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SEQUENTIAL CONVERGENCES IN LATTICES 

JAN JAKUB-CK, Kosice 

(Received February 24, 1989) 

Summary. The notion of sequential convergence on a lattice is defined in a natural way. 
In the present paper we investigate the system Conv L of all sequential convergences on a 
lattice L. 
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AMS classification: 06B30, 22A26 

In this paper the notion of sequential convergence in a lattice L will be introduced. 
It is defined to be a FLUSH convergence on the set L (cf., e.g., [10], [11]) such that 
the lattice operations are continuous and a certain convexity condition is fulfilled; for 
a thorough definition cf. Section 1 below. The system Conv L of all sequential con
vergences in L will be investigated (this system being partially ordered by inclusion). 
The main results deal with the case when L is a distributive lattice. 

The analogous notions of sequential convergence in a lattice ordered group or in 
a Boolean algebra were studied in [2]-[9]. 

1. PRELIMINARIES 

Throughout the present paper, L denotes a lattice. Let N be the set of all positive 
integers. The direct product IlneN-kn, where Ln = L for each n £ N, will be denoted 
by LN . The elements of LN are called sequences in L and they will be written as 
(xn) (instead of n, sometimes other notation for indices will be applied). The notion 
of a subsequence has the usual meaning. If x £ L, (xn) £ LN and xn = x for each 
n £ N, then we denote (xn) = const x. 

Let a C LN x L. A relation of the form ((xn),x) £ a will be recorded also by 
writing xn —>a x. 
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Definition 1.1. A subset a of LN x L will be called a convergence in L, if the 
following conditions are satisfied: 

(i) If xn —>a x and (yn) is a subsequence of (xn) , then yn —•« x. 
(ii) If (xn) E LN, x € L and if for each subsequence (yn) of (xn) there is a 

subsequence (zn) of (jfo) such that zn —*a x, then xn —•« x. 

(iii) If (xn) G L N , x € L; (xn) = const x, then xn —>a x. 

(iv) If xn - * a x and xn -+a y, then x = y. 
(v) If x n - •« x and yn - • * y, then xn A yn - •« x A y and xn A yn --•* x V y. 

(vi) If x n t$ yn 1$ *n is valid for each n € N and if xn —*a x, zn —>a x, then 

Vn -•<* x . 

If all the above conditions except (iv) are assumed to be valid then a is called a 
multivalued convergence (shorter: m-convergence) in L. 

The conditions (i) - (iv) say that L is a FLUSH convergence space (cf., e.g., [10] 
or [11]); the condition (v) means that a is a sublattice of the lattice LN x L. 

The system of all convergences (or m-convergences) in L will be denoted by Conv L 
(or Convm L, respectively); both these systems are partially ordered by inclusion. 

Let d C LN x L be defined as follows: xn —>a x if there exists m G N such that 
xn = x for each n ^ m. 

The following assertion is obvious. 

Lemma 1.2. d is the least element in both Conv L and Convm L If {a,-},-€j is 

a nonempty subset of Convm L, then p | i € / a,- is the greatest lower bound of the set 

{<*«}•€/ *& Convm L. An anaiogous result holds for Conv L. 

From 1.2 we obtain as a corollary: 

Lemma, 1.3. Convm L is a A-similattice. If a G Convm L, then the interval [d, a] 
of Convm L is a compiete lattice. Analogous results hold for Conv L. 

The set LN x L belongs to Convm L. Hence from 1.3 we infer: 

Corollary 1.4. Convm L is a complete lattice. The following conditions are equiv

alent: 

(i) Conv L is a complete lattice. 

(ii) Conv L possesses a greatest element. 

(iii) Each nonempty subset of Conv L is upper-bounded. 

R e m a r k 1.5. In [9] the notion of convergence in a Boolean algebra B was 
introduced; it differs from that of 1.1 only by adding to the condition (v) in 1.1 the 
assumption that the implication 

X => x'n -*а x' 
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is valid (x'n or x' is the complement of xn or «, respectively). 

R e m a r k 1.6. The partially ordered set ConvL need not have, in general, a 
greatest element. To verify this it suffices to consider the same example which was 
applied in [9] (for proving that the system of all convergences on a Boolean algebra 
need not have a greatest element). 

