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Matematický časopis 22 (1972), No. 2 

NOTES ON AN APPROXIMATE DERIVATIVE 

LADISLAV MlSlK, Bratislava 

D. P r e i s s has recently proved the following theorem ([4]): 
Theorem 1. (D. P r e i s s ) Any approximate derivative on an interval is in 

the first Baire class. 
I n this theorem he considered not only finite approximate derivatives. 
I n the first part of this article some notes relating to Z. Zahorski's article 

([7]) are given. In the second part a proof of Preiss' theorem is given which 
is a modification of the proof for approximate derivatives given by L. E. S n y -
d e r ([5]). 

1. 

If we consider only finite approximate derivatives, then the assertion — 
any approximate derivative is in the first Baire class — has been known for 
a very long time. I n 1938 the following theorem was presented: Any approxi
mate derivative of an approximate continuous function is in the first Baire class 
([6]). Approximate derivatives which also can obtain oo and — oo as their 
values are considered there. G. T o l s t o v proved his assertion by the help 
of the well known Baire's theorem on functions in the first Baire class. 

I n 1948 Z. Z a h o r s k i ([7], pp. 321 — 323) gave two examples of functions 
and as he asserts they have an approximate derivative not in the first Baire 
class. Unfortunately his assertion is not true. In his examples the functions 
fail to have an approximate derivative at the points of an uncountable set. 
We give here the proof of this assertion. 

First we recall the definition of these two functions on the interval <0, 1 . 
Let G be the Cantor set and (at, b() be any component of the set <0, 1> —- G. 
Let bt — at = 3~n. Now, Zahorski defines the function/* on <0, 1> as follows: 
f*(x) = 0 at the left endpoints of the components of <0, 1> — G, f*(x) = 1 
at other points of G and f*(x) = — 1 for at < x ^ at + 3~2n, f*(x) = (x — 
— at — 3~2n) . 2.32n — 1 for at + 3~2n < x < at + 2.3~2n and f*(x) = 1 
for at + 2.3~2n ^ x <bt. He obtains the function / from the function / * 
by modifying the graph of / * in the neighbourhood of the points a\ + 3~2n 

and ab + 2.3~2n. He substitutes here the graph of/* by an arc of the circle 
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with the radius 3~2n. The substitution will be made in such a way that the 
derivative of / exists at all points of (aiy bt). He defines the second function 
F as follows: F(x) = 1 — 3~n for all left endpoints of the components of 
<0, 1> — C, F(x) = 1 for all other points of the Cantor set C and F(x) = 

- AP(x) + Bf(x) + C — }/(x — at)(x — 6,)2 for all x G (at,bt), where A = 

= 1 — 2-2 . 3~n+1 + ]/l — 2~- . 3"^+ 1 + 2-i . 3~2n, B = 2~- . 3~n and C — 
— 1 — 2"1 . 3-» — .4. 

Let {(a*, ft*)}^ be the sequence of all components of the set <0, 1> — G. 
In his first example Z. Z a h o r s k i asserts ([7], p . 322) tha t /a'pvr) = 0 for 
all such x e C in which f(x) = 1. That is not true. We shall prove that/.["(#) ^ 0 
for such a point x e C (/a~(#) means a left approximate derivative o f / in x). 

For x = 6$ where i = 1, 2, 3, . . . we have obviously f^(x) = 0. Let x e (7 
be a two-sided limit point of C. There exists an increasing sequence {ftfjjj? 3 

f f(u)—f(x) 
converging to x. Then the following holds: I u : ~> 0, &i& < u < 

[ u — x . 

