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ON THE OSCILLATION OF CERTAIN DIFFERENCE EQUATIONS
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. Abstract. In this paper we study the oscillation of the diffe 2 ions of the form
D%en+ palzg + (0, Tamy, Arip) =0,

in comparison with certain difference equations of order one whose oscillatory ‘character is
known: The results can be applied to the difference equation

Ao bpolzn + qyklzn4g|’\|Azn_h\" SEN Tr—g =0,

where'A and 1 are real'constants, A >0 and u'> 0.
Keywords: ‘oscillation,; delay difference equations, forced equations
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1. INTRODUCTION
Consider the difference equation
(E) APz + palAzy + f(n 2nspy Aznsy) =0,
where {p,} is a nonnegative real sequence, 0.< p, <1, f: N x R? = R is continuous
for each fixed n, N = {0,1,2,...}; g and h are in N, A is the first order forward
difference operator, Az, = Tnt1 — Tn.

‘We assume that there exist an eventually positive real sequence {g,} and real
numbers A >0 and g > 0 such that

(1) sz, y)sgnz 2z galzylt - for n>0 and 2y #0.



By asolution of Eq. (E), we mean a non-constant sequence {z,;} satisfying (E) for
n 20, A solution {z,} is said to be oscillatory if it is neither eventually positive nor
eventually negative, and nonoscillatory otherwise.

In recent years there has been an increasing interest in studying the oscillatory
behavior of difference equations of special cases of type (E) when p, = 0 and con-
dition (1) holds with p =0. For recent contributions to this study we refer to the
papers [4]-[9] and the references cited therein. It seems that very little is known
regarding the oscillation of Eq. (E) when f satisfies condition (1) with ' 0 and
pn. 7 0. Therefore, the purpose of this paper is to present some new criteria for the
oscillation of Eq. (E). Theorems 1 and 2 are concerned with the oscillation of Eq. (E)
via its comparison with the oscillatory character of first order difference equations:
Theorem 3 deals with the oscillation of a special case of Eq. (E) when condition (1)
holds with X = 1 and £ = 0 and the condition on {p,} introduced in Theorems 1
and 2 15 not required ‘or else violated, and Theorems 4 and 5 are concerned with
the oscillatory behavior of the difference of two eventually positive solutions of the
difference equation

(Le) D22, PuAT, + 4ng(Tng) = €,

where g(z)x > 0 for ¢ # 0, ¢'(z) = k and {e,} is a sequence of real numbers.
Finally, we remark that this paper is motivated by the analogy between functional
differential equations of the form

d?x(t) dz(t) dz(t=h)
(Be) e A2 + (bt -9 —m ) =0,
where p: [to, 00) = [0,00) and f: [tg, 00) x RZ — R are continuous and g and h are
real constants, and difference equations of type (E). In fact, discrete versions of some
of the results in [1]-[3] for second order equations have been developed.

2.  PRELIMINARIES

We need the following two lemmas. The first is extracted from Lemma 5 in [8]
and the other is Theorem 7.5.1 in [6].

Lemma 1. Assume h: R — R is continuous, zh(x) > 0 and h(z) is nondecreasing
for z % 0. Let {gn} be a sequence of nonnegative real numbers and k a positive
integer. If the difference inequality

ALy + gih(znog) <0
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‘has an eventually positive solution, then: the difference equation

Azy + () =0

has an eventually positive solution.

Lemma 2. Suppose that {a,} is a nonnegative sequence of real numbers and let
k be a positive integer. Then

Nl bk
it [1 3 o> gy
——
is a sufficient condition for every solution of the equation

ATy +antnagy =0

to:-be oscillatory.

3. MAIN RESULTS
Now, we are ready to establish the following criterion for the oscillation of Eq. (E):
Theorem 1. Let condition (1) hold, let
=1 k=1

® dm > (TL-p)=o

hEng 20 SizEng

and
nth

(3) > g>0  for sufficiently large n.
i1

If for every v > 0 theequation
4) Awy, o+ vgn|wnon | sgnw, =0,

is oscillatory, then Fq.(E) is oscillatory.

