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Summary. Under the uniform asymptotic stability of a finite dimensional Ito equation 
with periodic coefficients, the asymptotically almost periodicity of the Lp-bounded solution 
and the existence of a trajectory of an almost periodic flow defined on the space of all 
probability measures are established. 
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1. INTRODUCTION 

There are many interesting results for deterministic differential equations concern­
ing the existence of periodic, almost periodic and asymptotically almost periodic 
solutions under some stability assumptions. 

In this paper we consider finite dimensional Ito equations with periodic coefficients. 
We introduce three stability concepts in U (Lr-uniform stability, 2/-asymptotic 
uniform stability and Lr-uniform asymptotic stability in the large) which are natural 
extensions of the corresponding ones from the deterministic situation. Assuming the 
existence of an ZAbounded solution we prove that it is asymptotically almost periodic 
in distribution under the uniform stability hypothesis. 

Moreover, the existence of a trajectory of an almost periodic (periodic) flow defined 
on the space of all probability measures is also proved under the uniform asymptotic 
stability (uniform asymptotic stability in the large) assumption. Related problems 
for affine Ito equations have been considered in [1], [2], [7] and for nonlinear Ito 
equations with asymptotic almost periodic coefficients in [12]. 
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2. ALMOST PERIODIC FUNCTIONS WITH VALUES IN THE SPACE 

OF PROBABILITY MEASURES 

Let (X, |.|) be a real separable Hilbert space and let Six be its Borel field. We 
shall denote by Pr(.K) the class of all probability measures on Six- ?T(X) is endowed 
with the weak topology; recall that Fn converges weakly to F (Fn =-> F for short) 
if ffdFn -> ffdF for all / G Cb(X) := {/: X -» R ; / continuous and ||/||oo := 
s u p | / ( s ) | < o o } . 

For / € Cb(X) we define 

ii/iu--sup{'^:^)';a;,y€x>x#y}> 

H/|Ui=max(||/||00,||/|U), 

and for F, G € Pr(X) we define 

dBL(F,G) = 8up{\Jfd(F-G)\; \\f\\BL $ l}. 

It is known that dsL is a complete metric on Pr(X) which generates the weak 
topology (Kantorovitch metric). 

If J = R or [s, oo) then we shall denote by C(J, Pr(K)) the set of all continuous 
functions from I into Pr(X) endowed with the uniform convergence. If F E Pr(^0 
we denote by E(F) thfc expectation of F and by cov(F) the covariance of F. 

For an Revalued random variable / defined on a probability space ( f l , ^ , P) we 
denote by P o f"1 the distribution of/, by E(f) the expectation of/ and by cov(/) 
the covariance of / . Filially J is the interval [0,1], A is the Lebesgue measure and 

' for r ^ 1, Lr( J, SIj, A) is tfye standard space of all real valued functions g defined on 
J which are ^ -measurab le and |</|r is A-integrable. 

Definition. 1) A continuous mapping /i : [s, oo) —• Pr(K) is called asymptotically 

almost periodic (a.a.p. for short) if for every sequence {<n/}, tn» ^ s, >tn' —• oo, there 

exists a subsequence {tn} such that f fdfi(t + tn) convergences uniformly for t ^ s, 

for every / € Cb(X). 

2) A continuous mapping / i : R —> Pr(X) is almost periodic (a.p. for short) if for 

every sequence {tn/} C R there exists a subsequence {tn} such that f fdfi(t + tn) 

converges uniformly for t G R, for every / G C&(K). 

Lemma 2,1. Let \i\ [s,oo) —• Pr(X) (p: R —• Pr(X)j be a continuous function. 

Tien the following assertions are equivalent 

(a) fi is a.a.p. (a.p.); 
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(b) for every sequence {fn'} C [*,oo), *n, - • oo({*n'} C R) there exist a subse­
quence {tn} C {tn>} and a continuous function /*: [*,oo) - • Pt(X) (£: R - • Pt(X)) 
such that 

(2.1) 8up\Jfdp(t + tn)-Jfdji(t)\-+0 

(2.2) (sup | / / d/i(t + tn)~ J f d/i(t)| - 0, respectively) 

fora!lf£Cb(X). 

