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SEQUENTIAL CONVERGENCES IN LATTICES

JAN JakuBik, Kosice
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Summary. The notion of sequential convergence on a lattice is defined in a natural way.
In the present paper we investigate the system Conv L of all sequential convergences on a
lattice L.

Keywords: lattice, distributive lattice, sequential convergence

AMS classification: 06B30, 22A26

In this paper the notion of sequential convergence in a lattice L will be introduced.
It is defined to be a FLUSH convergence on the set L (cf., e.g., [10], [11]) such that
the lattice operations are continuous and a certain convexity condition is fulfilled; for
a thorough definition cf. Section 1 below. The system Conv L of all sequential con-
vergences in L will be investigated (this system being partially ordered by inclusion).
The main results deal with the case when L is a distributive lattice.

The analogous notions of sequential convergence in a lattice ordered group or in
a Boolean algebra were studied in [2]-[9].

1. PRELIMINARIES

Throughout the present paper, L denotes a lattice. Let N be the set of all positive
integers. The direct product II,enLy, where L, = L for each n € N, will be denoted
by LN. The elements of LN are called sequences in L and they will be written as
(z5) (instead of n, sometimes other notation for indices will be applied). The notion
of a subsequence has the usual meaning. If z € L, (z,) € LN and z, = z for each
n € N, then we denote (z,,) = const z. ’

Let o C LN x L. A relation of the form ((zs),Z) € a will be recordea also by
writing z, —4 z.
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Definition 1.1. A subsét a of LN x L will be called a convergence in L, if the
following conditions are satisfied: o

(i) If z, —4 z and (y») is a subsequence of (z,), then y, —q =.

(i) If (zn) € LN, z € L and if for each subsequence (yn) of (z,) there is a
subsequence (2, ) of (yn) such that z, —, z, then z, —, z.

(iii) If (zn) € LN, z € L, (zn) = const z, then z, —4 z.

(iv) f 2, —o z and 2, =4 y, then z = .

(v) fzy, o zand yo = y, then 2, Ays wazAyand 2, Ayn mazVy.

(vi) If 2o < yn < 2n is valid for each n € N and if z, —q Z, 2, —a =, then
Yn —a T.

If all the above conditions except (iv) are assumed to be valid then « is called a
multivalued convergence (shorter: m-convergence) in L.

The conditions (i) - (iv) say that L is a FLUSH convergence space (cf., e.g., [10]
or [11]); the condition (v) means that o is a sublattice of the lattice LN x L.

The system of all convergences (or m-convergences) in L will be denoted by Conv L
(or Convy, L, respectively); both these systems are partially ordered by inclusion.

Let d C.LN x L be defined as follows: z, —4 z if there exists m € N such that
z, = z for each n > m.

The following a.sserl‘:ion is obvious.

Lemma 1.2. d is the least element in both Conv L and Conv,, L If {a;}ier is
a nonempty subset of Convy, L, then (¢ o; is the greatest lower bound of the set
{ai}ier in Conv,, L. An analogous result holds for Conv L.

From 1.2 we obtain as a corollary:

.Lemm_& 1.3. Convy, L is a A-similattice. If « € Conv,, L, then the interval [d, o]
of Conv,, L is'a complete lattice. Analogous results hold for Conv L.

The set LN x L belongs to Conv,y, L. Hence from 1.3 we infer:

‘Corollary 1.4. Convy, L is a complete lattice. The following conditions are equiv-
alent:

(i) Conv L is a complete lattice.

(ii) Conv L possesses a greatest element.

(iii) Each nonempty subset of Conv L is upper—-bounded.

Remark 1.5. In [9]‘the notion of convergence in a Boolean algebra B was
introduced; it differs from that of 1.1 only by adding to the condition (v) in 1.1 the
assumption that the implication

!
Tp —o T > T, o T’
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is valid (z/, or z’ is the complement of z,, or z, respectively). .

