Matematicko-fyzikálny časopis

Bohumír Parízek; Štefan Schwarz

Semi-Characters of the Multiplicative Semigroup of Integers Modulo m

Matematicko-fyzikálny časopis, Vol. 11 (1961), No. 1, 63--74

Persistent URL: http: //dml.cz/dmlcz/126348

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1961

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

SEMICHARACTERS OF THE MULTIPLICATIVE SEMIGROUP OF INTEGERS MODULO m

By BOHUMÍR PARÍZEK and ŠTEFAN SCHWARZ, Bratislava

Let S be a commutative semigroup. A semicharacter of S is a complex-valued multiplicative function defined on S that is not identically zero.

Let $m=p_{1}^{\alpha_{1}} \ldots p_{r}^{\alpha_{r}}, x_{j} \geqq 1$, be the decomposition of the integer $m>1$ into distinct primes. The set of all residue classes modulo m is denoted by $S(m)$. For an integer $x,[r]$ denotes the residue class containing x. Under the usual multiplication $[x][y]=[x y], S(m)$ is a semigroup. The subgroup of $S(m)$ containing all residue classes $[x]$ such that $(x, m)=1$ is denoted by $G(m)$.

The purpose of this paper is to find all semicharacters $\%$ of $S(m)$, especially also to compute $\chi([. x])$ explicitly in terms of the integer x for an arbitraty semicharacter χ of $S(m)$.

The general theory of semicharacters of a finite (and some types of infinite) commutative semigroups has been given independently by Hewitt and Zuckerman ([1]) and by one of us ([5]). The present paper is independent of the general theory contained in [1] and [5].

Semicharacters of $S(m)$ are treated in a forthcomming paper of Hewitt and Zuckerman ([2]), which the authors kindly gave to our disposal. Our presentation is based on the results of [4], where an explicit decomposition of $S(\mathrm{~m})$ into a direct product of subsemigroups of prime power order is given. For convenience of the reader these results are shortly reproduced below.
1.

It is easy to see that $S(m)$ contains 2^{r} idempotents (including [0] and [1]). An idempotent $[e] \neq[1]$ is called maximal if the relation $[c][f]=[e]$, in which $[f] \neq[1]$ and $[f]$ is an idempotent, implies $[e]=[f]$.

In [3] we proved that $S(m)$ contains exactly r maximal idempotents. Each of them is of the form $\left[e_{j}\right]=\left[p_{j}^{\alpha_{j}} a_{j}\right]$, where $\left[a_{j}\right]$ is an element $\in G(m)$.*

The following is the main result of [4]:

[^0]Theorem 1. Let $\left[e_{j}\right]$ be a maximal idempotent of $S(m)$. Denote $T_{j}=\{[\cdot v][. x] \in S(m)$. $\left.[. x]\left[e_{j}\right]=\left[e_{j}\right]\right\}$. Then $S(m)$ can be written in the form of a direct product

$$
\begin{equation*}
S(m)=T_{1} \cdot T_{2} \ldots T_{r} \tag{1}
\end{equation*}
$$

Denote further $G_{j}=\left\{[r] \mid[x] \in G(m),[r]\left[e_{j}\right]=\left[e_{j}\right]\right\}$. Then $G(m)$ can be written as a direct product of the r subgroups

$$
G(m)=G_{1} \cdot G_{2} \ldots \ldots G_{r}
$$

The semigroup T_{j} contains exactly $p_{j}^{\alpha_{j}}$ different elements: $T_{i}=\left\{\left[\begin{array}{ll}e_{j}+k^{2} & m \\ & p_{j}^{\alpha_{j}}\end{array}\right] 0 \leqq\right.$ $\left.\leqq k \leqq p_{j}^{\alpha_{j}}-1\right\}$. The group G_{j} contains $\varphi\left(p_{j}^{\alpha_{j}}\right)=p_{j}^{\alpha_{j}}-p_{j}^{\alpha_{j}-1}$ different elements: $G_{j}=\left\{\left[e_{j}+k \begin{array}{c}m \\ p_{j}^{\alpha_{j}}\end{array}\right] 0 \leqq k \leqq p_{j}^{\alpha_{j}}-1,\left(k, p_{j}\right)=1\right\}$.

It follows directly from the definition of T_{j} that $\left[e_{i}\right]$ is the zero element of the semigroup T_{j}. (But of course if $r>1$ it is not a zero element of the whole semigroup $S(m)$.)

Further, since [1] $\left[e_{j}\right]=\left[e_{j}\right], T_{j}$ (and G_{j}) contains the element [1]. which is the unity element of $S(m), T_{j}$ and G_{j}.

Clearly $G_{j} \subset T_{j}$ and $G_{j} \neq T_{j} . G_{j}$ is the largest group contained in T_{j} and having [1] as the unity element. This follows from the following considerations. Let be $[b] \in T_{j}-G_{i}$. We then can write $[b]=\left[\begin{array}{cc}e_{j}+k & m \\ & p_{j}^{\alpha_{j}}\end{array}\right]$ with $\left(k, p_{j}\right)>1$. Now, since any product containing $\left[e_{j}\right]$ and $\left[\begin{array}{c}m \\ p_{j}^{\alpha_{j}}\end{array}\right]$ is [0]. we have

$$
\begin{equation*}
[b]^{\rho}=\left[e_{j}+k \underset{p_{i}^{\alpha_{j}}}{m}\right]^{\rho}=\left[e_{j}+k^{\rho}\binom{m}{p_{j}^{\alpha_{i}}}^{\rho}\right] \text { for every integer } \rho \geqq 1 \tag{2}
\end{equation*}
$$

If especially $\rho=\alpha_{j}$, we have $[b]^{\rho}=\left[e_{j}\right]$. By other words: Every element $[b] \in T_{j}-G_{j}$ considered as an element of the semigroup T_{j} is nilpotent and cannot be contained in a group containing [1] as the unity element.