Proo f . (a) => (b). Choose a subsequence {tn} C {tn*} such that for all 
/ G Cb(X), f f dji(t+tn) converges uniformly for t ^ s (t G R). Since, for fixed t0, the 
sequence {ji(to + tn)}n is relatively compact, we choose a subsequence {tn»} C {tn} 
such that /i(t0 + tnn) convergences weakly to /i(to) G PT(X). 

In particular, we have /i(to + tn) => A(*o) and then 

\J fdfi(t + tn)-J fdji(t)\-+0 uniformly for t> * (.GR), 

for all / G Cb(X) and p. is continuous. 
The implication (b) => (a) is immediate. • 

Theorem 2.2. A continuous function /i: R —• Pr(X) is a.p. if and only if the 
family {p(t + .)}t€« *s relatively compact in C(R, Pr(-¥)). 

P roo f . Assume that fi is a.p. and let {tnt} C R. Choose {tn} C {tn»} and 
/i: R —> Pr(X) continuous such that (2.2) holds. 

Assume that Iim sup dBL(j*(t + tn)> fi(t)) > t for some e> 0. Then, for every n, 

there exist / n £ C»(X) with |j/n||Bi, ^ 1 and sn G R such that 

J y /n d/i(*n + tn) - y / n d/i(sn)| > e for every n 

(we pass to a subsequence if necessary). 
Let K C X be a compact set such that 

p(sn+tn)(X\K)$i ß{*n)(X\K)$i foralln. 
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Without loss of generality we may assume that / . ,—>/ uniformly on every compact, 
for some / € Ct(X). Then we have 

0 < e < | J fn dfi(sn +tn)-Jfn d/i(sn)| 

< /1/» - /I d(i(sn +t'n) + J \fn - /I d/.(*„) 

+ \J fd/i(sn+tn)- Jfdj*(sn) 

^2mp\fn(z)-f(x)\ + ^ + sy>\Jfd»(t + tn)-Jfdit(t)[ 

so that 

0<e^ Imi I / /nd / i(«n+tn)- [fndfi(sn)\^ J, 
n—>oo I J J \ I 

which is a-contradiction. 
Now suppose that {/*(t + .)}te» is relatively compact in C(R, Pr(X)). If {tn/} C R 

than choose {tn} C {tn>} and /i € C(R, Pr(.K)) such that 

sup dBL (f*(t + tn), fi(t)) - • o. 

t€« 

In particular, dBL(t*(tn),fi(0)) —• 0 and hence fi(tn) —• /i(0). Now let / € C*(.K) be 

locally Lipschitz, i.e., for every r > 0 we have \f(x) — f(y)\ ^ Lr\x — y| if |x| ^ r, 

| j / | ^ r , f° r some L r > 0. Let if C -Y be a compact set such that 

sup fi(t)(X \K)£e, sup fi(t)(X \K)^e, 
t€R t€» 

and let r > 0 be such that K C {x; |x| ^ r } . 

From [8; Lemma 1] we have 

\J fd»(t + tn) - J fdfi(t)\ ^ CxdBL(li(t +-tn),m) + C2fi(t)({x; \x\ > r}) 

< CidsL0$(t + *„), fi(t)) + C2fi(t)(X \ K)y 

so that 

Imi sup I [ fd»(t + tn)- I fdfi(t)\^C2e. 
n-»oo t € R |J J I 

I f / G Cj(X) then choose /* locally Lipschitz, ||/*||oo ^ ||/l|oo and fk —* / uniformly 
on every compact. 

Then we have 

8Up\Jfd»(t + tn)-Jfdji(t)\ 

^ sup | / t (x ) -j(x)\ + sup I / fk dfi(t + tn)~ I fk d(i(t)\ + C3e. 

Now take lun and then lim to complete the proof. • 
n-.bo k—oo 
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Definition. A set E C R is relatively dense if there exists r > 0 such that for 
every a G R we have [a, a + r] D E £ 0. 