Remark 1.6. The partially ordered set Conv L need not have, in general, a
greatest element. To verify this it suffices to consider the same example which was
applied in [9] (for proving that the system of all convergences on a Boolean algebra
need not have a greatest element). ’

2. CONSTRUCTIVE DESCRIPTION OF THE JOIN IN Conv,, L

The existence of the join of any subset of Conv,, L is guaranteed by 1.4. In
this section we want to search for a constructive description of this operation. As
consequences we obtain some results concerning Conv L.

The system of all lattice polynomials will be denoted by F. If f € F, then n(f)
denotes the arity of f.

Let A be a nonempty subset of LN x L. We denote by [A] the system of all
((zn),z) in LN x L which have the following property: there are fi, f; € F with
n(fi) = k(1) 2 1, n(f2) = k(2) > 1 and elements

(W), ¥, (B39, .., ((WED), 2O,
(), 21), ((32),22), ..., (@), 4@

in A such that
AGLY, D) = (2,22, D) =2
and for each n € N,
AW, - YD) S za < f(22, 22, .., D).

Next, let A* be the set of all ((vn),v) in LN x L such that for each subsequence
(va(1)) of (vs) there exists a subsequence (vn(3)) of (vn(1)) with the property that
((vn(2)), v) belongs to A. Finally, let A! be the set of all ((zn),z) € LN X L such
that either .

(i) there exists ((yn),y) € A such that z = y and (yn) is a subsequence of (z.), or

(ii) there is m € N such that z, = z for each n > m. The following lemma is
obvious.

2.1. Let 0 # A C LN x L. Then [[A]] = [A] 2 A, A** = A* D A and [A!]! = [A1].
Lemma 2.2. Let A be as in 2.1. Then [[A'])*] = [A']*.
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Proof. Let ((zn),2) € }[A‘]‘]. We have to verify that ((z,),z) € [AY]".
There exist ((47),5"), - (93", #©), (21),21), - ((sn), #D)) having the
properties as above with the distinction that we now have [A!]* instead of A. Thus

(W), ¥). (1), 2") € [A'])*
(1) for each j € {1,2,...,k(1)} and each t € {1,2,...,k(2)}.

Let (z,(1)) be a subsequence of (z,). In view of 2.1 and (1) there exists a subse-
quence (Zn(2)) of (zn(1)) such that

2 (W) V) (2h(a)), ) € [A"]  for each t€{1,2,...,k).

By virtue of (2) and in view of the above relation we infer that

(zn(@), 2) € [[A']] = [4"].
Therefore ((z,), z) € [A!)*. a

Lemma 2.3. Let A be as in 2.1. Then [A']* € Conv,y, L.

Proof. The validity of the conditions (i), (ii) and (iii) follows immediately from
the definition of [A!]*. By virtue of 2.2, the conditions (v) and (vi) are satisfied as
‘well. a

Lemma 2.4. Let A be as in 2.1 and let a € Convy, L, A C a. Then [AY]* C a.

Proof. In view of (i), (i) and (iii) from 1.1 we obtain A' C . The conditions
(v) and (vi) of 1.1 imply [A] C a. Hence in view of the condition (ii) of 1.1 we infer
that [A!]* C a. a

The m-convergence [A']* will be said to be generated by the set A.
The set A will be said to be regular (with respect to L) if there exists o € Conv L
such that A C a. ,
The following assertions 2.5, 2.6 and 2.7 are immediate consequences of 2.3 and
24, - '

Theorem 2.5. Let {a;}ier be a nonempty system of m-convergences in L. Then
in the complete lattice Convp, L we have

o Vers U]
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Theorem 2.6. Let A be a nonempty subset of LN x L. Then the following
conditions are equivalent:

(i) A is regular.
(i) The system [A']* satisfies the condition-(iv)-from 1.1.

