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M A T E M A T I C K Ý Č A S O P I S 

R O Č N Í K 25 1975 Č Í S L O 3 

INTERSECTION GRAPHS OF SET FAMILIES CLOSED 
UNDER INTERSECTION AND SATISFYING THE DESCENDING 

CHAIN CONDITION 

BOHDAN ZELINKA 

Let 3? be some family of sets. The intersection graph of 3? is the undirected 
graph G(3r) without loops and multiple edges whose vertex set is 3? and 
in which two distinct vertices are joined by an edge if and only if they have 
a non-empty intersection. Instead of "intersection graph of 3?" we shall say 
sometimes only "graph of «^r". I t is wellknown that each undirected graph 
without loops and multiple edges is isomorphic to the graph G(3r) for some 
set family 3r. Therefore it is not interesting to study intersection graphs 
in general, but some special cases are of importance. Some authors studied 
the case when 3? is the family of all proper subalgebras of a given algebra. 
This study was begun by J . B o s a k [1]. Such a family is either closed under 
intersection, or obtains this property after adding the empty set as a new 
element. (We say that a family 3? of sets is closed under intersection, if and 
only if for any non-empty subfamily 3?' of 3? the intersection of all sets of &' 
belongs to 3?'.) 

In this paper we shall characterize the graphs G(3r) for all set families 
closed under intersection and satisfying the Descending Chain Condition. 

The Descending Chain Condition: Let Si for i == 1, 2, . . . be an infinite 
sequence of sets of 3r (of the ordinal a>o) such t h a t St+i C Si for any positive 
integer i. Then there exists such a positive integer N tha t for each n ^ N 
the set Sn = SN. 

Now we shall define the concept of an atom. An atom of the set family 3? 
is such a non-empty set A of 3? t h a t no non-empty proper subset of A is in 3?. 

If 3? satisfies the Descending Chain Condition, then any non-empty set 
of 3? contains at least one atom of 3?. If 3? is closed under intersection, then 
A e 3r is an atom of 3r, if and only if A is non-empty and i n 5 ^ 0 implies 
A C B for any B e3r. 

In the first item we shall study such families in general, the second item 
will describe graphs of finite abstract algebras. 
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1. General theory 

Consider a family !F closed under intersection and satisfying the Descending 
Chain Condition. The family & — {0} can be partitioned into classes such 
that two sets belong to the same class if and only if they contain the same 
atoms as subsets. 

Theorem 1. The intersection graph G(^) of a set family & closed under inter 
section and not containing the empty set is a complete graph. Every complete 
graph is isomorphic to the graph G(^) for some set family & closed under inter­
section and not containing the empty set. 

Proof . Let & satisfy the assumption. As & is closed under intersection, 
the intersection of any two sets of & must be in &. As 0 £ &', this intersection 
must be always non-empty and G(&) is complete. Now let a complete graph G 
with the vertex set of the cardinality n be given. Let us choose a set M of the 
cardinality n and an element a e M. Let & be the family of all sets {a, b} 
for b G M, b ^ a with the set {a} added. The graph G(^) is evidently iso­
morphic to G. 

Theorem 2. The intersection graph G(^) of a set family & closed under inter­
section, satisfying the Descending Chain Condition and containing the empty 
set has the following structure: 

(i) The vertex set V of G[SF) is the union of pairwise disjoint subsets V% for 
i e I, where I is some subscript set; each of these subsets induces a complete 
subgraph of G and for i G I, j G I, i ^j either each vertex of V\ is joined 
with each vertex of Vj, or no vertex of Vt is joined with a vertex of Vj. 

(ii) The graph G(&) contains at least one isolated vertex. 
(hi) If G' is the graph obtained from G(^) by contracting all vertices of Vt for 

each i e I, then there exists in G' a kernel K of the maximal cardinality which 
has the following properties: 

(a) any two vertices of G' not belonging to K and both joined to the same vertex 
of K are joined together and vice versa; 

(b) if K' C K, then there exists at most one vertex of G' joined to all the vertices 
of Kf and with no vertex of K — K'; 

(c) if some family CtC of subsets of K has the property that to each K' e Jf there 
exists a vertex of G' joined to all the vertices of K' and to no vertex of K — K' 
and the intersection P ( J f ) of all sets of Jf has at least two elements, then 
there exists a vertex of G' joined to all the vertices of P ( J f ) and to no other 
vertex of K. 