Corollary 2.3. Let /i G C(R,Pr(X)) be such that for some relatively dense set 

E C R, the family {fi(t + .)}t^B is relatively compact in C(R, PT(X)). Then fi is a.p. 

P r o o f . It follows from Theorem 2.2 and [3; Theorem 1]. • 

Corollary 2.4. For 0 > 0 let E$ = {m0; m = 0, ± 1 , . . . } and Ef = {m0; m = 
0 ,1 , . . . } . Then u G C(R, Pr(X)) fti G C(R+, Pr(X)); is a.p. (a.a.p.; if the family 
{f*(t+)}tsE, ({t*(t + -)}ieE+) is relatively compact in C(R,Pr(X)) (C(R+,Pr(X))j. 

P r o o f . The a.p. case follows from Corollary 2.3. We consider the a.a.p. case. 
First we note that /i: R —• (Pr(X), dB£) is uniformly continuous (since {l*(t+-)}t€B+ 

is relatively compact in C([0,20],Pr(X)) and if x\ ^ x^ ^ x\ + 0 then we have 
a?i, X2 G [m0, (m + 2)0] for some m = 0,1, . . . ) . 

Let {tk}k be a sequence, 0 ^ tk —> oo, and for every ib choose m* = 0 , 1 , . . . such 
that mj.0 ^ tk ^ (m* + 1)0. Then tk = m*0 + <rk with 0 ^ <rk < 0. Without loss of 
generality we may assume that <rk converges to <r and sup dBL(/i(mk0+0»/K0) "~* 0 

for some /i G C(R+, PT(X)) . 

Therefore for e > 0 we find ke such that if Jb ^ t c then we have 

dBL(n(t + tk),fi(t + a)) ^ dBL(rtt + tk),t*(t + mk0 + <r)) 

+ dBL (fi(t + mk0 + <T), jx(t + <r)) 

< e + dux,(f*(* + mk0 + er), /i(t + <r)) 

< e + sup dBL (/i(mfc0 +1), £(*)). 

Now it is easy to complete the proof. • 

R e m a r k 2.5. From Corollary 2.4 we see that every 0-periodic and continuous 
function p: R —+ Pr(X) is a.p. 

Definition. A continuous mapping /i: [s, oo) —* Pr(X) is a.a.p. in Bohr's sense 
if for every e > 0 there exists k(e) and T(e) > 0 such that any interval of length k(e) 
contains a r such that dsL (p(t + T), fi(t)) ^ e for *, t + r ^ T(e). 

Definition. A continuous mapping ^: R —» Pr(X) is a.p. in Bohr's sense if for 

every e > 0 there exist Jb(c) such that any interval of length Jb(e) contains a r such 

that for all t G R we have dBL (l*(t + r)» M*)) ^ *• 
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.As in the case of a.a.p. (a.p.) mappings with values in complete metric spaces we 
have (with the same proof) the following results. 

T h e o r e m 2.6. A continuous function \i: [s, oo) - • Pr(-Y) (p: R —> ?*(X)) is 
a.a.p. (a.p.) if and only if p is Bobr a.a.p. CBo.hr a.p.). 

Lemma 2.7. Assume that / i : R —• Pr(X) is a.p. and there is a > 0 such that 

lim dBL(l*(t + <*),/*(<)) = 0 Then (i(t) = p(t + a ) for aii t. 
•"-•00 

P r o o f . Tor f € C%(X) with | | / | | B X < 1 we have that the function t -» i// = 

/ / d / i ( t ) is a.p. with values in R and i>/+a - v[ -* 0 as t —• oo. Therefore we have 

i>/ + i*/+er and hence fi(< + a ) = fi(*) for all t. • 

3. PERIODIC ITO EQUATIONS 

Let F: R x Rd - • R*, G: R x Rd - • Rd <g> R* be two measurable functions. We 
shall assume that 