This argument shows at the same time that T_{j} cannot contain idempotents different from [1] and $\left[e_{j}\right]$.

Remark 1. The semigroup T_{j} is isomorphic to the semigroup $S\left(p_{j}^{\chi_{j}}\right)$. To prove this denote the residue class $\left(\bmod p_{j}^{\alpha_{j}}\right)$ containing x by x and consider the mapping

$$
\left[\begin{array}{cc}
e_{j}+k & \left.\begin{array}{c}
m \\
p_{j}^{\alpha_{j}}
\end{array}\right] \in T_{j} \rightarrow\left\langle k \begin{array}{c}
m \\
p_{j}^{\alpha_{j}}
\end{array}\right\rangle \in S\left(p_{i}^{\alpha_{j}}\right) ~
\end{array}\right.
$$

It is easily verified that this is an isomorphism of T_{j} to $S\left(p_{j}^{x_{1}}\right)$, which carries $G_{j} \subset T_{j}$ to the group $G\left(p_{j}^{\alpha_{j}}\right) \subset S\left(p_{j}^{\alpha_{j}}\right)$. (See [4].) We shall use this isomorphism to establish the structure of T_{j} and G_{j}.

Remark 2. We should like to note the following remark of a computational character. To find in concrete cases the maximal idempotents $\left[e_{j}\right]$ we proceed in the following manner: Since $\left[e_{j}\right]=\left[p_{j}^{\alpha_{j}} a_{j}\right]$, we have

$$
p_{j}^{\alpha_{j}} u_{j} \equiv p_{j}^{2 \alpha_{j}} u_{j}^{2} \quad\left(\bmod p_{1}^{\alpha_{1}} \ldots p_{j}^{\alpha_{j}} \ldots p_{r}^{\alpha r}\right)
$$

and - since $\left(a_{j}, m\right)=1$ -

$$
p_{i}^{\chi_{j}} a_{j} \equiv 1 \quad\left(\begin{array}{ll}
\bmod & m \\
& p_{j}^{x_{j}}
\end{array}\right) .
$$

$\left.\begin{array}{l}\text { This congruence defines } a_{j}\left(\begin{array}{cc}\bmod & m \\ \text { modulo } m \text {. }\end{array}\right) \text { uniquely. Hence } e_{j} \text { is uniquely determined } \\ p_{j}^{\alpha_{i}}\end{array}\right)$. modulo m .

To find the components of any element $[x] \in S(m)$ in the decomposition (1) we proceed as follows: Every $[x] \in S(m)$ can be uniquely written in the form

$$
[x]=\prod_{j=1}^{r}\left[\begin{array}{ll}
c_{j}+k_{j}(x) & m \tag{3}\\
p_{j}^{\alpha,}
\end{array}\right] .
$$

where $k_{j}(. \cdot)$ is an integer satisfying $0 \leqq k_{j}(. x) \leqq p_{j}^{\alpha_{j}}-1$. Since $\left[e_{1} e_{2} \cdots e_{r}\right]=[0]$, $\left[\begin{array}{cc}e_{j} & m \\ & p_{j}^{\chi_{j}}\end{array}\right]=[0]$ and $\left[\begin{array}{cc}m & m \\ p_{j}^{\alpha_{j}} & p_{i}^{\alpha_{i}}\end{array}\right]=[0]$ for $i \neq j$, we obtain by multiplying the brackets on the right:

$$
[x]=\left[\begin{array}{cc}
k_{1}(x) & \begin{array}{c}
m \\
p_{1}^{x_{1}}
\end{array} e_{2} e_{3} \ldots e_{r}+k_{2}(x)
\end{array} \begin{array}{c}
m \\
p_{2}^{\alpha_{2}}
\end{array} e_{1} e_{3} \ldots e_{r}+\ldots+k_{r}(x) \underset{p_{r}^{2 r}}{m} e_{1} e_{2} \ldots e_{r-1}\right] .
$$

Taking the last relation $\left(\bmod p_{j}^{\alpha_{j}}\right)$ we get

$$
x \equiv k_{j}(x){\underset{p}{\alpha_{j}}}_{m}^{m} e_{1} \ldots e_{j-1} e_{i+1} \ldots e_{r} \quad\left(\bmod p_{j}^{\alpha_{j}}\right)
$$

This linear congruence defines $k_{j}(x)\left(\bmod p_{j}^{\alpha_{j}}\right)$ uniquely.

2.

For further purposes we mention the following known fact: if a semigroup S with a unity element can be written as a direct product of subsemigroups $S=S_{1} . S_{2}$ ($S_{1} . S_{2}$ containing unity elements) and $\%$ is a semicharacter of S, then $\%$ induces on S_{1} and S_{2} semicharacters γ_{1}, χ_{2} of S_{1}, S_{2} respectively and if $x=x_{1}, x_{2}$ $\left(x_{1} \in S_{1}, x_{2} \in S_{2}\right), \nsim(v)=\%_{1}\left(x_{1}\right) \%_{2}\left(x_{2}\right)$ hoids. Conversely, if ψ_{1}, ψ_{2} are semicharacters of S_{1} and S_{2} and $x=x_{1} \ldots x_{2}\left(x_{i} \in S_{i}\right)$, then $\psi(x)=\psi_{1}\left(x_{1}\right) \psi_{2}\left(x_{2}\right)$ is a semicharacter of S. (Ais explicit proof of this siatement is given in a slightly other form in [6]. Theorem 5,1.)

To describe the semicharacters of $S(m)$ it is sufficient to find the semicharacters of each of the subsemigroups T_{i}.