Proof. Let {z,} be a nonoscillatory solution of Eq.(E); say z, > 0 forn >
no 2 1. First, we claim that {Az,} is eventually of one sign. To this end, we assume
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that {Az,} is oscillatory. There exists N 2 no +max{h, g} such that Azy < 0. Let
n.= N in Eq. (E) and then multiply the resulting equation'by Axy to obtain

AlzyAzy = —py(Azn)? = F(N, Tn-g, Doy-n)Azy
2 —pv(dzn)?
or
Azy Ay 2 (1= py)(Azn)? >0,
which implies that
AzN+1 <0
By induction, we obtain Ain <0 for m = N contradicting the assumption that
{Az,} is oscillatory.

Next, suppose there exists Ny’ > no +max{h, g} such that: Azy, = 0. Then setting
n =N in Eq. (E) leads to

A%zw, = = (N1, anyg, Az, ) SO,

which implies that
Ay g € Azy, =0,
As in the above case, we have seen that this contradicts the assumption that {Az,}
is oscillatory.
Now, we consider the following two cases:
(I) Az, < 0 eventually, (II) Az, > 0 eventually.
(I) Suppose that Az, <0 for n.>n; > max{N; Ni}. From Eq.(E) it follows that

A%z, p, Az, <O forim s
Set zp. = —Ax, forn >n;. Then
Azp +PoZn 20

or.
n—1

Zor1 2 (A —pa)en 2 [ = pi)zn,,

i=m

where z,,, is an arbitrary constant. Thus,

Bl
~am > [T -piza

imng
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Summing this inequality from ni ton — 1, we get

71 k1

:v,,!~xn2zmz H(l—pﬁ)ﬁoo as  n= 0o,

Ezny Simn

which is a contradiction. Next, we consider the other case
(II) Suppose that Az, > 0 forn > ny 2 max{N, Ni}. ‘There exist ny > n1 and
> 0'such that

(5) Tpog 2o for n>ng
Using conditions (1) and (5) in Eq. (E) we obtain
@ A2z, + 020 Az, )F <0 for nzng.
Set zp, = Az,, 72 na. Then (6) assumes the form
Azp + o gulznn)” €0, 2 ns.
Therefore, by Lemma 1; Eq. (4) has an eventually positive solution, whichis a con-

tradiction. ‘This completes the proof. 0

Next, we present an oscillation theorem for Eq. (E).

Theorem 2. Let conditions (1) and (2) hold and let

Nt
) z q;> 0 for all sufficiently large n,

i=ntl

where 7 = min{g, h}. If the equation
Py A
) AVt (%ﬂ) VoM sV, =0

is oscillatory, then Eq. (E) is oscillatory.

Proof. Let {z,} be anonoscillatory solution of Eq.(E), say z, > 0 forn >
no 2 1. As in the proof of Theorem 1, we see that {Az,} is eventually of one sign
and case (I).is impossible. ‘Next, we consider
Case (I1). Suppose that Az, > 0for n > n; > no. From the fact that Az, is
nonincreasing, we see that

et §
e N G

k=ny
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which implies that
n
Tn 2 §Ax.l for m2zny = 2n +1.

Then

) Tnig 2 (P—;;;‘Q—)Axnfg > (?_;_Q)Ah” for nzmnatg.

Using conditions (1) and (9) in Eq. (E) yields

g

Ayn + (n 3 g) Glgmor T <0 for nZnatyg,
where U, = Az, 12 ny + g. The rest of the proof is similar. to that of Theorem 1
(I1) and hence is omitted. (iz]

As an application, we apply Lemma 2'to the equations (4) and (8) appearing in
Theorems 1 and 2 respectively and obtain the following immediate corollaries:

Corollary 1. ‘Let conditions (1)~(3) hold. If
(i) for every constants v > 0, h > 1 we have

n=-1

e v R :
lgrilgf [:TL Athi] > m when p=1 and A>0

i=n—
or:
)
oo
Zq‘:oo when 0 <p<1 and A>0,

then Eq. (E) is oscillatory.

Cotollary 2. Let conditions (1); (2) and (7) hold. If
()7 =min{g, h} >1, and

o] z‘-g)* o
I%’gloléf {;i:%:_T (”5’ Qi]>m when  A+p=1

or
(i)
Z(T) i =0 when 0 <A+pu<1;
then Eq. (E) is oscillatory.
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The following theorem is concerned with the oscillation of a special case of the
equation
AN F Dl + Gl AT sgnz,_g = 0

when p =0 -and A =1, namely. the linear difference equation
(L) A+ Du AT + GaTaey = 0,
provided condition (2) is not required.