Theorem 2.7. Let {a;}ier be a nonempty system of convergences in L. Then
the following conditions are equivalent:
(i) The system {a;}ier is upper bounded in Conv L.
(ii) The set [UI ;] satisfies the condition (iv) from 1.1.
i€

If (ii) holds, then the relation (3) is valid in the partially ordered set Conv L.

3. POSITIVE AND NEGATIVE m-CONVERGENCES

An m-convergence a in L will be called positive (or negative, respectively) if,
whenever z, —4 z, then there is m € N such that z, > z (z, < z) for each n 2>
m. Let Conv,, L*(Conv,, L) be the set of all positive (or negative, respectively)
convergences in L. Next, let Conv Lt and Conv L~ be defined analogously. Then
Conv,, LY NConvy, L~ = {d}. For a € Conv,, L let at be the set of all ((z,),z) € a
with the property that there is m € N such that z,, > z for each n > m. The set o~
is defined analogously.

In view of 1.1 we obviously have

Lemma 3.1. If « € Conv,, L (o € Conv L), then both a* and a~ belong to
Conv,, L (or to Conv L, respectively).

Lemma 3.2. Let & € Convy, L, ((zn), z) € LN x L. Then the following conditions
are equivalent:

(a) z, —q z.
(b) zn Ay —azAyandz,Vy—o,zVyforeveryye L.

Proof. From the conditions (iii) and (v) in 1.1 we obtain that (a) = (b). Next,
the condition (vi) in 1.1 yields that (b) = (a) is valid. a

From 3.1 and 3.2 we infer:

Lemma 3.3. Let a € Conv,, L. Then in the partially ordered set Conv,, L we
have a = a* V a~. An analogous assertion holds for Conv L.

Proposition 3.4. Let a € Convy, Lt, 8 € Conv,, L~. We denote by v the set of
all elements ((zn),z) of LN x L such that z, Vz —4 z and z, Az — z. Then
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(i) v € Conv,, L;
(ii) y = a V B in Convy, L;
(iii) y* =a and y~ = 8.

Proof. (i) The conditions (i), (ii), (iii) and (vi) from 1.1 are obviously valid
for 7. Let us verify that the condition (v) from 1.1 holds for v.
Assume that z,, —., y. Hence

(1) ZaVZ —aZ,ya VY —a ¥,
2) Za AT = Z,Yn Ay —p Y.
In view of (1) we have
3) . (ZaVyn)V(ZVY) =azVy.
In each lattice the following relation is valid:
(4) @EaAZ)V(U AY) S (@nVI)A(2VY) <2 VY.
The relation (2) yields that

' (@a AZ)V(Zn Ay) =2z Vy,
hence according to (4) we obtain |
(5) : (ZaVyn)A(zVYy) 2pzVy.
From (3) and (5) we infer that

| ZoVyn =4y 2ZVY

is valid. In a similar way we can prove that , A yn —, z Ay holds. We have proved

that (i) holds.
The assertion (ii) is an easy consequence of (i). The verification of (iii) is routine

and it is omitted. a

- Proposition 3.5. The mapping f(a) = (a*,a™) where (a runs over Conv,, L)
is an isomorphism of the partially ordered set Conv,, L onto the direct product
Conv,, L* x Conv,, L~.

Proof. Ifa,B € Conv,, L and a < B, then clearly at < g+ and a~ < 8~.
Next, from 3.4 (iii) we infer that for each a; € Conv,, L* and a3 € Conv L~ there
exists a € Convy, L with f(a) = (a1, a3). In view of 3.4 (ii) we have

fl@) < f(B) =>a< P
Thus f is an isomorphism. R 2 O
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Proposition 3.6. Let o € Conv L*, § € Conv L™ and assume that the set {a, 8}
is upper-bounded in Conv L. Let 4 be as in 3.4. Then y = aV # in Conv L.

Proof. Since {a,B} is upper-bounded in Conv L, then in view of 1.3 the
element o V 3 exists in Conv L. According to 2.5 and 2.7 this element coincides with
the least upper bound of the set {a, 8} in Convy, L. Therefore 3.4 (ii) yields that
aVf=+in ConvL.