We recall that by the unity semicharacter of a semigroup S we denote the function which is identically 1 on S. The unity semicharacter of T_{j} will be denoted by $\%_{10}^{(i)}$.

Lemma 1. Let $\%$ be any semichanacter of T_{j}, which is not the unity semicharacter $\chi_{0}^{(j)}$ of T_{i}. Then for every $[b] \in T_{j}-G_{j}$ we have $\chi([b])=0$.

Proof. We have necessarily $\chi\left(\left[e_{j}\right]\right)=0$. For otherwise $[].\left[e_{j}\right]=\left[e_{j}\right]$ for every $[x] \in T_{j}$ would imply $\chi([x]) \cdot \chi\left(\left[e_{j}\right]\right)=\chi\left(\left[e_{j}\right]\right)$, hence $\chi([x])=1$ for every $[\cdot x] \in T_{i}$, contrary to the assumption.

If $[b] \in T_{j}-G_{i}$, we have as above $[h]^{\alpha_{j}}=\left[e_{j}\right]$, hence $\left\{\chi([h])_{1}^{i_{j}}=\nsim\left(\left[\rho_{j}\right]\right)=0\right.$, therefore $\chi([b])=0.4$. e. d.

If χ is any semicharacter of T_{j}, \not, induces a semicharacter on the group G_{j}. We have $\chi([1])=1$. For $\left.\chi([1])=\chi\left([1]^{2}\right)=\chi(1]\right) \cdot \chi([1])$ implies $\chi([1])\{\chi([1])-1\}=0$, hence cither $\chi([1])=0$ or $\chi([1])=1$. The first possibility cannot occur since $\nsim([1])=0$ would imply $\chi([r])=\chi([x]) \not([1])=0$ for every $[r] \in T_{j}$. contrary to the definition of a semicharacter. By cther words: γ induces on $G ;$ a chatacter of G, in the usua! sense (used in the theory of groups).

With respect to Lemmal we can say that if γ is not the unity semicharacter of T_{j} it is of the fom:

$$
\partial\left(\left[x_{j}\right]\right)= \begin{cases}0 & \text { for }\left[x_{j}\right] \in T_{j}-G_{j}, \\ \psi\left(\left[x_{j}\right]\right) & \text { for }\left[x_{j}\right] \in G_{j},\end{cases}
$$

where ψ is a characier of the group G_{j}.
Conversely. let if be a character of the group G_{J} and define the function $\%$ by the statement:

$$
x\left(\left[x_{j}\right]\right)=\left\{\begin{array}{lll}
0 & \text { for } & {\left[x_{j}\right] \in T_{j}-G_{i}} \\
\psi\left(\left[x_{j}\right]\right) & \text { for } & {\left[x_{j}\right] \in G_{i} .}
\end{array}\right.
$$

We show that is a semicharacter of T_{i}, i. e.

$$
\begin{equation*}
\not \partial\left(\left[x_{j} y_{j}\right]\right)=\not \approx\left(\left[x_{j}\right]\right) \cdot \not \partial\left(\left[y_{j}\right]\right) \tag{4}
\end{equation*}
$$

for every couple $\left[x_{j}\right]$. $\left[y_{j}\right] \in T_{j}$. If both $\left[x_{j}\right],\left[y_{j}\right]$ belong to G_{j} the relation (4) holds with respect to the multiplicative property of the function ψ on G_{j}. To prove our statement it is sufficient to show that if at least one of the elements $\left[x_{j}\right],\left[y_{j}\right]$ belongs to $T_{j}-G_{j}$ so does the product $\left[x_{i} y_{j}\right]$. (For then we have zeros on both sides of the relation (4).) Let be $\left[x_{j}\right] \in T_{j}-G_{j},\left[y_{j}\right] \in T_{i}$. It follows from the relation (2) proved above that there is an integer $\rho\left(\left[x_{j}\right]\right) \geqq 1$ such that $\left[. x_{j}\right]^{\rho\left(\left[x_{i}\right]\right)}=\left[e_{j}\right]$. But then

$$
\left\{\left[x_{j}!\right]_{j}\right]^{\rho\left(\left[x_{j}!\right)\right.}=\left[x_{j}\right]^{\rho\left(\left[x_{j}\right]\right)} \cdot\left[y_{j}\right]^{\left.\rho\left(\mid x_{j}\right]\right)}=\left[e_{j}\right]\left[y_{j}\right]^{\rho\left(\left[x_{j}\right)\right)}=\left[e_{i}\right] .
$$

(The last relation is a consequence of the fact that $\left[e_{j}\right]$ is the zero element of T_{j}.) The relation $\left\{\left[x_{j} y_{j}\right]^{\prime \prime([x,])}=\left[e_{j}\right]\right.$ implies $\left[x_{j} y_{j}\right] \in T_{j}-G_{j}$.

Summarily we proved:

Lemma 2. Every semicharacter γ of the semigroup T_{i} different from the unity semicharacter of T_{j} is of the form

$$
\chi\left(\left[x_{j}\right]\right)=\left\{\begin{array}{lll}
0 & \text { for } & {\left[x_{i}\right] \in T_{j}-G_{i}} \\
\psi\left(\left[x_{i}\right]\right) & \text { for } & {\left[r_{j}\right] \in G_{i},}
\end{array}\right.
$$

and conversely. Herche ψ is a character of the gromp G_{i}.
Since the group G_{j} has $p_{j}^{*}-p_{j}^{\alpha_{j}-1}$ distinct characters, we conclude that T_{j} has $p_{i}^{\gamma_{1}}-p_{j}^{\alpha_{1}-1}+1$ distinct semicharacters (including the unity semicharacter $\gamma_{i}^{(j)}$). With respect to the fact mentioned at the beginning of this section we get the result:

Theorem 2. The semigroup $S(m)$ has exactly $\prod_{i=1}^{1}\left(1+p_{i}^{z_{1}}-p_{i}^{x_{1}-1}\right)$ distinct semicharacters.