Any graph satisfying the above described conditions is isomorphic to G(^) 
for some set family !F closed under intersection, satisfying the Descending Chain 
Condition and containing the empty set. 
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Proof . Let st be the family of atoms of 3F. Let 08 C stf. The family of sets 
of !F, each of which contains all atoms from 08 as subsets and no other atom, 
will be denoted by $(08). If $(08) =fc 0, then any two sets from $(08) have 
a non-empty intersection, because this intersection contains all atoms from 08. 
Therefore the subgraph of G(&) induced by the set of vertices corresponding 
to sets from $(08) is complete. Any non-empty set of !F belongs to exactly 
one $(08), therefore for 08\ =-= 082 we have $(08i) n $(082) = 0. Let 08x C s/9 

0S2 C st and consider the families $(08i), $(082). If 0B\ n 082 =£ 0, then the 
intersection of Mi e $(08i), M2e$(082) is always non-empty, because it 
contains all atoms from 081 C\ 082. If 08\ n 082 = 0, then the set Mi n M2 

for Mi G $(08{), M2 G $(082) cannot contain any atom of &, because such 
an atom would be contained in both 0#i and 0ft2, therefore in 08\ n 082, which 
is a contradiction with the assumption that 08i n 082 = 0. But M± n M2 e &', 
because 8F is closed under intersection; any non-empty set from & must 
contain at least one atom of ZF, therefore Mi n M2 = 0. Now let G' be the 
graph whose vertices are all families 08 C s# for which $(08) 7= 0 and in which 
two vertices are joined by an edge if and only if the corresponding families 
have a non-empty intersection. Evidently G' can be obtained from G(&) 
by contracting all the vertices corresponding to sets of $(08) for each $(08) ^ 0 
and by omitting the vertex corresponding to the empty set. Let K be the 
subset of the vertex set of G' consisting of all one-element subfamilies of s/. 
For any of such subfamilies 08 the family $(£8) =£0, because 08 = {B} for 
some B e s4 and B e$(08). The set K is evidently a kernel of G' and no kernel 
of G' can have a greater cardinality than K (see for example [4]). Let 08 e K. 
Then 08 = {B} for some B G stf and for any other set ^ C stf we have 08 C\^ ^ 
-7= 0 if and only if B eW, therefore 38 Ctf. For any two such sets ^i, ^2 

we h a v e ^ i n ^2 ID ^ and therefore ^ n ^ ^ 0 and ^ i and (€2 are joined 
by an edge in Gr. If K' C K, then the vertex of G' joined with all vertices 
of K' and with no vertex of K — K' is the set {B e J* \ {B} e K'} = & if 
$($)) -7=0; therefore it is at most one. Thus if Vt for i el are the families 
$(08) for 08 C <%?, then the assertion holds. The vertex of G(^) corresponding 
to the empty set is always isolated in G(^), because the empty set cannot 
have a non-empty intersection with another set. The property (c) follows 
from the fact that & is closed under intersection. 

Now let G be a graph with the structure described in the assertion of the 
theorem. Let us construct the graph G' and find the described kernel K. 
To any vertex u of K we assign the set {u}. UK' C K and the vertex v of G' 
is joined with all the vertices of K' and with no vertex of K — K' (according 
to (b) such a vertex is at most one), then to v we assign the set K'. Thus to 
each vertex w of G' we have assigned some set K(w) so that two vertices are 
joined by an edge if and only if the intersection of the assigned sets is non-
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-empty (according to (a)). Now return to G. In any set Vi for i el choose 
an arbitrary vertex Vi. If Wi is the vertex of G' obtained by contracting Vi 
and if Ki = K(ivi) is the set assigned to w% in the above described way, then 
assign Ki also to Vi in G. Now for any i el denote the vertices of Vi — {vi} 
by Xij for j e Ji, where Ji is some subscript set. Then consider the set Y 
consisting of pairwise different elements y^ for j eJi, i el. To any vertex 
x^ assign the set Ki U {y%j}. To one isolated vertex of G the empty set is 
assigned. The graph thus obtained is the intersection graph of the set family & 
whose elements were assigned to the vertices of G. 

