally bounded metric space, then the class 
F(X,Y) is closed for all convergences (A), (B), (C), (D). 

By Theorems 4 and 8, Lemma 5 and Examples 2 and 4 we get 

T h e o r e m 10. Let fn G F(X, Y) for all n G N. Then we have 

A^D 

C&B 

From Theorems 10 and 5 and Example 4 we obtain 

Theorem 11. Let (X, dx) be a totally bounded metric space. Let fn G F(X, Y) 
for all n G N. Then we have 

A&B&C 

D 

From Theorems 10 and 6 and Example 2 we get 

Theorem 12. Let (Y, dy) be a totally bounded metric space. Let fn G F(X,Y) 
for all n G N. Then we have 

A&D 

C<*B 
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By Theorems 11 and 12 we obtain 

Theorem 13. Let (X,dx)t (Y,dY) be totally bounded metric spaces. Let fn £ 
F(X,Y) for all n € N. Then all convergences (A), (B), (C) and (£>) are equivalent. 

Lemma 9. Let f € F(X,Y) and fn -£ f. Then /„ £ / . 

P r o o f . Let S € FX- Then / o S € FY, by Theorem 1 /„ -^ / and hence 
F D S ~ / o S , i . e . / n £ / . • 

From Theorem 10, Lemma 9 and Examples 2 and 5 we obtain 

Theorem 14. Let (X,dx) and (Y,dy) be metric spaces. Then in the class 
F(X,Y) we have 

A=>D=> B 

C 

E x a m p l e 5. Let X = N, Y = N with the usual metric. Let /*(n) = min{n,*}, 
f(n) = n. Then /*, / G F(X, Y), (/*) converges to / in the sense (B), (C) and (D) 
and (fk) does not converge to / in the sense (A). 

From Theorem 11 and 14 we obtain 

T h e o r e m 15. Let (X,dx) be a totally bounded metric space, let (Y,dY) be a 
metric space. Then in the class F(X,Y) all convergences (A), (B), (C) and (D) are 
equivalent. 

R e m a r k 3. We remark that C-convergence implies continuous convergence. 
Example 1 shows that continuous convergence does not imply C-convergence. If 
X is a complete metric space, then both convergences are equivalent. Further, B-
convergence implies convergence on compacta. Example 1 shows that the contrary 
assertion is not true. If X is a complete metric space, then both convergences are 
equivalent. 

The proofs are not difficult. 
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Súhrn 

O ISTÝCH TYPOCH KONVERGENCIÍ 

JAN BORSÍK 
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