Theorem 3. Let Ap, <0:forn =no 20, g > 1, and

ntg kg,
(10) 5 @i>0 and 3 (i-g)ui>0  foralllargen,
; iz=n1 dmntl

n—1
where @, = ( > Qi) — Pu—g. If the equation

iy
(1 Azt pzny =0,
where

: ni—g

(12) Cp= min {Qn, —Q—an},

is-oscillatory, then Eq. (L) is oscillatory.

Proof. Let {z,} be a nonoscillatory solution of Eq. (L), say 2. > O forn =
np 1. ‘As:in the proof of Theorem 1, we see that {Az,} is eventually of one sign.
Next we consider the two cases (I) and (II) as in Theorem 1.

(1) Suppose that Az, < 0:forn.2ny 2 no. Summing both sides of Eq. (L) from
n —g:t0.n.— 1, we obtain

N1 nt

Az = Azn g+ Z PilT; + Z GiTizg =0,

i=n—g i=n-g

or

T T,
Azp+ [inn = PnegTpeg T Z Ii«HAPi} Ty z g <0 for n>ny.

imn—g g

=

Since Ap, <0, we have

n~1 =
Az, + K > Qi> - pn-g]xnwg <0, nzm,

i=n—g

427



and hence, by (12), we get
ATy A+ Cnin-g £ 0, nZny.

The rest of the proofiis similar to that of Theorem'1 Case II, and hence will be
omitted.
(II) Suppose that Az, > 0.forn 2 ny = ng. Then Eq. (L) assumes the form

(13) AP, GpEney S0, 0

‘As in the proof of Theorem 2 Case II, there exists an ns > ny such that (9) holds
for n 2 no. Using (9) in (13), we have

=
AYpt+nYn_g Ay + (—“—g)qnynwg <0 for nzng

2
where ¥, = Az, 1 > ny. The rest of the proof is similar to the proof of the above
cage and hence is omitted. This completes the proof. 0

Finally, we present results for the forced difference equations of the form (L.).

Theorem 4. Let the conditions of Theorem 3 hold with ¢» being replaced by
kqn. If {u,} and {v,} are eventually positive solutions of Eq. (Le), then {u, —v,}
is oscillatory.

Proof. Let {u,} and {v,} be two positive solutions of Eq. (L) for n. 2 no > 1,

and let w,, = u, — v, for n > ng. From Eq. (L) we can obtain
AP+ pu Ay + 4n [0 g) = g(0ny)] = 0.

To show that {w,} is oscillatory we will assume that {w,} is eventually positive.
The negative case follows analogously.

So, let us suppose that w, > 0 for n. > ng = 1. The Mean Value Theorem implies
that

A, + PoAw, 4k qn A,y 0
The rest of the proof is similar to that of Theorem 3 and hence we omit the details.
0

In the case when condition (2) is satisfied, we have the following immediate result:
Theorem 5. Let condition (2): hold and assume that Eq.(8) is oscillatory for

X=1,p=0,9 =1 and g, is replaced by kq,. If {u,} and {v,} are two eventually
positive solutions of Bq. (L), then {u, — v, } is oscillatory.

Proof.  The proof of this theorem follows the lines of proofs of Theorems 4, 3
and' 1, and hence is omitted. )

428



Remark 1. The results of this paper remain valid when p, = (. On the other
hand, if p, = p is a positive constant, the series in'condition (2) is a convergent
geometric series and hence condition (2) is-violated. In this case we are (only) able
o describe the oscillatory behavior of the linear difference equation (L) which is a
special case of Eq. (E).

‘As-an application; we present the following criteria for the oscillation of Eq. (L)
when {p,} and {q,} are constant sequences, i.e., for the difference equation

(Le) AP+ pAZ, + gy =0
where p-2 0 and ¢ > 0 are real constants, p < 1 and ¢ is a positive integer, g > 1.

Corollary 3. If

5

g
(14) 99-p> Foo

then Eq. (L) is oscillatory.

Corollary 4. If condition (14) holds, {u,.} and {v,} are two eventually positive
solutions of Eq.(L.), then {u, —v,} is oscillatory.

Remark 2. From Corollary 3 we see that the characteristic equation associated
with Eq. (L;), namely

(15) (m=1D%+pm=1D+qgm =0

has no positive roots provided that. condition (14) holds.

Remark 3.1t would be interesting to obtain results similar to Theorems 1 and
2. without: imposing condition (2). Also, to extend Theorems 3-5 to more general
equations of type (E).
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