2. CONSTRUCTIVE DESCRIPTION OF THE JOIN IN Convm L 

The existence of the join of any subset of Convm L is guaranteed by 1.4. In 
this section we want to search for a constructive description of this operation. As 
consequences we obtain some results concerning Conv L. 

The system of all lattice polynomials will be denoted by F. If / € F, then n(f) 
denotes the arity of / . 

Let A be a nonempty subset of LN x L. We denote by [A] the system of all 
((xn),x) in LN x L which have the following property: there are / i , /a G F with 
n(fi) = Jb(l) > 1, n(/2) = k(2) ^ 1 and elements 

((yln),yl), ((yn),y2), . . . . ( (^ ( 1 ) ) .y* ( 1 ) ) , 

( ( , ! ) , , * ) , <&),*), . . > ( ( ^ ( 2 ) ) , ^ ( 2 ) ) 

in A such that 

fi(yl,y2,...,vkW) = Mz1,z\...,zkW) = z 

and for each n E N, 

/idi.ifi,.... tfl))o. </(**,-& .... #2))-

Next, let A* be the set of all ((vn),v) in LN x L such that for each subsequence 
(vn{i)) of (vn) there exists a subsequence (v

n(2)) °f (vn(i)) with the property that 
((vn(2))>v) belongs to A. Finally, let A1 be the set of all ((xn),x) € LN x L such 
that either 

(i) there exists ((l/n), J/)6-4 such that x = y and (yn) is a subsequence of (xn)t or 
(ii) there is m £ N such that xn = x for each n ^ m. The following lemma is 

obvious. 

2.1. Let 0 ^ A C LN x L. Then [[A]] = [A] 3 A, A** = A* 3 A and [A1]1 = [A1]. 

Lemma 2.2. Let A be as in 2.1. Then [[A1]*] == [A1]*. 
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P r o o f . Let ((*„),*) € UA1]*]. We have to verify that ((*„),*) € [A1]*. 
There exist ( ( y n ) ,^ ) ((#»), »»(->), ((*„), z1), . . . . ((*n

(1)),z*W) having the 
properties as above with the distinction that we now have [A1]* instead of A. Thus 

((».t).»'),((*i),*')€[Air 
(1) foreach j € {1 ,2 , . . . ,* (1)} and each* €{1,2, . . . ,Jb(2)}. 

Let (xn(!)) be a subsequence of (xn) . In view of 2.1 and (1) there exists a subse
quence (zn(2)) of (xn(i)) such that 

(2) ( ( • i ( „ ) , i r , ) , ( ( 4 W ) . * l ) € { i l 1 l for each r € { 1 , 2 , . . . , * } . 

By virtue of (2) and in view of the above relation we infer that 

((«nw),«)ep1D = [A1]. 

Therefore ((*„), x) 6 [A1]*. D 

Lemma 2.3. Let A be as in 2.1. Then [A1]* € Convm L. 

P r o o f . The validity of the conditions (i), (ii) and (iii) follows immediately from 
the definition of [A1]*. By virtue of 2.2, the conditions (v) and (vi) are satisfied as 
well. D 

Lemma 2.4. Let A be as in 2.1 and let a G Convm L, A C a. Then [A1]* C a. 

P r o o f . In view of (i), (ii) and (iii) from 1.1 we obtain A1 C a. The conditions 
(v) and (vi) of 1.1 imply [A] C a. Hence in view of the condition (ii) of 1.1 we infer 
that [A1]* C a. D 

The m-oonvergence [A1]* will be ^aid to be generated by the set A. 
The set A will be said to be regular (with respect to L) if there exists a E Conv L 

such that AC a. 

The following assertions 2.5, 2.6 and 2.7 are immediate consequences of 2.3 and 
2.4, - • 

Theorem 2.5. Let {a ,}t 6 j be a nonempty system of rn-convergences in L. Then 
in the complete lattice Convm L we have 

o) V a '= [u4 
«€/ «6/ 
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Theorem 2.6. Let A be a nonempty subset of LN x L. Then the following 
conditions are equivalent: 

(i) A is regular. 

(ii) The system [A1]* satisfies the coa4&kM-(iv)4Fem 1.1. 