(j) F( . ,0) , G(.,0) are bounded; 
(ij) there exists a concave increasing function Q: R+ - • R+ such that / 0 + ^ y = oo 

and 

(3.1) \F(tt x) - F(t, y)|2 + |G(<, *) - G(t, y)|2 ^ <>(|* - y|2) 

fo ra l l t € R , xfy€Rd-

Let (fi, -^, P, (-£«)«€•) be a filtered probability space on which a d-dimensional 
^ - a d a p t e d brownian motion (wt)teu is defined. Since for a process (x t)t we are 
interested only in the one-dimensional distribution t —• P o xj"1, we choose a new 
(extended) filtered probability space adequate for our purpose. This probability 
space is (Q, . # , P , 0#i)t€«) = (0 x J , ^ < g > # j , P ® A,(^l ® # j ) t € « ) - We extend u; 
onto Q in an obvious manner. On this probability space we consider the Ito equation 

(3.2) dxt = P(i ,*t)d* + G(<,Xt)du;t, <€ R-

If in is a -#o-nieasurable Revalued random variable and s 6 R then we denote by 
xt(s, XQ) the unique strong solution of the Ito equation (see [11]) 

, xt) dt + G(*, xt) dwt, t^ s, 
(3.3) 

Uxt = F{i„ 

\ X, = x0. 

R e m a r k 3.1. Since the pathwise uniqueness holds for (3.3) hence by a result 

of Yamada-Watanabe ([4], [10]) the distribution of (xt)t^8 depends only on P o x$l 

and F , G and not the support of the probability space. 
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We shall denote by fit(*> A*o) the distribution of xt(*} *o)> where P o £$l s /i0. 
The following stability concepts are useful. 

Definition. Let M C L2(J, 3j, A) and r ̂  1. 

a) We say that (3.2) is Lr-uniformly stable with respect to M (Ir-u.s. M for 
short) if for every t > 0 there exists 6(e) > 0 such that for all s € R, *, y € M with. 
£(l* - y|r) ^ 6(e) w e h a v e 

sup E(\xt(s, x) - a?t(s, y)|r) -* e. 

b) We say that (3.2) is Lr-uniformly asymptotically stable with respect to M (Lr-
u.a.s. M for short) if it is Lr-u.s. M and there exists 60 > 0 such that if s € R, 
x,y e M and E(\x - y|r) ^ 60 then 

UmE(\xt(s,x)-xt(s,y)\r)=0. 
t—*>oo 

c) We say that (3.2) if .//-uniformly asymptotically stable in the large with respect 
to M (Lr-u.a.s.l. M) if it is Lr-u.s. M and for all s G R, x, y £ M we have 

lim^(|xt(5,ar)-art(5,y)r)=0. 
l—>0O 

As in the deterministic case we can use Lyapunov functions in order to prove the 
stability of (3.2). In this sense we have the following result. 

Proposition 3.2. Let V(t,x,y) € CX'2(R x R2d) be such that V^Q, 

v(*,o,o) = o, |^(*.«i»)|<*i«r. |^(*,*>y)|oi*r 

for some 6 > 0, 0 < p -$ 1 and for all t, x, y. 
a) Assume that 

(3.4) a\x - y|r < V(t, x, y) ^ p\x - y|r 

for some a, /? > 0, r *£ 1 and for all t, x, y; 

LV(t,x,y) = ^(t, x, y) + (F(t, x), .?£(«. x,y)) + (F(t, y), ^(t, x, y)) 

+ \Tr{G*(t,x)^(t,x,y)G(t,x)} 

+ Tr{G*(t, x)^~(t, x, y)G(t,x)} + \Tr{G*(t, y)~(t, x, y)G(t, y)} ^(t,x,У)G(t,x)l + -Tr^U'(t,У; 

^ 0 for all t, x, y. 
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Then (3.2) is Lr-u.s. Lr(J,9j,\). 
b) Assume that for all t, x, y 

(3.6) V(t,x,y)^a\x-y\r for some a > 0, 

(3.7) LV(t, x, y) ^ -0\x - y\r for some 0 > 0( 

Tien (3.2) is Lr-u.a.s.l. Lr(J,0j,\). 