3.

In the case n even we will take in the following always $p_{1}=2$.
To find all semicharacters of T_{j} we have to distinguish two cases.
A. Suppose first that either $p_{j}>2$ is an odd prime, or $p_{j}^{z_{j}}=2$, or $p_{j}^{x_{j}}=4$.

The group $G_{i}=\left\{\left[c_{j}+k \begin{array}{c}m \\ p_{j}^{z_{j}}\end{array}\right] 0 \leqq k<p_{i}^{z_{j}},\left(k \cdot p_{j}\right)=1\right\}$, being isomorphic ω_{0} $\theta\left(p_{j}^{x_{1}}\right)$. is a cyclic group of order $\varphi\left(p_{j}^{\alpha_{1}}\right)$. There exists therefore an element $k=\mu$, such that $\left[g_{j}\right]=\left[c_{j}+y_{j} \begin{array}{c}m \\ x_{j}^{j}\end{array}\right]$ is a generating clement of G_{j}. Hence to every $\left[x_{j}\right] \in G_{i}$ there is an uniquely determined integer $\rho_{j}\left(\left[x_{j}\right]\right), 0<\rho_{j}\left(\left[x_{j}\right]\right) \leqq \varphi\left(p_{j}^{\prime}\right)$ such that $\left[r_{j}\right]=\left[g_{j}\right]^{\rho,\left(\left[v_{i}\right]\right)}$.

Any character ψ of G_{j} is completely described by knowing the value $\psi\left(\left[g_{j}\right]\right)$. Denote $\left({ }^{\prime}\right)_{j}=\exp \begin{gathered}2 \pi i \\ \rho\left(p_{j}^{\alpha^{\prime}}\right)\end{gathered}$. The semicharacters of T_{i} different from the unity semicharacter $y_{0}^{(i)}$ are determined by

$$
\begin{aligned}
& \chi_{b}^{(j)}\left(\left[g_{j}^{p,(\mid x, j)}\right]\right)= \begin{cases}0 & \text { ior }\left[u_{j}\right] \in T_{j}-G_{j} \\
\omega_{j}^{b p_{j i}(x, y)} & \text { for }\left[x_{j}\right] \in G_{j}\end{cases} \\
&\left(b=1.2 \ldots, \varphi\left(p_{j}^{x_{j}}\right)\right) .
\end{aligned}
$$

To be able to distinguish between the characters $\chi_{b}^{(j)}$ and $\chi_{0}^{(j)}$ we have to consider the value of $\chi^{j)}$ not only on $\left[g_{j}\right]$ but also on $\left[e_{j}\right]$. By Lemma 1 if $\chi^{(j)}\left(\left[e_{i}\right]\right)=1$, then $\chi^{(j)}\left(\left[g_{j}\right]\right)=1$. Hence:

Lemma 3a. If the order of T_{j} is $p_{j}^{x_{j}}$ and either p_{j} is odd, or $p_{j}^{x_{j}}=2$, or $p_{j}^{x_{j}}=4$. a semicharacter $\chi^{(j)}$ is completely given by prescribing $\chi^{(j)}\left(\left[e_{j}\right]\right)$ and $\chi^{(j)}\left(\left[g_{j}\right]\right)$ wiih the restriction that $\chi^{(j)}\left(\left[e_{j}\right]\right)=1$ implies $\chi^{(j)}\left(\left[g_{j}\right]\right)=1$. The admissible values of $\chi^{(j)}\left(\left[g_{j}\right]\right)$ are the numbers $1,\left(\omega_{j},(1)_{j}^{2}, \ldots,(1)^{\varphi\left(p_{j}^{\alpha_{j}}\right)^{-1}}\right.$.

All characters of T_{j} are schematically given by the table:

$$
\left[e_{j}\right] \quad\left[g_{j}\right]
$$

$\chi_{0}^{(j)}$	\vdots	1
$\chi_{1}^{(j)}$	0	$(1)_{j}^{(i)}$
$\chi_{2}^{(j)}$	0	ω_{j}^{2}
\vdots	\vdots	\vdots
$\chi_{\left(j\left(p_{j}^{\alpha_{j}}\right)\right.}^{(j)}$	0	1

B. Suppose next that $p_{1}=2$ and $\alpha_{1} \geqq 3$, i. c. $p_{1}^{x_{1}}=2^{x_{1}} \geqq 8$. Consider the isomorphic image of G_{1}, i. e. $G\left(2^{x_{1}}\right)$. It is well known that the group $G\left(2^{x_{1}}\right)$ is not cyclic. but to every element $a \in G\left(2^{x_{1}}\right)$ there is an integer τ such that $a=(-1)^{2} 5^{\tau}$ with $0 \leqq \tau<2^{\alpha_{1}-2}$. Denote $\left(\omega_{1}=\exp \frac{2 \pi i}{2^{x_{1}-2}}\right.$. The characters ψ_{l} of $G\left(2^{x_{1}}\right)$ are determined by the values of ψ_{1} on -1 and 5 :

$$
\langle-1\rangle \quad\langle 5\rangle
$$

ψ_{1}	-1	ω_{1}
ψ_{2}	1	ω_{1}
ψ_{3}	-1	ω_{1}^{2}
ψ_{4}	1	ω_{1}^{2}
\vdots		
$\psi_{2^{x_{1}-1}-1}$	-1	1
$\psi_{2^{x} x_{1}-1}$	1	1

