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DESCRIPTIONS OF STATE SPACES OF ORTHOMODULAR 

LATTICES (THE HYPERGRAPH APPROACH) 

MIRKO NAVARA, Praha 

(Received February 4, 1991) 

Summary. Using the general hypergraph technique developed in [7], we first give a much 
simpler proof of Shultz's theorem [10]: Each compact convex set is affinely homeomorphic 
to the state space of an orthomodular lattice. We also present partial solutions to open 
questions formulated in [10]—we show that not every compact convex set has to be a state 
space of a unital orthomodular lattice and that for unital orthomodular lattices the state 
space characterization can be obtained in the context of unital hypergraphs. 
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1. BASIC NOTIONS 

Let us first recall the notions and facts on orthomodular lattices as we shall need 
them in the sequel (see [2, 4, 10]). The symbol oml will mean an orthomodular 
lattice. Also, if we deal with an oml (£,0,1,A,V,X) , we usually refer only to its 
domain L. 

An element a € L is called an atom if there is no b 6 L such that 0 < 6 < a. Let 
us say that L is chain-finite if all chains (=-strictly monotonic sequences) in L are 
finite. In this case each element of L is a supremum of a finite set of atoms. A subset 
M Q Lis called compatible if it is contained in a Boolean subalgebra of L. Maximal 
Boolean subalgebras of L are called blocks in L. 

A state on an oml L is a function s: L —* [0,1] which is additive, i.e. s is such a 
function that s(a V b) = s(a) + s(b) for all a, b € L with a .$ bL. Let us denote by 
S(L) the set of all states of L, and let us call S(L) the state space of L. 

Obviously, S(L) can be viewed as a subset of [0,1]^. Due to the finite additivity 
of elements of S(L) we can simply prove the following fact: 
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Proposit ion 1.1. The state space S(L) of an oml L is a compact convex subset 

of the set [0, l]L (here [0, \]L is understood with the product topology). 

2. REPRESENTATIONS OF STATE SPACES OF OMLS BY MEANS OF HYPERGRAPHS 

By a hypergraph we mean a couple H = (Y(H)y&(H))> where V(H) is a non­
empty set (of vertices) and &(H) C expy(H). The elements of £(H) are called 
edges.1 In what follows, the letter H always denotes a hypergraph. A state on H is 
a mapping s; r ( # ) -> [0,1] such that £ s(v) = 1 for all E G <P(H) [3]. The set 

of all states on H (the state space of H) is denoted by S(H). 

E x a m p l e 2.1. Consider a hypergraph U such that y(U) = {ti, v} and <f(U) = 
{{u}, {ti, v}}. One can easily see that there is only one state s on U. In fact, s(u) = 1, 
s(v) = 0. 

A subhypergraph of / / is a hypergraph G such that T(G) C ^(-ff) and &(G) = 
/ ( # ) HexpG. A hypergraph H is called connected if for each u,v E ^(-ff) there 
is a sequence of edges E\,...,En C &(H) such that u € £ i , v € -£n, and £ , fl 
-Et+i ?-= 0 for i = 1 , . . . , n — 1. A component of a hypergraph is a maximal connected 
subhypergraph. 

2.1 Greech ie diagrams. 

Let us recall a hypergraph representation of chain-finite omls. Let L be a chain-

finite oml and let s/(L) be the set of its atoms. Let us define a hypergraph H such 

that V(H) = J&(L) and &(H) consists of all maximal orthogonal sets of atoms. The 

hypergraph H fully describes the structure of L. We call H the Greechie diagram of 

L. Obviously, the states on L are in a natural one-to-one correspondence with the 

states on H. 

From now on, we shall assume that all hypergraphs satisfy the following condition 

(which is fulfilled for all Greechie diagrams of chain-finite omls). 

A s s u m p t i o n 2.2. In this papfer we shall deal only with those hypergraphs 

which are chain-finite, i.e. hypergraphs satisfying the following condition: 

there is no infinite set of vertices such that each of its finite subsets is contained 

in an edge. 

(In particular, all edges are assumed to be finite.) 

1 Unlike the standard definition, we do not require that £(H) be a covering of *V(H). 
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2.2 State space representations "up to a state isomorphism". 
If we are interested only in the state space of an oml and not in the intrinsic 

structure of the oml in question, we can employ the representation by hypergraphs, 
which we are going to describe in this subsection. In this representation one may 
identify vertices (atoms) which are indistinguishable at every state. 

Definition 2.3 [5]. Vertices u,tiG V(H) are called state-equivalent if s(ti) = 
s(v) for each state 8 £ S(H). 