Theorem 2.7. Let {aj}„-€/ be a nonempty system of convergences in L. Then 

the following conditions are equivalent: 

(i) The system {<*i}te/ JS uppe* bounded in ConvL. 
(ii) The set [\J a,] satisfies the condition (iv) from 1.1. 

•'€/ 
If (ii) holds, then the relation (3) is valid in the partially ordered set ConvL. 

3. POSITIVE AND NEGATIVE ITI-CONVERGENCES 

An m-convergence a in L will be called positive (or negative, respectively) if, 
whenever xn —*a x, then there is m G N such that xn *£ x (xn ^ x) for each n ^ 
m. Let Convm L+(Convm L") be the set of all positive (or negative, respectively) 
convergences in L. Next, let ConvL+ and ConvL~ be defined analogously. Then 
Convm L + OConvm L~~ = {d}. For a G Convm L let a + be the set of all ((xn)> x) G a 
with the property that there is m G N such that xn *£ x for each n^m. The set a"" 
is defined analogously. 

In view of 1.1 we obviously have 

Lemma 3.1. If a E ConvmL (a G ConvL), then both a + and a" belong to 
Convm L (or to Conv L, respectively). 

Lemma 3.2. Let a G Convm L, ((xn)t x) G LN x L. Tien the following conditions 

are equivalent: 

(a) xn -> a x. 
(b) xn A y -* a x A y and xn V y -> a x\/y for every y G L. 

P r o o f . From the conditions (iii) and (v) in 1.1 we obtain that (a) =->• (b). Next, 
the condition (vi) in 1.1 yields that (b) =->• (a) is valid. D 

From 3.1 and 3.2 we infer: 

Lemma 3.3. Let a G Convm L. Then in the partially ordered set Convm L we 
have a = a + V a"". An analogous assertion holds for Conv L. 

Proposition 3.4. Let a G Convm L+, ft € Convm L~. We denote by y the set of 

all elements ((xn), x) ofLNxL such that xn V x - » a x and xnAx -+p x. Then 

243 



(i) 7 € Convm L; 
(ii) 7 = a V P in Convm L; 
(iii) 7+ = a and 7~ = /?. 

P roo f , (i) The conditions (i), (ii), (iii) and (vi) from 1.1 are obviously valid 
for 7. Let us verify that the condition (v) from 1.1 holds for 7. 

Assume that xn -+7 y. Hence 

(1) *n Va?-*a*,yn Vy-^«y, 

(2) Xnh~-+3X,ynAy-+6y-

In view of (1) we have 

(3) (x„Vife)V(xVi/)^«xVy. 

In each lattice the following relation is valid: 

(4) (xn A x) V (yn A y) ^ (xn V yn) A (x V y) ^ x V y. 

The relation (2) yields that 

(xn Ax) V (xn A y) - v x V y, 

hence according to (4) we obtain 

(5) ( * n V y n ) A ( x V y ) ^ x V y . 

From (3) and (5) we infer that 

xnVyn-*yxVy 

is valid. In a similar way we can prove that xn A yn —*7 x A y holds. We have proved 
that (i) holds. 

The assertion (ii) is an easy consequence of (i). The verification of (iii) is routine 
said it is omitted. D 

Proposition 3.5. The mapping / (a) = (a+,a~) where (a runs over Convm L) 
is an isomorphism of the partially ordered set Convm L onto the direct product 
Convm i + x Convm L~. 

P r o o f . If a,/? 6 Convm L and a ^ /?, then clearly a+ ^ /?+ and a"" < /?"". 
Next, from 3.4 (iiij we infpr that for each ai € Convm L+ and a2 € Conv L~ there 
exists a 6 Convm L with / (a ) = (a'i, a2). In view of 3.4 (ii) we have 

/ (a) </(/?)=> a ^p. 

Thus / is an isomorphism. D 
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Proposition 3.6. Let a 6 Conv L+, /? € Conv L" and assume that the set {a, f$) 
is upper-bounded in Conv L. Let 7 be as in 3.4. Then 7 as a V /? in Conv L. 

Proof . Since {a,/?} is upper-bounded in ConvL, then in view of 1.3 the 
element a V/? exists in Conv L. According to 2.5 and 2.7 this element coincides with 
the least upper bound of the set {a, /?} in Convm L. Therefore 3.4 (ii) yields that 
a V /? = 7 in Conv L. 