By applying 3.6 and the same method as in the proof of 3.5 we obtain: a

Proposition 3.7. The mapping g(a) = (at,a™) (where a runs over Conv L) is
an isomorphism of the partially ordered set Conv L onto the direct product Conv L+ x
Conv L~.

Acknowledgement. The author is indebted to the referee for pointing out that the
assumption of the distributivity of L (which was applied in the original version of
the proof of 3.4) can be omitted.

4. CONVERGENCES ON LINEARLY ORDERED SETS

In this section we assume that L is a linearly ordered set.
Let (o) be the set of all elements ((zn), z) of LN x L such that (z,) o-converges
to z.(cf., e.g., Birkhoff [1]). In view of 1.1 we immediately obtain:

Lemma 4.1. (o) belongs to Conv L.

Lemma 4.2. Let a € Conv L*, ((zn), z) € a. Then ((zn),z) € (o).

Proof. Let m € N. In view of 1.1 (ii), (iii) and (v) the set {k € N: k >
m and z; > z,, } is finite, hence there exists an element

Ym = max{zy: k > m}.

00

We have y; > y2 > ... and A yn = z. Because of y, > 2z, > z for each n € N we
n=1

infer that (z,) o-converges to z. a

An analogous result holds for a € Conv L~, whence in view of 3.7 we infer:
Proposition 4.3. a(0) is the greatest element of Conv L.

Lemma 4.4. Let o € ConvL*t, ((zn),2z) € @\ d, ((24),z) € a(o)*. Then
((2n),2) € a.
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. Proof. Let (24(1)) be a subsequence of (z,). Next, let (y) be as in the proof
4.2. Evidently we have ((yn), z) € a. For each n € N there exists n(2) € {n(1)} with
n(2) 2 n such that 2,(3) < y(n). Therefore ((2,(3)), z) € a. By virtue of 1.1 (ii) we
have ((2),2) € a. a

An analogous result holds for « € Conv L~.

Let L} be the set of all z € L with the property that there exists a strictly
decreasing sequence (z,) in L with Az, = z.

Next, let LT be defined analogously. ,

For each z € L} let C(z)* be the set of all ((zn), z) € LN x L such that ((zn),z) €
a(o)*. For z € L] let C(z)™ have an analogous meaning. From 4.3 and 4.4 we have:

Proposition 4.5. (i) Let M be a subset of L}. Put

a(My* ={dpu (U C(z)+).

zEM

Then a(M)* € Conv L*.
(ii) Let @ € ConvL*. Let M be the set of all z € L such that there exists
(zn) € LN with ((z4),z) € a\ d. Then a = a(M)*.

An analogous result holds for negative convergences in L. From 4.5, 4.3 and 3.7
we obtain:

Theorem 4.6. Let L be a linearly ordered set. Then the lattice Conv L is iso-
morphic to the direct product

{a(M1)*} x {a(M3)"},

where M, runs over the set of all subsets of L'l" and M, runs over the set of all subsets
of LT (the systems {a(M1)*} and {a(M3)~} being partially ordered by inclusion).

Corollary 4.7. If L} # 0 or L7 # 0, then Conv L is a completely distributive
Boolean algebra.

For a related result concerning convergences in linearly ordered groups cf.[10].



5. INTERVALS IN Conv L

In this section we assume that L is a distributive lattice. It will be proved that
each interval of Conv L is a Brouwerian lattice.

Lemma 5.1. Let a;(i € I) be elements of Conv L* and assume that ((zs),z) €
[ U a.-]. Then there exist i(1), .. ., i(k(1)) € I and ((t}.), z) € a;qay, .. ., ((tf.(l)),z) €
i€l
@i(k(1)) Such that z, =t Vi v...v t£®) for each n & N.