< #! ID u {at + 3(bt — at)
2, bi) : blk 5 ^ < x}. Therefore we conclude: 

{ f(u) - f(x) 
<* - K)'1 I \u : ^ 0, bik <u<x}\^(x- 6«J-i |u {a* + 3(6, -

[ u — x 

a,)2, 6,) : bik ^at< x}\ ^ ( x - 6,J-- 2 {(6. - a,)(l - 3(6, - at)) : bh < 

<at<x}>(x — 6,-J"1 2 {(6< - a*)(l - 3(x - 6, J ) : 6*& ^ a, < x} = 1 -

- 3 ( * - & 0 ( 1 ) -
I t is therefore evident that/^~(a;) ^ 0. 
Now, let {(aik, bik)}™=1 and {#*}& 1 be two sequences with the following 

properties : 
a) For k = 1, 2, 3, . . . (a^, bik) is a component of the set <0, 1> — C of 

the length 3_Wfc, 
b) For k = 1, 2, 3, . . . #*• is a two-sided limit point of C, 
c) For & = 1, 2, 3, . . . the following holds xjc < xjc+x < aik+i < bik+i < aifcand 

1 
aik - xjc+x < — 3~2nk. 

k 
From the properties of the Cantor set C it follows that we can construct 

such sequences by induction. The existence of lim xk is obvious. We denote 
&-»oo 

this limit by u. Then u is a two-sided limit point of C. Therefore f(u) = 1. 
<-•> | A | denotes the outer Lebesgue measure of the set A. 
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Now, we shall prove that f'lY\(x) = — oo. We obtain it in the following way: 

f(y) - f(u) , , 
Let k = 1,2,3, .... Then we have J-^-L < - 3~2"* (] + 

y — u 
y E < ai/c, aib + 3~2"* > , because f(y) < 0, y — u <aifc — u + 3~2lk <aik 

- xk+1 + 3-21* < f 1 + V I rl''lk a n d - —--— < 3 _ 2 , U 11 + l 

\ k J y — u \ k 

From that we get: 
ь4-

K + 3-2"" - u) i L/to)-/м< r !„ 
y — u 

+ з- > 
1 \ k+ 1 

3-=-1 1 + 

I t is obvious from this that/^(u) —- — oo. 
Now, we see the existence of points in C in which/^p does not exist. Denote 

by J) the set of all points at which an approximate derivative does not exist. 
We shall show that D is an uncountable set. Suppose D is a countable set. 

Let D = {fi, f2, &, . . .}. We pick out an interval (ait, bt) of the length 3 " 
and a two-sided limit point x\ < aix of C. Let fr be the first point from the 
sequence {fi, £2, £3, . • .} belonging to the interval (x±, ati). Let x<> be a two-
sided limit point of C with the property aiy — x% < 3 2,il. Then we pick out 
an interval (<z*a,&f2) of the length 3 "2 for which x2 < aio < aix. Let f, 
be the first point from the sequence {£ 1, f2, f3, • • •} belonging to the interval 

X2,ai<t). We choose from (max (fra, a^ — \ 3~2/l2), aio) a two-sided limit 
point X3 of C Now, we again pick out an interval (ais, bia) of the length 3 "3 

for which xs < aia < aiz. I t is now obvious that in such a way we can con
struct three sequences {(a>k, bik)}f 1? {x^}™ 1 a n d {rjc}™ x which satisfy the 
conditions a) — c) and the following one: 
d) for k = I, 2, 3, ... and 1 < j < rk f; is net contained in (xk} atJ. 

Let u = lim xk. Then u $ D and f'av (u) does not exist. 
fc-»00 

In the second of Zahorski's examples, as in the first one, we can prove that 
F&p(x) >: 0 for every such point of C which is not a left endpoint of some 
component of <0, 1> — G (F'av(x) means the upper left approximate derivative 
of F in x). The definition of F implies the existence of such an / that F(u) <\ 
holds for all u e <a* + \ 3~2n, at + 3~2n) and i ^ I, where 3 n is the length 
of (at, bi). Now, we can construct, as in the case of the first Zahorski's example, 
two sequences {(aik,biic)}k

G
1 a n d {xk}l° 1 satisfying the conditions a) —c). 
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Then F(u) = 1 for u = lim xk. For ijc ^ / and y e < ailc + I 3 

F(y) - F(u) 1 k 
+ 3 2l^ > it holds — — — < -

y — u 

s , , F(y) - F&) 
— u) y: — < - • Z2nk\ = for ik > I. There-

y — u 
fore F'a^(u) > 0 cannot obviously hold (F^(u) means the lower right appro
ximate derivative of F in u). 