' ö 1 

2. Intersection graphs and lattices 
of subalgebras of finite abstract algebras 

If the family & from the first item is the family of all proper subalgebras 
of a given abstract algebra, we call G(^) the intersection graph of this algebra 
or simply the graph of this algebra. Here we shall study the interrelations 
between this concept and the concept of the lattice of subalgebras. 

In certain cases we define the modified intersection graph of an algebra. 
Before defining this concept we shall define a minimal subalgebra of a given 
algebra. 

A minimal subalgebra of an algebra 21 is a subalgebra of 21 which does 
not contain any proper subalgebra. 

If the algebra 21 is finite, it certainly contains minimal subalgebras. But 
it may happen that some algebra contains only one minimal subalgebra. 
For example, the only minimal subgroup of a group is the subgroup consisting 
of the unit element, the only minimal subfield of a field is the subfield generated 
by the unit element and the zero element. In this case we define the quasi-
minimal subalgebra and the modified intersection graph of an algebra. 

If an algebra 21 contains only one minimal subalgebra, then a quasi-minimal 
subalgebra of 21 is a subalgebra of 21 which is not minimal and does not contain 
any proper subalgebra except for the minimal one. 

If an algebra 21 contains only one minimal subalgebra, then the modified 
intersection graph (or shortly modified graph) of 21 is the undirected graph 
Cr*(2l) without loops and multiple edges whose vertex set is the set of all 
proper subalgebras of 21 which are not minimal and two distinct vertices 
of O*(2l) are joined by an edge if and only if the corresponding subalgebras 
have an intersection different from the minimal subalgebra of 21. 

Such a graph for groups was introduced b y B . C s a k a n y and G. P o l l a k [2], 
Evidently if a finite algebra 21 contains only one minimal subalgebra, this 

minimal subalgebra is contained in each subalgebra of 21 and therefore also 
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the intersection of any two subalgebras of 21 contains it. Here we see the 
reason of denning the modified intersection graph. In this case the (unmodified) 
intersection graph of 21 is a complete graph and does not say much about the 
structure of 21; the modified intersection graph tells us much more about it. 

Now let us study the lattice JSf (21) of subalgebras of a finite algebra 21 
(if the intersection of some two subalgebras of 21 is empty, we join the empty 
set as a new element to this lattice) and its lower semilattice J§?A (21). Let 
Jt(%) be the set of minimal subalgebras of 21. To any subalgebra » of 21 
a subset Jt(%S) of c/#(2l) is uniquely assigned, consisting of all elements of M(2l) 
which are subalgebras of » . Now let us define a relation Q on J5f(2l) such 
that for » GJ2?(2i), tt e&(21) we have ( » , tt) e o if and only if uT(») = UJT(tt). 

Theorem 3. Let Q be the relation on the lattice ££ (21) of subalgebras of a finite 
algebra 21 defined so that for two subalgebras » , tt O/21 we have ( » , e ) e Q if and 
only if the subalgebras » , e contain exactly the same minimal subalgebras of 21. 
Then the relation Q is a congruence on the lower semilattice J§?A (21), but in general 
not on the lattice j£?(21). 

Proof . From the definition of Q it is clear that Q is an equivalence on J5f A (21). 
Now let » i , » 2 , tti, e 2 be subalgebras of 21 and let ( » i , »2) e O, (tti, e2) e Q. 
This means UfT(8i) =UgT(»2), UiT(tti) = UJT(tt2). The meets » ] A e i , » 2 A e 2 

in the lattice J§?(21) are the set intersections S i H E i , » 2 n e 2 . The set 
J/(f&i/\ Ci) contains evidently all minimal subalgebras of 21 which are con­
tained in both » i and e i and cannot contain any other minimal subalgebra 
of 2i. Therefore UCT(»iA tti) = - # ( » i ) n UfT(tti) and also ^ ( » 2 A t t 2 ) = 
= Jf(&2) n ^T(tt2) - ^ ( » i ) nuT(t t i ) =U8r(»iAt t i ) . Thus we have ( » i A t t i , 
»2A e2) e O. We have proved that Q is a congruence on J§?A (21). 