E x a m p l e 2.4. Suppose that jtk G N, j ^ *• Define a hypergraph Hjtk 
with vertices z} x't y, j / , v, u>, t*i, ..., ti*, u' and with edges {«,«'}, {y, j / } , 
{tii,...,Wik,x'}, {wi,..-,tij-i,u;,i/}i {»,«itti+ir"»«*.«'} and {ti',tit}, t = 1, ..., 
Jb (see Fig. 1). It can be easily seen that each 8 € S(Hjtk) satisfies 

Fig. 1 

S(U{) = 1 - s(ti'), f = 1, . . ., k. 

Thus, the vertices tii, ..., ti* are state-equivalent. We also have 
«(*) = fcs(ui), 

*(y) ^ i « ( « i ) , 
*(y) > (i - ! ) ' *("i). 

which implies the inequality 

i - 1 —*( * ) <«(») < J-<*)-
(Notice that each state on Hjtk is uniquely determined by its values on y and a?, and 
for each r 6 [0,1] there is a state attaining the value r at x.) 
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For v € V(H) we denote by [v] the class of vertices of H state-equivalent to v. 

Put 9(H) = {[v]i v G V(H)}. Obviously, the state space of H is fully determined 

by the partition 9(H) of V(H) within the state equivalence and by the values of 

states on these classes. 

Definition 2.5 [5]. Let H\, H2 be hypergraphs. A state isomorphism of H\ and 

H2 is a byection / : &(H\) -> &(H2) such that 
1. for each state s2 on H2 the mapping t; •-• s2 ( / (H) ) is a state on H\, 

2. for each state s\ on H\ the mapping v >-• « i ( /~ 1 (H) ) is a state on H2. 

The notion of state isomorphism can be naturally extended to a state isomorphism 
of an oml and a hypergraph—instead of an oml we consider its Greechie diagram. 
The characterization of hypergraphs which are state-isomorphic to omls is then as 
follows. (By a graph we mean a hypergraph G such that <f (G) is a covering of V(G) 

and card 2? = 2 for all E G &(G). Let us recall that an even graph is a graph 
containing no cycle of an odd length.) 

Theorem 2.6 [7, 6]. Let H he a chain-finite hypergraph such that not all edges 

are singletons and such that &(H) is a covering ofV(H). Then H is state-isomorphic 

to a (chain-finite) oml if and only if for each v G *V(H) one of the following conditions 

holds: 

1. the component of H containing v is an even graph, 

2. there are vertices t i i , . . . , t i m G ^(H)f m ^ 2 (not necessarily different from 

v and from each other) such that each state s G S(H) satisfies the equality s(v) + 

E *(«,) = i. 

Corollary 2.7 [7]. Let H be a chain-finite hypergraph such that &(H) is a cov­

ering off(H). Suppose that there is a vertex v G V(H) such that s(v) = 0 for all 

8 G S(H). Then H is state-isomorphic to a chain-finite oml. 

2.3 State space represen ta t ions " u p to an affine homeomorph i sm" . 

The state isomorphism of hypergraphs is obviously a strictly stronger condition 
than the affine homeomorphism of their state spaces. (Observe that the state isomor­
phism preserves the values of the states, not only the convex structure. For instance, 
two hypergraphs whose state spaces are singletons need not be state-isomorphic.) In 
order to represent state spaces of omls up to affine homeomorphisms we are allowed 
to deal with all hypergraphs as the following proposition states. 

Proposit ion 2.8. Let H be a (chain-finite) hypergraph. Then S(H) is affinely 

homeomorphic to the state space of an oml. 
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P r o o f . For each v 6 V(H) \\Jf(H), let us add to H a new vertex w and 
the edge {v,w}. We obtain a hypergraph F with \Jf(F) = T(F). Now, we shall 
construct a hypergraph G by adding to F a new component which is isomorphic to 
the hypergraph U from Ex. 2.1. More precisely, Y(G) = r ( F ) U {uo,v0}, *(G) « 
^ ( F ) U { { U Q } , {uo, vo}}. Each state on H has a unique extension to G and G satisfies 
the assumption of Cor. 2.7. D 

3. AN ALTERNATIVE PROOF OF SHULTZ'S THEOREM 

The main result of [10] is the following theorem. 

Theorem 3.1. Let C be a compact convex subset of a locally convex Hausdorff 
topological linear space. Then there is a chain-finite oml whose state space is afiSnely 
bomeomorphic to C. 

We are now going to present a simple proof of this theorem. Let us first formulate 
two lemmas. 

Lemma 3.2. Suppose that r € R, r > 0. Then there is a hypergraph Gr and 
vertices x, y € f(Gr) such that 

1. each state s on Gr satisfies s(y) = r • s(x), 
2. each state on Gr is uniquely determined by its value on x, 

3. for each q, 0 ^ q ^ min(l/r, 1), there is a state on Gr attaining the value q 
at x. 

