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1. A SUBSET OF SOLUTIONS AND DERIVATION OF AN AUXILIARY CUBIC EQUATION 

Let R denote the set of rational numbers. Assume that X\ is real and x%,x3 are 
conjugate complex numbers, x2 = a + \b, x3 = a — i6, a and 6 rational. The first 
equation yields X\ = 1 — 2<2 while the second implies 

( l - 2 a ) ( a 2 + 62) = l. 

Consequently, we have 

(1) 62 = ( l - u 2 + 2 a 3 ) / ( l - 2 a ) . 

Hence the fraction in (1) has to be a square of a rational number. It is readily seen 
that the same holds for 

( l - a 2 + 2 u 3 ) ( l - 2 a ) , 

i.e., 

(2) - 4 a 1 + 4a3 - a 2 - 2u + 1 = M 2 , 

I mt»\Atf) *&. 



where M e R. Let us set 

(3) M = l - a + na2 , 

where n e R. Substituting (3) in (2), we obtain 

- 4 a 4 + 4a3 - a2 = a 2 ( l + 2n) - 2na3 + n V . 

The case a = 0 can be excluded as it leads to the well-known solution { l , i , —i}. 

Cancelling by a2, we arrive at the equation 

a2(n2 + 4) - a(2n + 4) + 2n + 2 = 0, 

the roots of which are 

a l i 2 = (n2 + 4 ) - 1 (n + 2 ± ((n + 2)2 - (n2 + 4)(2n + 2))1 /2) . 

Its discriminant is 

(4) - 2 n 3 - n 2 - 4 n - 4 = £>2. 

Each solution (n, D) e Rx R of the equation (4) yields aj e R, a2 e R and hence a 

couple of solutions of the given problem. 

2. MODELLING BY A W E I E R S T R A S S P-FUNCTION 

Let us mention that a similar equation is valid for the Weierstrass p-function, 
namely 

(5) 4p3(z)-g2p(z)-g3 = (p'(z))2, 

where g2 and g3 are constants and p'(z) = dp(z)/dz (see e.g. [1], p. 29). Since p is a 

doubly periodic function, it can be used in solving the question whether the number 

of couples (n,D) e Rx R, which satisfy the equation (4), is infinite. 

If we substitute 

in (4) and multiply by 16, we obtain 

(6) v+fp-ifU(4z>r, 



If we write p := p(z), AD := p'(z) and set 

(7) 92/3 = - , ? 2 , 1448/27 = 53, 

we arrive at the equation (5) for the p-function. Since the coefficients 52,93 are real 

numbers, one period of this doubly periodic function is real as well. Let us denote it 

by w. 

The equation 
, 3 92 1448 „ 

has only one real root e\ £ R (as can be easily shown), since 

(8) ei=±(7fc+»72) 

771 = (181 + (44928)1 / 2)1 / 3 , 7,2 = (181 - (44928)1 / 2)1 / 3 

by the Cardan formula. It is well-known that 

p(u/2) = e\, p'(w/2) = 0. 

By substitution, we find that (6) is satisfied by numbers p = § and D = ± 1 , i.e., for 

p(z) = I and p'(z) = ±4. By means of the graph of the p-function we realize that 

p = I and p' = - 4 corresponds to an argument z\ £ ( 0 , C J / 2 ) , whereas the couple 

p = | , p ' = +4 corresponds to z2 £ (w/2,u>). It is readily seen that zi + z2 = w. 

Let us recall the addition theorem for p(z), which implies that if p(zi) £ R and 

p'(zi) £ R, then p(fczi) £ R, p'(kz\) £ R for any natural number k, since they can 

be expressed in terms of p(zi) and p'(zi) by means of a rational expression. 

Let us consider p(kz\) for k = 2 ,3 ,4 , . . . . The number of different values which 

can be obtained in this way would be finite if and only if zi = (r/t)uj, where r and 

t are natural, i.e., if and only if zi is commensurable with the period w. Otherwise 

there exists infinitely many different values of p(kz\). 

It is therefore sufficient to prove that Zi is not commensurable with the period u). 

1° Assume that 

t 
21 = 2 7 . " ' 

where C,n are natural, I is odd and n > 1. Then we should have 

p(nz1)=p(tw/2)=p(U/2). 

This is, however, impossible, since p(nz\), when expressed in terms of | and ( -4 ) 

by a rational expression, is rational, whereas p(w/2) = ex $ R. 

2° Assume that 

21 = 27T+T 



where s,n are natural, s is even. This is impossible, too. Indeed, then we have 

I 
z2 = ui - zi = -U), with £ odd. 

We can calculate p(zi), i = 1,2, in terms of p(z,/2) and p'(zi/2): 

p(Zi) = (4p4(z ;/2) + 252p2(~'72) + 8S 3p(z ; /2) + g 2 /4 ) (2p ' (z ; /2 ) ) - 2 = f. 

Using the formula (5) for p'(z;/2) and the relation (7), in the end we arrive at the 

equation 

324p4(z,/2) - 2160p3(z,/2) - 4968p2(z,/2) + 18192p(z;/2) + 48Q04 = 0. 

This equation has two real roots. One of them is equal to 1 j - , the other is irrational. 