Now we shall give a counterexample showing that o need not be a congruence 
on J£?(2l). In a finite semigroup the minimal subalgebras are one-element 
subsemigroups consisting of idempotents. Let 21 be a finite semigroup with 
the elements a, b, c, d, e given by the following Cayley table: 

a b c d e 

a b b d e e 
Ь b b e e e 

c c c c c c 

d d d d đ d 
e e e e e e 

The minimal subalgebras of the semigroup 21 are the subsemigroups {b}, {c}, 
{«*}, {e}. Let SBi = {a,b}, & = {6},ei = C 2 = {c}. W e h a v e . ^ ( S i ) = u r ( S 2 ) = 
-{{&}}, .*(&) = .#(£2) = {{c}}, therefore ( 8 i , S a ) e e , ( C i , t t 2 ) e e . The 
join 58iV 61 in the latticed(51) is the subalgebra (subsemigroup) of 21 generated 
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by the union » i U tti. Thus it is the subsemigroup of 21 generated by the set 
{a, b, c}; this subsemigroup is the whole 21. The join 252V 62 is the subsemi­
group of 21 generated by the set {b, c}\ this is the subsemigroup of 21 consisting 
of the elements b, c, e. We have.#(23iV <Ei) = {{&}, W, {d}, {e}}, Ji{^\J G2) = 
= {{6}, {c}, {e}} and (23iV tti, 82V ©2)^0. 

By «JS?A (2l)/o we shall denote the factor-semilattice of JS?A (21) according 
to the congruence D, i .e . the semilattice whose elements are the classes of D 
and in which the meet of two elements is the class of Q which contains the meet 
of representatives of these classes. 

Now we shall define an auxiliary concept, the concept of an outerly free set 
in a graph, according to W . D o r f l e r [3]. 

A subset X of the vertex set V of an undirected graph G is called outerly 
free, if and only if any vertex v e V — X is joined by edges either to all the 
vertices of X, or to no vertex of X. 

An outerly free set in a graph G with the property that the subgraph of G 
generated by it is a clique (a complete graph) will be called a CF-set. 

We shall prove a lemma. 

Lemma 1. Let X, Y be two CF-sets in a graph G. If X n Y 7^ 0, then X U Y 
is a CF-set in G. 

Proof . First we shall prove that X U Y is outerly free. If X U Y = V, 
this holds trivially. If not, let v e V — (X U Y), x e X n Y. According to the 
definition v is joined either to all the vertices of X, or to no vertex of X. 
If it is joined to all the vertices of X, it is joined also to x. But x e Y and Y 
is also an outerly free set. As v is joined to one vertex of Y, it must be joined 
to all of them . Therefore v is joined to all the vertices of X U Y. Now assume 
that v is joined to no vertex of X. Then it is not joined to x and as x e Y, 
it is joined to no vertex of Y. Thus it is joined to no vertex of X U Y. I t 
remains to prove that the subgraph generated by X U Y is a clique. If X C Y 
or Y C I , this is trivial. Thus let X - Y ^ 0, Y — X =£ 0. Let a e X - Y. 
As X generates a clique and both a and x are in X, a is joined by an edge to x. 
But x e Y and Y is outerly free, therefore a is joined to all the vertices of Y. 
As it is joined also to all vertices of X — {a}, it is joined to ail the vertices 
of I u 7 - {a}. Analogously if a e Y — X. For a e X n Y this follows 
from the fact that X, Y generate cliques. We have proved that X U Y is 
a CF-set. 

Lemma 2. Any CF-set in a finite graph G is contained in a uniquely determine d 
maximal CF-set, i. e. in a CF-set which is a proper subset of no CF-set. 

Proof . Let X be a CF-set in G. Let X be the union of all CF-sets in G which 
contain X. These CF-sets are pairwise non-disjoint, because any of them 
contains X, and they are finitely many, because G is finite. According to 
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Lemma 1 the union of any two non-disjoint CF-sets is a C_F-set; this can be 
easily generalized for any finite number of these sets. Thus X is a CF-set. 
If X were a proper subset of some CF-set Y in G, there would also be X C Y 
and therefore Y would be one of the sets whose union is X, which would 
mean 7 C I ; this is a contradiction. Therefore X is a maximal CF-set. 

Now we return to abstract algebras. 

Lemma 3. For any two subalgebras 23, {£ of a finite algebra 21 the following 
equivalence holds: 

© n {£ = 0 o J/(<&) n J/({£) = 0 

Proof . The implication 23 n {£ = 0 => J/(S&) nJ/({£) = 0 is evident. Now 
let 23 n © ^ 0. The intersection 23 n © is a subalgebra of 21, thus it contains 
some minimal subalgebra X of 21. But then X G ^(21), X C 23, J C 6 , 
therefore X eJ/(%), X e J/({£), which means X e«^(23) n^#(G) and J/(S&) n 
n e//(©) ^ 0. 