P r o o f . For r ^ 1 we take sequences of integers {ji}i^N, {*i}*€-V such that 

f = n tcA -

For each i G N we take the hypergraph Hjiiki from Ex. 2.4. In the hypergraphs 
Hji%ki, i € Nt^ we identify all vertices corresponding to the vertex * from Ex. 2.4 
and we also identify the vertices corresponding to y. Each state s on the resulting 
hypergraph Gr satisfies s(y) = r - s(x). For r > 1 we only interchange the role of * 
and y. D 

R e m a r k 3.3. If x' £ f(G>) is a vertex corresponding to x' e Hjitki for some 
t, we obtain s(y) = r . (1 - s(x')) for each * € 5(Gr). 
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Lemma 3.4. Lei G be a chain-finite hypergraph. Let C be the set of all states s 
on G satisfying the inequality 

(F) EM*XI. 

where n € N, q,pt € .ft and *,• e V(G) for i = 1, ..., n. Then there is a chain-finite 
hypergraph H and a vertex v € ^(H) such thai 

1. G is a subhypergraph ofH, 
2. each state s € C has a unique extension to a state on H, 
3. each s € 5(-fT) satisfies (F) and the equality in (F) occurs if and only ifs(v) = 0. 
In particular, S(H) is a/finely homeomorphic to C.2 

P r o o f . We may suppose that pi, ..., pn ^ 0. The inequality (F) is equivalent 
to the following inequality: 

(F') £ W,(*.)+ £ |«|(i-.(-..))<«+ £ M-
»<».P.>0 .<n,p,<0 .<n,p.<0 

Put 

o=«+ £ w-
•<n»Pt<0 

If Q < 0 then (7 = 0. In this case it suffices to add to G a new component which 
consists of the stateless hypergraph with vertices \i,v and edges {ti}, {v}i {u,v}. 

If Q = 0 then (F*) reduces to the equations s(tii) = 0, i = 1, ..., n. For each i ^ n 
we add to G a vertex y» and the edges {y*}, {a:,-, # } . It remains to take any x< for v. 

Suppose finally that Q > 0. For each i ^ n such that p* > 0 we add to G a vertex 
yt attd & copy of the hypergraph Gr from Lemma 3.2, where we take pi/Q for r, and 
identify «,y € Ciy with a:,, # , respectively. For each i ^ n such that p, < 0 we add 
a vertex ty and a copy of the hypergraph Gf from Lemma 3.2, where we take \pi\/Q 
fot f, and identify #', y£Gr with Zi, j/,-, respectively (cf. Rem. 3.3). Finally, we add 
a vertex v and the edge {&,. . . , yn, t>}. In the resulting hypergraph H we have 

£ M*i) + £ IftK1"* *(**)) *= Q • 5>(ft) *;Q - 0*(*>) < <? 
l^n#t>0 t^n,pi<0 t<n 

for each state s. One can easily check that H has the desired properties. D 

1 If we require a rotation between C and S(H) analogous to the state isomorphism, 
a simil. is given in [Th« 4.6, 7J for the case when (F) is replaced by a family of 
equalities of the form xa = ya, xa,ya € *V(G)> a € /. 
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Proof of T h e o r e m 3,1. Without %ny loss of generality we may suppose 
that C is a subset of [0, \)x for some set X The set C can be described as the set 
of ail s 6 [0, l]x which satisfy certain family of inequalities of the form (F)* 

Let G be a hypergraph with V(G) ~ X and tf(G) w 0. Then S(G) s? [0,1]*. 
We apply Lemma 3.4 to the hypergraph G and to all inequalities of the form (F) 
determining the set C\ We obtain a hypergraph H with S(H) affinely homeomorphic 
to C. Prop. 2.8 applied to H gives the desired oml. The proof is complete. D 

4. STATE SPACES OF UNITAL OMLS 

For the application of omls in quantum physics and other fields it is reasonable 
to require that the omls have "reasonably large" state spaces. Conditions used most 
frequently are the following (see [2, 9]): An oml L is called 

- unital if Vq 6 £, a ± 0 3s € S(L) \ s(a) - 1, 
- full (or order determining) if Va, b £ L> a £ b 3s € S(L); s(a) > s(b)} 

- rich (or strongly order determining) if Ya,6 € L% a £ 6 3* 6 5(L): 1 « *(q) > 
*(&). 

Shultz [10] posed a question of what sets can be represented as state spaces of full 
or rich omls. Unfortunately, the technique presented in Section 2,2 is of little use 
here since the constructions used in this paper (as well as the technique of Shults) 
lead to omls which are not full Only the unitality is preserved by state isomorphisms 
(of omls), Let us call a hypergraph H unital if Vv 6 V(H) 3« € S(H): s(v) .5? 1. 

In this section we show that the characterization of state spaces is the same for 
unital omls and for unital hypergrapbs. We also show that not all convex compacts 
are state spaces of unital omls. As all rich logics are unital, this result restricts 
also the class of state spaces of rich logics. Thus, this gives a partial answer to the 
question posed in [10]. 