Proof , a) Let * € R and x,y € Lr(J,&j,\). By Ito's foj.mula we have 

E(\xt(8, x) - xt(s, y)\r) < ^E[V(t, xt(s, x) - xt(8> y))] . 

<lE[V(8,x,y))<?.E(\t^y\r). 

b) As in a) we obtain 

E(\xt(s,x) - xt(s,y)\r) < anexp{-/Mt - *)}E(\x - y\r) for ai,/?i > 0. 

D 

E x a m p l e . We consider the semi-linear Ito equation 

d 

(3.8) dxt = [A(t)xt + F2(t, xt)} dt + J3.Bj(0*t + Gj(tt xt)) dw{t t£ R, 
i=i 

where .A: R - • Hd
t Bj : R —• Rrf®Rd are bounded and measurable and Fi, Gj satisfy 

(ii) Fx(.t0)t Gi(.,0) are bounded, 

(i2) \Fx(ttx) - Fi(ttv)\ + £ |Gi(M) - Gi(t,y)| ^y\x - y| for some 7 > 0 and 
i=i 

for all t, xt y. 

Proposition 3.3. If the lineal part in (3.8) is exponentially stable in mean square 
and 7 is small enough then (3.8) is L2-u.a.s.i. L2(J,3tj t\). 

Proof . Choose a quadratic form W(ttx) = (W(t)xtx) such that a|x||2 ^ 
W(ttx) ^ 0|*|2 for some a,/? > 0 and for all tt mt LW(ttt) ^ - |x |2 , where L is 
the parabolic operator associated with the linear part of (3.8) (see [5; Theorem 32, 
pp. 248]). Then V(t>*>v) = W(ttx - y) satisfies the hypotheses of Proposition 3.2 
few 7 small enough. ^ 
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The following two theorems represent the main results. 

Theorem 3.4. Assume that F(t, x), G(t, x) are 9-periodic in t (0 > 0) and satisfy 
(j)> (JJ)- Suppose that the Ito equation 

(3.9) xt = x0 + / F(s, x9) ds + / G(s, x9) dw9; t £ 0 
Jo Jo 

has an U-bounded solution (p > 2), i.e., supJE?(|a?t|
p) = K < oo. If (3.2) is L2-u.s. 

M, where 
M = {x0e I?(J,<9j,\); £(|£0|p) < K), 

then the mapping t —* P o x^1 is a.a.p. Moreover, there is a unique a.p. function 
ft: R - • Pr(R<<) such that 

(3.10) supJwdjitW^K, 

(3.11) («<(*,/•») = /»« fortes 

(3.12) lim <*BL(P O *7l,M = 0. 
t—*00 

Theorem 3.5. Assume the hypotheses of Theorem 3.4 are satisfied. If (3.2) is 
L2-u.a.s. M then there exists /*: R -• Pr(Rrf) which satisfies (3.10)-{3.12) and is 
m0-periodic for an integer m > 0. Moreover, if (3.2) is L2-u.a.s.J. M then (A can be 
taken 0-periodic. 

Proof of Theorem 3 . 4 . The .[/-boundedness implies that the family (Po 
-~ lx - is relatively compact. Let 0 -$ r*/ = m*/0 —• oo and choose a subsequence 
r* = mk0 and x*, x € M such that 

a) Pox~i => /i and x* —• x P-a.s., 
b) P o [x*]"1 = P o x"1 for all k (by Skorokhod's theorem; [4; Theorem 2.7] or [9; 

PP.10]). 
In particular, xk and &(wt\t G R) are independent (x*, x are extended onto Q 

in an obvious manner) and E(\xk — x|2) —• 0. Let (**)t^o, (xt)t^o be solutions on 
(Q, ^ , P) of the equations 