By applying 3.6 and the same method as in the proof of 3.5 we obtain: D 

Proposition 3.7. The mappingg(a) = (a+,a~) (where a runs over ConvL) is 
an isomorphism of the partially ordered set Conv L onto the direct product Conv L+ x 
Conv L". 

Acknowledgement. The author is indebted to the referee for pointing out that the 
assumption of the distributivity of L (which was applied in the original version of 
the proof of 3.4) can be omitted. 

4. CONVERGENCES ON LINEARLY ORDERED SETS 

In this section we assume that L is a linearly ordered set. 
Let a(o) be the set of all elements ((xn), x) of LN x L such that (xn) o-converges 

to x (cf., e.g., Birkhoff [1]). In view of 1.1 we immediately obtain: 

Lemma 4.1. a(o) belongs to ConvL. 

Lemma 4.2. Let a 6 ConvL+, ((xn),x) € a. Then ((xn),x) G a(o). 

Proof . Let m € N. In view of 1.1 (ii), (iii) and (v) the set {k € N: k ^ 
m and x* ^ xm} is finite, hence there exists an element 

Vm =max{x*: k > m}. 

00 

We have yi ^ 2/2 ^ • • • and /\ yn = x. Because of yn ^ xn ^ x for each n € N we 

infer that (xn) o-con verges to x. Q 

An analogous result holds for a £ Conv L~, whence in view of 3.7 we infer: 

Proposition 4.3. a(o) is the greatest element of ConvL. 

Lemma 4.4. Let a € ConvL"1*, ((xn),x) € a \ d, ((*n),x) € a(o)+. Then 
( (*n ) ,x)€a. 
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P r o o f . Let (*n(i)) be a subsequence of (zn). Next, let (yn) be as in the proof 
4.2. Evidently we have ((yn), x) G a. For each n G N there exists n(2) € {n(l)} with 
n(2) ^ n such that zn(2) ^ y(n). Therefore ((-?n(2)),«) 6 a. By virtue of 1.1 (ii) we 
have ( (* n ) ,x)€a . • 

An analogous result holds for a G Conv L~. 
Let Lf be the set of all x G L with the property that there exists a strictly 

decreasing sequence (xn) in L with Anxn = x. 
Next, let LI be defined analogously. 
For each x G Lf let C(x)+ be the set of all ((xn), x)eLNxL such that ((xn), x) G 

a(o)+. For * € LJ" let C(x)~ have an analogous meaning. From 4.3 and 4.4 we have: 

Proposition 4.5. (i) Let M be a subset of Lf. Put 

a(M)+ = {d}u(\JC(x)+). 

Then a(M)+G Conv L+. 
(ii) Let a G Convi+. Let M be the set of all x G L such that there exists 

(xn) G XN with ((zn), s) G a \ d. Then a = a(M)+. 

An analogous result holds for negative convergences in L. From 4.5, 4.3 and 3.7 
we obtain: 

Theorem 4.6. Let L be a linearly ordered set. Then the lattice Conv L is iso
morphic to the direct product 

{a(Mx)+}x{a(M2r}, 

where M\ runs over the set of all subsets ofLf and M2 runs over the set of all subsets 
of LI (the systems {a(Mi)+} and {a(M2)~} being partially ordered by inclusion). 

Corollary 4.7. If Lf ^ 0 or LJ" ^ 0, then Conv L is a completely distributive 
Boolean algebra. 

For a related result concerning convergences in linearly ordered groups cf. [10]. 
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5. INTERVALS IN ConvL 

In this section we assume that L is a distributive lattice. It will be proved that 
each interval of Conv L is a Brouwerian lattice. 

Lemma 5.1. Let a,*(t £ I) be elements of Conv L+ and assume that ((xn),x) € 
f |J <*<]. Then there exist t( l) , . . . , i(Jb(l)) € I and ((t1), x) € *.(i), . . . , ((*n(1)),«) 6 
L i€ / J 

*<(*(i)) s u c h *Aat xn = t1 V *2 V . . . V e*(1) for each n £ N. 

Proof . By the definition of [A] (cf. Section 2), for A = \J a. there are ((zn), j1), 

((z2), z2), ..., ((**), zk) € -4 and / € F such that 

(1) /(z1 ,z2 , . . . ,z*) = x, 

(2) « < « n < / ( * i , . .-,*£) foreach n € N. 