Proof. By the definition of [A] (cf. Section 2), for A = |J a; there are ((z3), z*),
iel
((22),2%), ..., ((z%),2*) € A and f € F such that
(1) f(z4,2%,..., 2% =z,
(2) z< zn < f(2,...,2%) foreach neN.

Put & = 20 Vz, ) = 2} Vz, for each j € {1,2,...,k)} and each n € N. Hence
((81),8') € Afor j=1,2,..., k and (in view of the distributivity of L)

(3) f(‘lr52v--s8k)=zi
4) < 2o < f(8),...,8%).

By applying the distributivity of L again we infer that f(s!,s?,...,s") is the join
of a finite number (say k(1)) of meets of some subsets of {s!,s2,...,s"}, and that
f(sL,...,sk) can also be expressed in the corresponding Way. Let these meets be
denoted by t1,¢2, ..., t!Wor el 43 ... t51) respectively. Because of s! > z, ...,
s* > z we obtain that

(5) K o _ == . =th=2.
Also, ((a;,,),v') € ajjyfor j = 1,2, ..., k(1), whence
| ((t{,,.),z) € A foreach je€{1,2,...,kQ1)}.
In view of (4) we have
h 2n <oy VI3, V... V(D) for each n €N,

hence
zn=(zALL)V(2AL,) V...V (zALY).

Put z Ati, = ti for each j € {1,2,...,k(1)} and each n € N, We have ((t}),z) € A
for each J € {1,2,...,k(1)} and z, =t,‘,Vt,’,V...Vt:m for each nGN.' [m]
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From 5.1, the assertion dual to 5.1 and from 3.2 we obtain:

Lemma 5.2. Let a;(i € I) be elements of Conv L and assume that ((z»),%) €

Lul a;] Then there exist i(1), i(2), .. . i(k(1)), 5(1), 5(2), ..., j(k(2)) € I and
€

((th),2) € afyys- - (12 D), 2) € k).
((q”), 3) €Ea (1)) ) ((q:@)), z) € a;(k(?))

such that
2o V=t vi2v...vT*D) foreach n €N,
ZaAZ=g AGBA...A*® foreach n€eN.

Lemma 5.3. Let a, 8 € Conv L and let {a;}ics be a nonempty subset of [d, f]-

Then a A ( V'ag) = V(aAa).
i€l i€l

Proof. In view of 1.3, both \/ a; and \/ (a A ;) do exist in [d,5]. The
i€l i€l

relation A;¢;(aAai) SaA ( VvV a;) being obvious, we have to verify that
iel
al (Va.') < V(aAa.-)
i€l i€l

is valid, Thus in view of 2.7 sud 1.2 we have to verify that
an [Ua.-] c [U(aﬂa.-)]
i€l i€l :
holds. . _ _
Let ((zn),2) €Ean [ U a;] . Let (zn(1)) be a subsequence of (zn). There exists
i€l
_.a subsequence (2,(3)) of (2n(1)) such that

(1) (@), 2) € [J ]
i€l
Clearly ((zn(2)), 2) € a.
According to 5.2 there exist (t1), ..., (t**)) and (an), --» (@n®) € LN with the
properties as in 5.2 with the dlstmctlon that we now have (-’cn(z)) instead of (zn).

 Then. .
((‘ ),z)', o (("‘“’),z), ((qn) z), .., ((¢n "’) z) € a,
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whence

((th),2) € aNeaiqyy, -, ((¢2?),2) € aNajuqa).
Therefore
((2n(2) V 2),2), (a2 A 2),2) € [LJI(an.,)]
i€

and thus

((zna)s2) € [Ul@n a.)]

sel

Hence .

((zn).2) € [J@nan)]

i€l

completing the; proof. ‘ (m]

Now, 5.3 and 1.3 yield:

Theorem 5.4. Let L be a distributive lattice. Then each interval of Conv L is a
Brouwerian lattice.

The question whether the assumption of the distributivity in 5.4 can be omitted
remains open.
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