In a similar way as in the case of the first Zahorski function, we can prove 
that the set of all points in which an approximate derivative does not exist 
is an uncountable set. 

The paper [7] refers to the known Khintchine theorem — every finite approxi
mate derivative f satisfying f'av(x) > cp'(x) for some function q) is a derivative — 
and states that it is true for infinite approximate derivatives. This statement 
is not true . In [2] it is proved that Khintchine theorem is also true for infinite 
approximate derivatives. 

L. E. S n y d e r uses his theorem on an approximate Stolz angle boundary 
function ([5], p. 417) to prove the theorem — the finite approximate derivative 
f'AV is in the first Baire class. He considers only real finite functions; we shall 
prove his theorem for the case when the approximate Stolz angle boundary 
function also obtains oo and — oo. 

Lemma 1. Let f be a real (not necessary finite) function defined on a perfect 
set P which is not continuous on P. Then there exists some segment Q of P and 
tiro numbers a and ft, a < /3 such that Q cz {x : x e Q, f(x) < a} O {x : x e 

e Q, m> PI 
Proof . We can suppose that — 1 < f(x) < 1 for all x e P. FYom the assump

tion regarding the function / we can conclude the existence of such an integer 

lc > 0 and such a segment Q0 of P tha t the set Q0 is a subset of Ix : x e P, 

d(x) > [, where d(x) is the oscillation of / in x. But the following holds 

Qo c \j{{x :xeQ0, f(x) < p} n{x : x eQ0, f(x) > g } : — I <= p <q ^ l , p and 
q are rational numbers}. Therefore there exists a segment Q and two numbers a 
and fl, a < /3 such that Q c: {x : x e Q, f(x) < a} n {x : x eQ, f(x) > /}}• 

Let IV be the open upper half-plane. The symbol l(x, 0) denotes the half-
line from the point (x, 0) whose angle of inclination is O. Let Sx be the Stolz 
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angle with the vertex (x, 0) which consists of the angular sector between 

Zlx,—land llx, 1. The symbol R denotes the real line. 
4/ I 4 

Theorem (L. E. S n y d e r ) Suppose 0 : TV -> R a function and for each x e R 
there is a set Ex cz W such that 

(i) (x, 0) is a point of density of Ex relative to Sx and 
(ii) f(x) = lim 0(u, v) exists finite or infinite as (u, v) -> (x, 0) relative to 

the set Ex for each xeE. 
Then the boundary function f of 0 determined by the family of sets {EX}XER 

is in the first Baire class. 
Proof . Let P be a perfect set, P ^ 0. Let the funct ion/ /P (this function 

is the restriction o f / t o P) have no point of continuity. I t follows from Lemma 1 
that there exists some segment Q of P and two numbers a and (5 which satisfy 
a < j8, Q <=• A$ and Q c i a , where A$ = {x : x eQ, f(x) ^ /?} and A^ = 
= {x : x e Q, f(x) _ oc}. I t is easy to see that we can choose Q such that Q cz 

f 7 ) f 
clxixeP, \E%\ > — \Sn

x\ for all n _ h , where Sn
x = (u, v) : (u, v) e Sx, I 8 J I 

1] 
v _ — and En

x = Sn
xr\Ex. 

n) 
Let x G Q. Let r _ h and e > 0. Since A& is dense in Q there exists in A& n Q 

1 
an element ?/ satisfying the inequality \x — y\ <—. Then we have ffl > 

r 
7 7 1 1 

> - | ^ | and \Er
x\ > - \Sr

x\. I t is obvious that \Sr
x nSr

y\> — - \S}^ . 