Put $> = 2rJ' V x, «£ = zn V xn for each j € {1,2,. . . ,*} and each n € N. Hence 
(($£), **) € -4 for j = 1, 2, ..., Jb and (in view of the distributivity of L) 

(3) /(s1 ,s2 , . . . ,a*) = x, 

(4) x ^ x n ^ / ( 4 , . . . , 5 n ) . 

By applying the distributivity of L again we infer that / ( s l , J2, . . . , sn) is the join 
of a finite number (say k(l)) of meets of some subsets of {«x, *2 , . . . , * n } , and that 
f(sn,. ..,«*) can also be expressed in the corresponding way. Let these meets be 
denoted by J1, t2, ..., t*(x) or t^, f2^ ..., t%\ respectively. Because of s1 > x, ..., 
** > x we obtain that 

(5) t 1 =« 2 = . . . = t*=tx. 

Also, ((<in)t^) € arl(i) for i = 1, 2, ..., Jt(l), whence 

((*in)>*)e-4 ft* each i e { 1 , 2 , . . . , * ( ! ) } . 

In view of (4) we have 

*n <: «i. V £ , V . . . V *#>) for each n 5 N, 

hence 
-^ = (*AOv(*A*2 n )V . . .V(*A<&>) . 

Put * A tU = <£ for «*ch ; e {1,2,..., 4(1)} and each n € N. We have ((*„), *) € A 
for each J € {1,2,.. .,4(1)} and *„ = tn V*n V . . . Vt„(1) fo* each n € N. D 
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From 5.1, the assertion dual to 5.1 and from 3.2 we obtain: 

Lemma 5.2. Let at(i € /) be elements of Convi and assume that ((**)>*) € 
[ U a<]. Then tbere exist i(l), i(2), . . , i(t(l)), j ( l) , j(2), . . , i(ib(2)) £l*nd 
L . € / J 

((*»),*) € a + 1 } , . . . , ^ 

((**), *) € ar ( 1 ) , . . . , ((g*(2)), x) e aj(m) 

such that 

« n V « = ^ V i J v . . . V T * ( 1 ' /breach n € N, 

xn Aar = gnAg2A...Ag* (2 ) for each n € N. 

Lemma 5.3. Let a,/? 6 ConvX and iet {a,} t € / be a nonempty subset of [d,/?]. 

Then a A f V *<) - V ( a A <**)• v . € / '• *€/ 

P r o o f . In view of 1.3, both V <*% an<* V ( a A <*%) <*o ex*8t *n [<*,$• T h e 
t€/ t€J 

relation Ai€/( a A a t) < a A ( V a*) being obvious, we have to verify that 
v i € / ' 

a A ( V a » ) < \AaAa<) 
t€/ t€/ 

is valid. Thus in view of 2.7 and 1.2 we have to verify that 

«n[Ua.]*c[U(anat)]* 
i€/ •€/-. 

holds. 
Let ((a?n),x) 6 afl f |J a,- . Let (*n(i)) be a subsequence of (xn). There exists 

l i € / J 

a subsequence (-tn(2)) of (*n(i)) such that 

(1) ((«»(2)),*)€[U«.]-
»€/ 

Clearly ((*„(a)),x)€ a. 

According to 5.2 there exist (*n), ..., (t„(1)) and («„), ..., (?„(2)) € LN with the 
properties as in 5.2 with the distinction that we now have (*„(2)) instead of (*„). 

Then 

((<„), » ) , - • . , ((*„ ( 1 )), * ) , ( (?„) ,*) ((»„ ( 2 )) , * ) € « , 
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whence 

Therefore 

and thus 

Hence 

((«i),-)баП*.(!), . . . . (0*<2>),x) 6 аПai(fc(2)). 

((*»(-) Vж),*), ((n„(2) Л*),*)€ [U( a n «' ) ] 

((*«(»).*)€ [U(<-neo] • 
. 6 / 

((*n),x)e[U(an «•)]*, 
t € / 

completing the proof. D 

Now, 5.3 and 1.3 yield: 

Theorem 5.4. Let L be a distributive iatfcice. Tfien each intervai of ConvL is a 

Brouwerian iattice. 

The question whether the assumption of the distributivity in 5.4 can be omitted 
remains open. 
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