Consider now the isomorphism

$$
\left[e_{1}+k \begin{array}{c}
m \\
2^{x_{1}}
\end{array}\right] \in G_{1} \leftrightarrow k \begin{gathered}
m \\
2^{x_{1}}
\end{gathered} \in G\left(2^{x_{1}}\right)
$$

$\left(k=1,3,5, \ldots, 2^{x_{2}}-1\right)$. Find integers z_{1} and $z_{2} .1 \leqq z_{1} \leqq 2^{x_{1}}-1,1 \leqq z_{2} \leqq$ $\leqq 2^{x_{1}}-1$ such that $=_{1} \frac{m}{2^{x_{1}}} \equiv-1\left(\bmod 2^{x_{1}}\right)$ and $=_{2} \begin{gathered}m \\ 2^{x_{1}} \\ \equiv\end{gathered}\left(\bmod 2^{x_{1}}\right)$ and denote $\left[\tilde{c}_{0}\right]=\left[\begin{array}{lc}e_{1}+z_{1} & m \\ & 2^{\alpha_{1}}\end{array}\right],\left[\tilde{g}_{1}\right]=\left[\begin{array}{cc}e_{1}+z_{2} & m \\ 2^{x_{1}}\end{array}\right]$.

Then $\left[\check{g}_{0}\right]$. $\left[\tilde{g}_{1}\right]$ are $\in T_{1}$ and they are the images of -1 and 5 in T_{1}. We have the following

Lemma 3b. If $p_{1}=2$ and $p_{1}^{\alpha_{1}} \geqq 8$. then a semicharacter $\chi^{(1)}$ of T_{1} is uniquely determined by the values of $\chi^{(1)}$ on the elements $\left[e_{1}\right]$, $\left[\tilde{g}_{0}\right],\left[\tilde{g}_{1}\right]$. Hereby $\chi^{(1)}\left(\left[e_{1}\right]\right)$ takes the values 0 or $1, \chi^{(1)}\left(\left[\tilde{g}_{0}\right]\right)$ takes the values ± 1 and $\chi^{(1)}\left(\left[g_{1}\right]\right)$ takes the values $1,()_{1},\left(1_{1}^{2}, \ldots, \omega_{1}^{2^{\alpha_{1}-2}-1}\right.$, where $\omega_{1}=\exp \frac{2 \pi i}{2 \pi i}$, with the restriction that $\chi^{(1)}\left(\left[e_{1}\right]\right)=1$ implics $\chi^{(1)}\left(\left[\tilde{g}_{0}\right]\right)=\chi^{(1)}\left(\left[\tilde{g}_{1}\right]\right)=1$.

The following table indicates a complete set of characters of T_{1} :

	$\left[e_{1}\right]$	$\left[\tilde{g}_{0}\right]$	$\left[g_{1}\right]$
$\chi_{0}^{(1)}$	1	1	1
$\chi_{1}^{(1)}$	0	-1	ω
$\chi_{2}^{(1)}$	0	1	ω
$\chi_{3}^{(1)}$	0	-1	ω^{2}
$\chi_{4}^{(1)}$	0	1	ω^{2}
\vdots			
$\vdots(1)$			
$\chi_{2}^{\alpha_{1}-1}-1$	0	-1	1
$\chi_{2}^{\alpha_{1}-1}$	0	1	1

4.

Let now be m as above and decompose $S(m)$ into the direct product $S(m)=$ $=T_{1} \cdot T_{2} \ldots . T_{r}$. If $\chi^{(j)}$ is any character of T_{j}, then $\chi=\chi^{(1)} \cdot \chi^{(2)} \ldots \chi^{(r)}$ is a character of $S(m)$. If the $\chi^{(j)}$-s (for $j=1,2, \ldots, r$) run independently through all characters $\chi_{0}^{(j)}, \chi_{1}^{(j)}, \ldots, \chi_{\varphi\left(p_{j}^{(j)}\right)}^{(j)}$, we get all characters of $S(m)$.

Suppose first that either

$$
\begin{equation*}
m=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{r}^{\alpha_{r}}, \tag{5}
\end{equation*}
$$

or

$$
\begin{equation*}
m=2 p_{2}^{\alpha_{2}} \ldots p_{r}^{\alpha_{r}} \tag{6}
\end{equation*}
$$

or

$$
\begin{equation*}
m=4 p_{2}^{\alpha_{2}} \ldots p_{r}^{\alpha_{r}}, \tag{7}
\end{equation*}
$$

and $p_{1}, p_{2}, \ldots, p_{r}$ are odd primes and $\alpha_{1} \alpha_{2} \ldots \alpha_{r}>0$.
In this case every $\chi^{(j)}$ depends on two ,,parameters" and with respect to the foregoing considerations we can state the following

Theorem 3a. If m is an integer of the form (5), or (6), or (7), we get every semicharacter of $S(m)$ by prescribing its values on

$$
\left[e_{1}\right],\left[g_{1}\right],\left[e_{2}\right],\left[g_{2}\right], \ldots,\left[e_{r}\right],\left[g_{r}\right]
$$

Hereby $\chi\left(\left[e_{j}\right]\right)$ takes the values 0 or $1, \chi\left(\left[q_{i}\right]\right)$ takes any of the values $1 .\left(\omega_{j}, \omega_{j}^{2}, \ldots\right.$. $\omega_{j}^{\varphi\left(p_{j}^{\alpha_{j}}\right)-1}$, where $\omega_{j}=\exp \begin{gathered}2 \pi i \\ \varphi\left(p_{j}^{\alpha_{j}}\right)\end{gathered}$, with the restriction that if for a fived j we have $\chi\left(\left[e_{j}\right]\right)=1$, we must prescribe also $\chi\left(\left[g_{i}\right]\right)=1$.