(3.13) xk = x* + / F(s,xJ)ds+ / G(s,xJ)du;,; t ̂  0, 
Jo Jo 

(3.14) xt = x + / P(s, x#) ds + / G(s, x9) dw9; t > 0, 
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For e > 0 choose 6(e) > 0 and k0 such that tfflxf - x,|2) ^ 6(e) if k ^ k0. Then the 
L2-u.8. yields sup E(\i\ - x|2) ^ e and 

dBL(p o *r+rfc, p o *r l) = < w ^ o [x?]-1, p o xr1) 
< {£(|x* - xtl2)}1/2 ^ e1'2 for t> 0, * £ 0, 

so that the mapping t —> P o xj"1 is a.a.p. by Corollary 2.4. Next we prove that 
for every sequence {r**} C f?^ we find a subsequence {r^} and an a.p. function v%: 
R - • Pr(Rd) satisfying (3.10) and such that for every a G R 

(3.15) sup C-BL(P O x^i , v%) -+ 0 as fc -^ oo. 
t>or 

For every q€ Ef we take a subsequence {rj„} C {r*'}, {r^1} C {rj„} and x\,,,xq G 
Af such that 

(ai) xj„ —• x* P-a.s. In particular, 

lim E(\xl„-x<\>) = 0; 
ib"—t-oo 

(a i )Po [«•„]--= .Po «-!,_,. 
By the diagonal procedure we select a subsequence {»>} C {r*<} such that 

(3.16) lim E(\x\ - i«|a) = 0 for all q € Ef. 
.k—>oo 

Let (xf' )t>-f be the solution of the equation 

(3.17) *t = * ! + / P(*,x,)ds+ / G(s,x,)dti;,; O - f . 
J-f J-f 

Consider a continuous adapted process (xf )t^-f such that 

(3.18) i] = £* + / F(s,ij)ds + / G(s,*«) dta,; t ^ _ , . 

By La-u.s. we have 

(3.19) lim sup E(\i\'k - x\\2) = 0. 

Next we show that if t > —q > -(q + 1) then 

(3.20) P e t i J + t ' - P o ^ ] - 1 . 
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Indeed, we have 

(3-21) P o x - 1 . , =• P o I* ' ] - 1 (by alt a2), 

(3.22) P o [«!+1-»]-- - > P o [xi+1]-» (by (3.19)), 

- t - t 

(3.23) *!.?•* =-.«S+1+ j f(.,*J+1'*)d.+ J G(., *•+-.-)«.«., 

(324) Po [ if+i]-i = P o i - i _ H ) 

- f - f 

(3.25) *rfc-f = *r f c - f - l+ J F(«,xrfc+,)d*+ J G(8,zrk+9)dw9. 
- , - 1 - « - l 

From (3.23)-(3.25) and from the uniqueness in distribution we deduce that 

(3.26) P o t x L V ^ - ^ P o x - 1 . , . 

Now from (3.21), (3.22), (3.26) we obtain (3.20). 
We can define 0% = P o [xj]""1 if t ^ -g . 
For a G R we have a ^ — q for some q G Ef, hence 

sup dBL(P o xTjrk, i>t) ^ sup dBL(P o p r* ] " 1 , P o [x?]-1) 
*><* <>-f 

^ sup {E(\z\>k - x?|2)}1/2 -> 0 as * - oo (by (3.19)), 

and this proves (3.15). We show that i> is a.p. For e > 0 let T(£), *n(e) be such that 
any interval of the length m(e) contains a r with 

dBL(PozT^PozTl)^e if *>T(c), i + r>T(e) 

(P ozT1 is a.a.p.). 
Then 

<*BL(P O xr+V+rfc, P o x-T+VJ ^ c if t, f + r ^ !f (*) ~ r*. 

For arbitrary r G R we have t, < + r ^ T(c) - rk for i large en<7u8h> *o that ( ^ ( P o 
xT+T+rh,P°^t+rj,) ^ t anc* hence dBL(vt+T,*>t) ^ £, i.e. 0 is aP- B v Fatou's lemma 
we obtain (3.10) for v. 