Theorem 4.1. lei H be a unital chzin^finite hypergraph' There is a unitaj oml 
I such that S(L) is aMnely homeomorphic to S(H). 

Proof . The case when all edges of H are singletons is trivial (H is state-
isomorphic to the two-element Boolean algebra). 

If H contains singleton edges, these muft be disjoint to all other edges of H 
(because of the unitality). We omit ail sin^eton edges and their vertices in H and 
denote the resulting hypergraph by H\* This procedure does not influence the state 
space (up to an affine homeomorphism) and H\ if again witaJ, 

I*et G be a maximal subhypergrapb of Hi *uch that G is a graph and G is con­
nected, Due to the unitality, G is even mi tlWe are vertices «, v € T(G) such that 
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V(G) = [ti]U [v]. Each edge of H\ contains at most one vertex from [u] and at most 
one vertex from [v] (because of the unitality of H\). We identify all elements of [u] 
in Hrmd also all elements of [v]. Then G reduces to a single edge {u, v}. Repeating 
this procedure for all maximal subgraphs of H\ we obtain a hypergraph #2 which is 
state-isomorphic to H\ (and therefore unital). 

Consider an edge E = {u, v) € ^(#2)- K -5 forms a component of #2, v and u 
satisfy condition 1 of Th. 2.6. If both v and ti are covered by edges of #2 with more 
than two elements, condition 2 of Th. 2.6 is fulfilled. Suppose finally that exactly one 
of the two vertices, say v, is covered by edges of #2 with more than two elements. 
Then v satisfies condition 2 of Th. 2.6, while u does not. However, when we omit 
the vertex u and the edge {ti, v) in #21 the state space remains the same (up to 
an affine homeomorphism). Doing this for all two-element edges such that exactly 
one of their vertices is covered by edges with more than two elements, we obtain a 
hypergraph #3 with S(Hs) affinely homeomorphic to 5(#2)- One can easily verify 
that #3 is unital and satisfies the assumption of Th. 2.6. Thus there is an oml L 
state-isomorphic to #3, which is unital, and S(L) is affinely homeomorphic to S(H). 
The proof is complete. • 

Th. 4.1 is an analogue of Prop. 2.8 for unital hypergraphs and omls. As we believe, 
this theorem may help toward the characterization of state spaces of unital omls. 
Though we do not know such a characterization, we can show that it is substantially 
different from the case of general omls considered in the previous section. To do so, 
let us first recall a notion from the convexity theory. 

A subset F of a convex set C is called a face if for each s,t € C and a € (0,1) 
the relation AS + (1 — <*)< G F implies s,t € F. We denote by &(C) the lattice of 
all faces of C (the ordering in &(C) is given by inclusion). 

Proposition 4.2. A compact convex set C of an affine dimension 2 is afEnely 
homeomorphic to the state space of a unital oml (or rich oml) if and only if C is 
either a triangle or a parallelogram. 

Proof . Suppose that L is an oml such that the affine dimension of S(L) equals 
2. For each a e L, the set F(a) = {s € S(L): s(a) = 1} is a face of S(L). Obviously, 
the mapping F: L—> &(S(L)) preserves the ordering. 

If a, b are compatible elements of L and a £ b then F(a) <£ F(h), because there is 
a state t € S(L) with s(a A bx) = 1. Thus F restricted to any compatible subset of 
L becomes an order isomorphism. 

The maximal length of a chain in JF(S(L)) is 4 and the same holds for chains in 
L, hence L contains no block larger than 2s. 
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Suppose that L contains a block B with 3 atoms, say a, 6, c. As a compatible 
set, B is isomorphic (under the isomorphism F\B) to a sublattice of JF(S(L)). The 
atoms of B correspond to faces of dimension 0 (i.e., they correspond to extreme 
points) and coatoms of B correspond to faces of dimension 1 (i.e, they correspond 
to edges of the polytope S(L)). The edge F(aL) contains the extreme points F(b), 
F(c); these must be the endpoints of F(ax). Analogous relations for F(6X) and 
F(c x ) yield that S(L) is the convex hull of F(a), F(b) and F(c). However, this is a 
triangle. Thus, in this case L is state-isomorphic to 23. 

Suppose now that S(L) is not a triangle. So, L contains no block larger than 23 . 
This may occur only if L is a horizontal sum (see [4]) of two-atomic Boolean algebras. 
The state space of the horizontal sum of a family of u two-atomic Boolean algebras 
is affinely homeomorphic to [0,1]". In the case of L, we have u = 2 and L is thus 
the oml M02 (see [4]). Only parallelograms are affinely homeomorphic to [0, l ] 2 . 

The omls which appeared in the proof (23 and M02) are not only unital, but also 
rich, hence Prop. 4.2 holds for rich omls, too. The proof is complete. • 
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