Remark. In the case (6) $\chi\left(\left[g_{1}\right]\right)=1\left(\right.$ since $\left.\omega_{1}=1\right)$. In the case (7) $\chi\left(\left[g_{1}\right]\right)$ is either 1 , or -1 (since $\omega_{1}=-1$).

In the case $p_{1}=2$ and $\alpha_{1} \geqq 3$ the semicharacters of T_{1} depend on three .,parameters" and we have:

Theorem 3b. Let be $m=2^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{r}^{\alpha_{r}}$, where $\alpha_{1} \geqq 3, \alpha_{2} \alpha_{3} \ldots \alpha_{r}>0$, and p_{2}. p_{3}, \ldots, p_{r} are odd primes. Any semicharacter of $S(m)$ is determined by prescribing its values on

$$
\left[e_{1}\right],\left[g_{0}\right],\left[\tilde{g}_{1}\right],\left[e_{2}\right],\left[g_{2}\right], \ldots,\left[e_{r}\right],\left[g_{r}\right] .
$$

Herchy $\chi\left(\left[e_{i}\right]\right)(j=1,2, \ldots, r)$ is either 0 or $1 ; \chi\left(\left[g_{0}\right]\right)$ is either -1 or $1: \chi\left(\left[g_{1}\right]\right)$ is one of the numbers $1, \omega_{1}, \ldots, \omega_{1}^{2^{x_{1}-2}-1}$. where $\omega_{1}=\exp \underset{2^{x_{1}-2}}{2 \pi i}$; for $j \geqq 2 \not \approx\left(\left[g_{j}\right]\right)$ is one of the numbers $1, \omega_{j}, \omega_{j}^{2}, \ldots, \omega_{j}^{\varphi(}\left(r_{j}^{\alpha_{j}}\right)^{-1}, \omega_{j}=\exp \begin{gathered}2 \pi i \\ \varphi\left(p_{i}^{\alpha_{j}}\right)\end{gathered}$, and the choice of the values of χ is restricted by the requirement that if $\nsim\left(\left[e_{1}\right]\right)=1$, we have also $\chi\left(\left[g_{0}\right]\right)==$ $=\gamma\left(\left[\tilde{g}_{1}\right]\right)=1$ and if for $j \geqq 2 \chi\left(\left[e_{j}\right]\right)=1$, we have also $\chi\left(\left[g_{j}\right]\right)=1$.

5.

It is also possible to compute the values of $\chi([x])$ - in some sense - explicitly in terms of the integer x.
A. Suppose first that $m=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{r}^{\alpha_{r}}$, where $p_{1}^{\alpha_{1}}$ is either odd. or $p_{1}^{\alpha_{1}}=2$, or $p_{1}^{\alpha_{1}}=4$.

Let χ be a fixed chosen semicharacter of $S(m)$. For $j=1,2, \ldots, r$ denote $\chi\left(\left[e_{j}\right]\right)=$ $=\mu_{j}, \chi\left(\left[g_{j}\right]\right)=\omega_{j}^{l_{j}}$, where $\mu_{j}, \omega_{j}^{l_{j}}$ are determined by χ in accordance with Theorem 3a: hence $\mu_{j}=0$ or 1 , and if $\mu_{j}=1$, we have $\chi\left(\left[g_{j}\right]\right)=1$. The semicharacter $\%$ induces on T_{j} a semicharacter of T_{j}, which we shall denote by $\chi^{(j)}$.

By Theorem I every $[x] \in S(m)$ can be written in the form

$$
[x]=\left[\begin{array}{lc}
e_{1}+k_{1}(x) & m \tag{8}\\
p_{1}^{\alpha_{1}}
\end{array}\right]\left[e_{2}+k_{2}(x) \frac{m}{p_{2}^{\alpha_{2}}}\right] \ldots\left[e_{r}+k_{r}(x) \underset{p_{r}^{\alpha r}}{m}\right] .
$$

The numbers $k_{1}(x), k_{2}(x), \ldots, k_{r}(x)$ are uniquely determined by $[x]$ and the requirement $0 \leqq k_{j}(. x) \leqq p_{j}^{\alpha_{j}}-1$.

If $\left(k_{j}(x), p_{j}\right)=1$, we have $\left[x_{j}\right]=\left[e_{j}+k_{j}(x) \begin{array}{c}m \\ p_{j}^{\alpha_{j}}\end{array}\right] \in G_{j}$ and $\left[x_{j}\right]=\left[g_{j}\right]^{p^{\prime,(x)}}$ with $0<\rho_{j}(x) \leqq \varphi\left(\rho_{j}^{\alpha_{j}}\right)$.

If $\left(k_{j}(\cdot \cdot), p_{j}\right)=p_{j}$, we have $\left[x_{j}\right]=\left[e_{j}+k_{j}(x) \frac{m}{p_{j}^{\alpha_{j}}}\right] \in T_{j}-G_{j}$.
For $j=1,2, \ldots, r$ define the following function:

$$
\Phi_{j}(x)=\left\{\begin{array}{lll}
\mu_{j} & \text { if } \quad\left(k_{j}(x), p_{j}\right)>1 . \\
\mu_{j}+\left(1-\mu_{j}\right) \cdot \omega_{i}^{b_{j} p_{j}(x)} & \text { if } \quad\left(k_{i}(x), p_{j}\right)=1 .
\end{array}\right.
$$

If $\mu_{1}=1$, we have $\Phi_{j}(x)=1$ independently whether $\left(k_{j}(x), p_{j}\right)=1$, or $\left(k_{j}(x), p_{i}\right)>$ $>$ 1. If $\mu_{i}=0$, we have

$$
\Phi_{j}(x)=\left\{\begin{array}{ccc}
0 & \text { if } & \left(k_{j}(x), p_{j}\right)>1, \\
\omega_{j}^{b_{j} p_{j}(x)} & \text { if } & \left(k_{j}(x), p_{j}\right)=1 .
\end{array}\right.
$$