Since we have 

ьf-n. _ ÄÍ+ Г f c 

c t - r * = xí + f F(s,iitr
ri)d8+ f o(#,*!í;:)<i(«.-rt,-1o.ri) 
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for t ^ —g, we obtain as above an a.p. function fi: R —* Pr(Rd) such that 

(3.27) lim sup dBL(i>t-rk, M = 0 for all q € Et 

(if necessary we take a subsequence of {r*}) and such that for t ^ —q, (ftt)t^-q is 
generated by a solution of the equation 

(3.28) ti=JЃ + J Ғ(í,t)î)dí + У G(в,#)du;,; t^-q 

in the sense that P o [yf ] - 1 = /it if t ^ —g. By Fatou's lemma it is clear that (3.10) 
holds for fi. 

From (3.28) we have 

Vt=Ůl + J f(«. %) du + J G(u, y«) dtt.u; for t^8^-qt 

where form we obtain (3.11) by the Chapman-Kolmogorov relation. Finally, by the 
L2-u.s. we deduce that 

sup dBL(P o xt\ fit) ^ sup dBL(P o [x°tthY\ P ° [VtV1 - 0 
t%rk t^rh 

as ib —• 00. The proof is now complete. D 

Proof of Theorem 3.5. Assume that (3.2) is L2-u.a.s. M. Choose a 
subsequence {r*(j)}/ = {m*(/)0}j of {r*} and i1, i such that lim .Edi1 - i | 2) = 0 

and P o [zl]~l = P o [#? f c ( | )]
- 1 for all /. Let /, q be such that 

£ ( | i ' - i ' | 2 K * o , k(q)>k(l)t 

where $o is given by the La-u.a.s. Let (z,)«>o be the solution of the equation 

£{ = *'+ / F(«,i;)d«+ / <?(*,*,) du/, 
Jo Jo 

and m = t(g) — ib(/). Then we have 

dBL(i*t+m$+k(i)iti*t+k(i)$) = dBL(P o [i?]"1, i5 o [ij]-1) 

^ {£(|i? - i{|2)}1 /2 ^ 0 as t - 00 by the L2-u.a.s., 

since E(\zl - ij|2) = E(\z< - i'|2) < 60. 
Because fi is a.p. we obtain from Lemma 2.7 that fit = f*t+m$ for all* E R, i.e., ft 

is mfl-periodic. 
Assume now that (3.2) is L2-u.a.s. Reasoning as above we obtain that 

lim d0L(j*t+$iM = 0, where from fit = /*t+# for all* G R. The proof is finished. 
D 
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Corollary 3.6. Under the assumptions of Theorem 3.4 the functions t —• E(xt), 
t —• cov(xt) are a.a.p. and the functions t —• E(iit), t —• cov(/*t) are a.p. Moreover, 
if (3.2) is L2-u.a.s. (L2-u.a.s.l.) then the mappings t -+ E(fit)f t —• cov(/it) are 
mO-periodic (0-periodic) for some integer m > 0. 

P r o o f . It follows from Theorems 3.4 and 3.5 and the continuity of the mappings 

ft e M = [fi e Pr(R'); J \xf M*) < # } - W . 

ji € M —+ cov(fi). 

R e m a r k 3.7. For s E R fixed and for all t ^ s the flow /i from Theorems 3.4, 

3.5 is generated by solution {xt(s, £)}*£*, where x is a random variable defined on J. 

R e m a r k 3.8. Sufficient conditions in terms of Lyapunov functions for the 

boundedness of solutions of Ito equations are given in [6]. 

R e m a r k 3.9. The existence of a.a.p. solutions for Ito equations with a.a.p. 
coefficients is established in [12] under a stronger concept of stability (called total 
stability). 

R e m a r k 3.10. A careful inspection of the proofs of Theorems 3.4, 3.5 shows 
that in fact it is sufficient to assume the stability properties with the / / -metric 
replaced by dsh (stability in distribution). It seems that for problems concerning the 
one-dimensional distributions (considered here) such stability in distribution is more 
natural and allows to consider Ito equations under the hypotheses on the existence 
and uniqueness in distribution of weak solutions (a wide class of solutions). 
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