But this implies that ExnEy ^ 0 . Therefore there exists a sequence {(un, 
Vn)}n=i °^ points in Ex satisfying the inequality 0(un, vn) _ f} — e for all n. 
Hence it follows: f(x) _ /} — e. Therefore f(x) _ /?. 

In a similar way we prove that f(x) _ a for all x eQ. But this is a contra
diction. 

We note that Snyder's Corollary 1 ([5], p. 419) and! l^e author's Theorem 1 
([3], p. 188) remain valid also for functions which can obtain infinite values as 
well. 

To prove the Preiss theorem on an approximate derivative by Snyder's 
method ([5], p. 421) we should add to Snyder's proof of hm0(xn, rn) 

ft-»>oo 

= oo (\im&(xn, rn) = — oo), where {(xn, rn)}^_1 is a sequence of points in 
n-»co 

EXo with (x0, 0) as limit, if f'ap(xo) = oo (f'ap(xo) = — oo). We shall use the 
symbols introduced by L. E. Snj^der in the proof of his Theorem 3 ([5], p . 
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1 / / v\ ( v\\ 
421), e. g. 0(u, v) = — | / ( w + — ) — / \ u — — 11, BXo is a set, the density of 

1 
which at XQ is 1 and lim (f(x) — f(xo)) = fap(xo) for x e BXo and EXo 

x->x0 X ^— XQ 

I r r r r \ 

(x, r) : (x,r) e W,x0 — — = x = XQ + — , x — and £ + e J5^0>. 
2 2 2 2 J 

Let f'ni)(xo) = oo and {(xn, rn)}^ x be a sequence of points of EXo with (XQ, 0) 
rn rn ^ rn 

as limit. Since the points xn + — and xn — — are in BXo and xn + -> ^o 
2 2 2 

and ^ — — ->x0(
2) we have: 

2 

f\xn + * | —/(a?o) 

lim = oo 
lH-»-CO T^ 

xn -\- Xo 
2 

and 

/(^-^] —/(̂ o) 
lim = oo. 
*n-»oo f^ 

^ t t — — XQ 
9 

Thence we get: 

lim Ф(xn, rn) = lim 

f{xn+—\—f(Xo) Xo — Xn + — f(Xo)— flxn — — \ 

X — + I = 00. 
rn rn rn 

Xn + #0 XQ — Xn -\-
2 2 

In the case flv(xo) = — oo the proof of \im.O{xn, rn) = - c o is similar. 

(2) I t is obvious that xn ~\—- — x0 ^ 0 and xo xn -{—- ^ 0. 
2 2 
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C. Goffman and C. J. Neugebauer have ako proved ([1]) that the finite 

approximate derivative is in the first Baire class. They set A(I, k) = Ux, y) : 

T m-m . \ , ,_/n f . \A(i,k)\ i | 
:x,yel, >k and F(I) = sup k : > — } for 

x-y ) [ |/|2 2 J 
every interval I and real number k. Further they have proved that f'av(x0) — 
= limF(In), where x0e n {In : n = 1, 2, 3, . . . } and \In\ -» 0, if the approxi-

W->00 

mate derivative /ap(^o) exists and is finite. The equality would not hold, if 
/apv^o) = oo. For instance: let f(x) = sign a;. Then / ' ( 0 ) = /'(0) = oo. Let 

/ 1 1 \ 
In = I , — I and £ any positive number less than 1. Then A(In, e) a 

y n n J 
/ l \ a 1 

c: {(x, y) :x,yeln,xy < 0}. |.4(/,-., e)| ^ 2 — =—\In\* holds for any n. 
\n J 2 

Therefore F(In) ^ 0 for any n and /^p(0) -^ limK(/„). 
n-*x> 

For these reasons we cannot complete the proof of C. Goffman and C. J. Neu
gebauer for the cases f'av(x) == oo and f'av(x) = — oo and give in this way the 
proof of Preiss's theorem. 
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