Hence Φ_{i} takes on x the same value as $\chi^{(j)}\left(\left[x_{j}\right]\right)$ for $\left[x_{j}\right]=\left[e_{j}+k_{j}(x) \cdots m\right.$. $\left.\begin{array}{c}m \\ p_{j}^{x_{j}}\end{array}\right]$. Therefore

$$
\begin{equation*}
\chi([x])=\Phi_{1}(x) . \Phi_{2}(x) \ldots . \Phi_{r}(x) . \tag{9}
\end{equation*}
$$

Since x defines $k_{j}(x)$ and $\rho_{j}(x)$ uniquely, the function (9) can be considered as the desired expression of $\chi([x])$ in terms of x.
B. Suppose now that $m=2^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{r}^{z_{r}}$, where $\alpha_{1} \geqq 3$ and p_{2}, \ldots, p_{r} are odd primes. Any $[x] \in S(m)$ can be again written in the form (8). If $\left(k_{1}(x), 2\right)=1$, we have $\left[x_{1}\right]=\left[e_{1}+k_{1}(x) \frac{m}{2^{\alpha_{1}}}\right] \in \in G_{1}$ and $\left[x_{1}\right]$ can be written in the form $\left[\tilde{g}_{0}\right]^{\sigma(x)} \cdot\left[g_{1}\right]^{p_{1}(x)}$ with $0 \leqq \sigma(x) \leqq 1$ and $0 \leqq \rho_{1}(x)<2^{\alpha_{1}-2}$. If on the other hand $\left(k_{1}(x), 2\right)=2$, we have $\left[r_{1}\right] \in T_{1}-G_{1}$.

Let χ be a fixed semicharacter of $S(m)$. Denote

$$
\begin{aligned}
& \chi\left(\left[e_{1}\right]\right)=\mu_{1}, \\
& \chi\left(\left[\tilde{g}_{0}\right]\right)=(-1)^{b_{0}}, \quad 0 \leqq b_{0} \leqq 1, \\
& \chi\left(\left[\tilde{g}_{1}\right]\right)=\omega_{1}^{b_{1}}, \quad \omega_{1}=\exp \underset{2^{\alpha_{1}-2}}{2 \pi i}, \quad 0 \leqq b_{1}<2^{\alpha_{1}-2} .
\end{aligned}
$$

Define the following function

$$
\psi_{1}(x)= \begin{cases}\mu_{1} & \text { if } \quad\left(k_{1}(x), 2\right)=2 \\ \mu_{1}+\left(1-\mu_{1}\right)(-1)^{b_{0} \sigma(x)} \omega_{1}^{b_{1} \rho_{1}(x)} & \text { if } \quad\left(k_{1}(x), 2\right)=1\end{cases}
$$

Then ψ_{1} takes on x the same value as $\chi^{(1)}\left(\left[x_{1}\right]\right)$ on $\left[x_{1}\right]=\left[\begin{array}{cc}e_{1}+k_{1}(\cdot \cdot) & m \\ & 2_{1}^{x_{1}}\end{array}\right]$. Therefore

$$
\chi([r])=\psi_{1}(x) . \Phi_{2}(x) \ldots \ldots \Phi_{r}(x)
$$

is the required explicit formula for $\chi([x])$ in terms of x.

6.

We illustrate the foregoing considerations on an example. We have to find all semicharacters of the semigroup $S(360)$.

Since $m=2^{3} \cdot 3^{2} \cdot 5$, there exist exactly $[\varphi(8)+1][\varphi(9)+1][\varphi(5)+1]=175$ distinct semicharacters.

The maximal idempotents of $S(360)$ are of the form $\left[e_{1}\right]=\left[8 \mathrm{a}_{1}\right],\left[e_{2}\right]=\left[9 a_{2}\right]$, $\left[e_{3}\right]=\left[5 a_{3}\right], 0<a_{i}<360,\left(a_{i}, 360\right)=1$. The relation $\left[8 a_{1}\right]=\left[64 a_{1}^{2}\right]$. i. e. $8 a_{1} \equiv$ $\equiv 64 a_{1}^{2}(\bmod 360)$ implies $a_{1}=17$, hence $\left[e_{1}\right]=[136]$. Analogously $\left[e_{2}\right]=[81]$, $\left[e_{3}\right]=[145]$.

We have further:

$$
\begin{aligned}
T_{1} & =\left\{\left[136+k_{1} 45\right] \mid 0 \leqq k_{1} \leqq 7\right\}= \\
& =\{[136],[181],[226],[271],[316],[1],[46],[91]\}, \\
G_{1} & =\{[181],[271],[1],[91]\}, \\
T_{2} & =\{[81],[121],[161],[201],[241],[281],[321],[1],[41]\}, \\
G_{2} & =\{[121],[161],[241],[281],[1],[41]\}, \\
T_{3} & =\{[145],[217],[289],[1],[73]\}, \\
G_{3} & =\{[217],[289],[1],[73]\} .
\end{aligned}
$$

The group G_{1} is isomorphic to $G(8)$. This isomorphism is realized by the mapping $\left[136+k_{1} \cdot 45\right] \in T_{1} \leftrightarrow\left\langle 45 k_{1}\right\rangle=\left\langle 5 k_{1}\right\rangle \in G(8), k_{1}=1,3,5,7$. The images of [181], [271], [1], [91] $\in G_{1}$ are successively $\langle 5\rangle,\langle 7\rangle,\langle 1\rangle,\langle 3\rangle \in G(8)$. Since [271] $\leftrightarrow\langle-1\rangle$ $[181] \leftrightarrow\langle 5\rangle$, we may choose $\left[\tilde{g}_{0}\right]=[271] .\left[\tilde{g}_{1}\right]=[181]$ and all elements $\in G_{1}$ are of the form [271 $\left.{ }^{b_{0}} .181^{b_{1}}\right], 0 \leqq b_{0} \leqq 1,0 \leqq b_{1} \leqq 1$.