Let us denote it by i9. We have 

•0 = 1 + l(gi + Q2), ei = (928 + 2(44928)1 / 2)1 / 3 , 

02= ( 928-2 (44928) 1 / 2 ) 1 / 3 , 

since i9 is a root of the equation 

108p3 - 324p2 - 2844p - 4364 = 0. 

Since i9 > ^ , the graph of the p-function implies that we may write p(zi /2) = 0, 

p(z2/2) = ^ . Using (5) and (7), we obtain p ' (z2 /2) = - 1 6 . Multiplying the 

argument z 2 /2 by (2n + 1), we arrive at 

P [ ( 2 " + 1}2(2nTlT] = P ( M 2 ) = P{0j/2) = 6ltR-

This contradicts the fact that p[(2n + l)z2 /2] can be expressed in terms of W and 

(—16) be means of a rational expression. 

3° It remains to consider the third possibility 

Then we have 

and 

z, = řw/(2n + l) , ťodd. 

^=AwЫ = ° 
p[(2n + l ) : ,/2] = p(£u'/2) = p(w/2) = e,. 



On the other hand, p[(2n + l)zi/2] can be expressed in terms of p(zi /2) a,ndp'(zi/2) 

by means of a rational expression, i.e., in terms of t? and (4i?3 - 172̂  — 33)1/2 (cf. (5)). 

Theory of algebraic numbers (see e.g. [2]) implies that any rational expression in 

terms of t? and (4t?3 - g2ti - g3)
x/2 can be rewritten in the form 

c0 + cid + C2-Q2 + (d0 + djt) + d2^
2)(4t)3 - g2d - g3)

l/2, 

where c ; 6 R and di e R. Let us denote this expression by a0 S A(tf). It satisfies 

an equation of the sixth degree with rational coefficients. 

Assume that at least one of the coefficients d, is not zero. Denote by i?',i?" the 

numbers conjugate with &, i.e., the roots of the minimal equation for 1?. Then the 

roots of the above mentioned equation are 

a0 = A(ti), ai = A(ti'), a2 = A(d"), 

a3 = B({>), a4=B(-d'), 05 = B(t?"), 

where 

B(0) = c0 + c1?? + c2ti
2 - (d0 + did + d2d

2)(Ad3 - g2d - (/3)1/2. 

Among these roots also the roots of the minimal equation for a0 are contained. If 

at (i = 0,1,2) is a root of the minimal equation, then ai+3 is a root of this equation 

as well and vice versa. Consequently, the minimal equation for Qo is an equation of 

an even degree and its root a0 cannot equal e i , since ei is a root of an irreducible 

equation of the third degree. 

Next, assume that p[(2n + l )z i /2] can be expressed by means of a rational expres­

sion in terms of p(zi/2) alone, i.e., let d0 = di = d2 = 0. Then it is readily seen 

that 

(10) ei = co + en? + c2i?
2 = C(tf), e\ = C(-d'), e'[ = C(i?"), 

where e\ and e" are the numbers conjugate with ei. 

This is, however, impossible, as wc can show by the following approach. 

Summing the three equations (10) and making use of the minimal equations for 

ei and d, we are led to the equation 

185 
3c0 + 3cj + — c2 = 0. 

Then for instance the second equation (102) yields (substituting c0 = -Ci - c2185/9 

and arranging) the couple of equations 

(11) 3ciQi+6c2Qi+c2Q
2 = 2rh, 

(12) 3CIQ2 + 6c2Q2 + C2Q
2 = 3J/2 . 



Multiplying (11) by Q2 and (12) by Q\, we obtain by subtraction that 

c2 = 3(77201 ~IUQ2)(Q\ -QI)'1-

Substituting for Q\, Q2,ni>rl2 and arranging, we find that 

^c2(44928)1 / 2 = (566 • 449281 /2 + 78112)1/3 

+ (566-449281 / 2 - 78112)1/3. 

If we multiply this equation by (44928)1/2, we obtain on the left-hand side 

4 
-c244928 e R, 
o 

whereas the right-hand side equals 

(566 • 449282 + 78112 • 449283 / 2)1 / 3 + (566 • 449282 - 78112 • 44928 3 / 2 ) 1 / 3 , 

which is a root of an irreducible cubic equation, as one can show. This number 

cannot be rational and we thus arrive at a contradiction again. 

Altogether, all possibilities have been considered. We have proved that z\ is 

not commensurable with the period w. There exists an infinite number of pairs 

\p(kzi),p'(kzi)] e R x R. (Of course, there can exist other arguments z for which 

p(z) £ R and p'(z) £ R). As a consequence, the equation (6) has infinitely many 

solutions (p,D) £ R,xR. Obviously, there are infinitely many couples (n,D) £ Rx R 

satisfying the equation (4), and therefore infinitely many different numbers a £ R. 

For each such a one finds ±6 e R in accordance with the equation (1). Thus we 

arrive at an infinite set of triples {xi,X2,x3} with the above required properties. 

R e m a r k . The author of this contribution died in 1969. He published several 

short papers on Diophantine equations in Czech journals during his life. As late 

as in 1995 his son Ivan Hlavacek discovered the above manuscript in his father's 

inheritance and translated it into English. 
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