Consider now the group G_{2} and the isomorphism $\left[81+40 k_{2}\right] \in G_{2} \leftrightarrow\left\langle 4 k_{2}\right\rangle \in G(9)$. Since $\langle 5\rangle=\langle 4.8\rangle$ is a generating element of the group $G(9)$, we may choose $\left[g_{2}\right]=[81+8.40]=[41]$ as a generating element of the group G_{2}.

Finally the isomorphism $G_{3} \leftrightarrow G(5)$ realized by [145 $\left.+k_{3} .72\right] \in G_{3} \leftrightarrow\left\langle 2 k_{3}\right\rangle \in$ $\in G(5)$ and the fact that $\langle 2\rangle$ is a generating element of $G(5)$ imply that [217] is a generating element of G_{3}.

Hence any semicharacter χ of $S(360)$ is completely given by prescribing its (admissible) values on the following elements:

$$
[136],[271],[181] ; \quad[81],[41] ; \quad[145],[217] .
$$

Taking account to the restrictions mentioned in Theorems 3a and 3b, we get the following table of all semicharacters of $S(360)$. Hereby the integers b and c run independently over all integers satisfying the inequalities $0 \leqq b<6,0 \leqq c<4$.

[136]	[271]	[181]		[81] [41]		5]	[217]	The number of semicharacters
0	± 1	± 1	0	$\exp \frac{2 \pi i b}{6}$	0		$\frac{2 \pi i c}{4}$	96
1	1	1	0	$\exp \frac{2 \pi i b}{6}$	0		$\frac{2 \pi i c}{4}$	24
0	± 1	± 1	1	1	0		$\frac{2 \pi i c}{4}$	16
0	± 1	± 1	0	$\exp \frac{2 \pi i b}{6}$	1		1	24
1	1	1	1	1	0		$\frac{2 \pi i c}{4}$	4
1	1	1	0	$\exp \frac{2 \pi i b}{6}$	1		1	6
0	± 1	± 1	1	1	1		1	4
1	1	1	1	1	1		1	1

Let now be, for instance, χ the semicharacter of $S(360)$ defined by the following values of γ :

$$
\begin{array}{ccccccccc}
& {[136]} & {[271]} & {[181]} & {[81]} & {[41]} & {[145]} & {[217]} \\
\chi & 1 & -1 & 1 & 1 & 1 & 0 & \exp & \frac{3}{4} \cdot 2 \pi i
\end{array}
$$

We have to find $\chi(100)$.
We use Remark 2 to establish the integres k_{1}, k_{2}, k_{3} in the decompostion [100] = $=\left[136+45 k_{1}\right] .\left[81+40 k_{2}\right] \cdot\left[145+72 k_{3}\right]$. We have $100 \equiv k_{1} \cdot 45.81 .145$ $(\bmod 8)$, hence $k_{1}=4$. Analogously $k_{2}=7, k_{3}=0$. Hence [100] $=$ [316] . [1] . [145].

Since $\left(k_{1}, 2\right)=2$, we have $\psi_{1}(100)=\chi([136])=1$. Further since $\left(k_{2}, 9\right)=1$, we have $\Phi_{2}(100)=1$ and since $\left(k_{3}, 5\right)=5$, we have $\Phi_{3}(100)=0$. Hence $\gamma([100])=$ $=\psi_{1}(100) . \Phi_{2}(100) . \Phi_{3}(100)=0$.

REFERENCES

[1] Hewitt E. and Zuckerman H. S., Finite dimensional convolution algehras, Acta Math. 93 (1955), 67-119.
[2] Hewitt E. and Zuckerman H. S., The multiplicative semigroup of integers modulo m (To appear).
[3] Parízek B. and Schwarz Š., O multiplikativnej pologrupe zvyškových ried (mod m), Mat. fyz. časopis SAV 8 (1958), 136-150.
[4] Parízek B., O rozklade pologrupy zvyškových tried (mod m) na direktmý súč̌in. Mat. fyz. časopis SAV 10 (1960), 18-29.
[5] Schwarz Š., Теория характеров комутагивных полугрупн. Чех. маг. журнал 4 (79) (1954), 219-247.
[6] Schwarz Š., The theory of characters of commutative Hausclorff bicompact semigroups, Czechoslovak Math. J. 6 (81) (1956), 330-364.

Received April 30, 1960.

Katedra matematiky Slovenskej visokej školy technickej
- Bratislave

ПОЛУХАРАКТЕРЫ МУЛТИПЛИКАТИВНОЙ ПОЛУГРУППЫ
КЛАССОВ ВЫЧЕТОВ $(\bmod m)$
Богумир Паризек и Штефан Швари

Резюме

Полухарактером полугруппы S называется комплексная мултипликативная функция определенная на S и не равна тождественно нулю.

Пусть $m>1$ - натуральное число и $S(m)$ - мултипликагивная полугруппа классов вычетов $(\bmod m)$. Целью настоящей статьи является нахождение всех полухарактеров полугруппы $S(m)$. Метод получения всех полухарактеров изложен в приведенных выше теоремах 3а и 36.

[^0]: * $\left[a_{j}\right] \in G(m)$ is, in general, not uniquely determined by $\left[e_{j}\right]$ and under suitable conditions there may exist also an $\left[b_{j}\right] \in S(m)-G(m)$ with the property $\left[e_{j}\right] \cdots\left[p_{j}^{\alpha_{j}} b_{j}\right]$.