Theorem 4. Le£ C7(2l) be the intersection graph of a finite algebra 21. Let Q be 
the congruence on the loiver semilattice ££ A (21) of the subalgebras of 21 defined 
in Theorem 3. Let S£ be a class of the congruence Q. Then S£ — {21} is a maximal 
CF-set in G(<U). 

R e m a r k . We write S£ — {21}, because in G(%) there does not exist a vertex 
corresponding to the whole 21. If we speak about the graph whose vertices 
are all subalgebras of 21 (not only proper ones) and in which the adjacency 
is the same as in 6?(2l), then we can assert the same with S£ instead of S£ — {21}; 
we shall prove this assertion, which evidently implies the assertion of this 
theorem. 

Proof . Put J/(%}) = J/% for any 23 G «S". Let {£ be any subalgebra of 21. 
If 2$o n © = 0 for some 230 G S£, then according to Lemma 3 we have c/#(23o) n 
n J/({£) = J/%C\J/({£) = 0. As J/% = J/(*B) for any © G &, we have 
J/(%) n J/({£) = 0 for all 23 e :T and therefore © is joined to no vertex of S£. 
If So n © ^ 0 for some 230 e #", we have J/(W0) C\J/({£) ^ 0 and e//(23) n 
n J/({£) ^ 0 for all S e l Therefore © is joined to all the vertices of S£ 
(possibly © itself). Any two vertices corresponding to subalgebras of S£ are 
joined by an edge, because these subalgebras contain the same minimal 
subalgebras, i. e. they have a non-empty intersection. We have proved tha t S£ 
is a CF-set in the graph C7(2l) extended according to the Remark . Now assume 
that there exists a CF-set <$/ in this graph containing S£ as a proper subset. 
Let 2) e <& — S£\ we have J/(%) ^J/%. This means either M(%) —J/% -?-= 0, 
or ^ — J/(X) ^ 0. If ^ / ( S ) — J/% -7-- 0, let g 6 ^ ( S ) - ^ . We have 
© C 2) and © * 23 for all » G # \ Then £ n © = © ^ 0, 23 n © = 0 for 
all 23 G «ST and © is joined to 3), but to no element of S£\ this means that <& 
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is not a CF-set. If J/x — J/(%) i- 0, let % e J/x — J/(7)). Then J C B 
for all 23 e ^ , g 4: 3) and g is joined to all the elements of S£ (possibly g 
itself), but not with $ ; we obtain again a contradiction. Thus S£ is a maximal 
CF-set. 

Lemma 4. TAe vertex set V of a finite undirected graph G is uniquely partitioned 
into maximal CF-sets. 

Proof . According to Lemma 3 any CF-set in G is contained in a unique 
maximal CF-set. From the definition of the CF-set it trivially follows tha t 
any one-element subset of the vertex set of G is a CF-set. Therefore the 
maximal CK-sets of G form a partition of the vertex set of G. 

Theorem 5.LetJ£w (%)bethe lower semilattice of subalgebras ofa finite algebra 21, 
let Q be the congruence on ££A (21) defined in Theorem 3. Then the factor-semi-
lattice J£?A (2l)/O is uniquely determined by the intersection graph C7(2l) of 2V 

Proof . We find the partition of the vertex set of C(2l) into maximal CF-sets. 
According to Theorem 4 any of these sets corresponds to a class of the con­
gruence O (eventually after omitting the subalgebra equal to the whole 21), 
i. e. to an element of i? A (2l)/O. Evidently for two elements S£', & oiS£A (21) O 
we have S£ <: <& if and only if J/x CJ/^, where J/x=J/($) 
for all 23 G S£ and analogously for J/<y. We shall prove that S£ <^ & if and 
only if any vertex of 6?(2l) joined to a vertex of S£ is joined to a vertex of (2/. 
(or eventually of (&) — {21}). For any subalgebra 2) of 21 which has a non-
-empty intersection with a vertex of SC we have J/(%) n Ji'x -£ 0 (Lemma 3). 
If S£ <: <3/9 then J/x C J/^ and J/(%) n J/x CJ/(%)C\ J/^ and there­
fore J/( $ ) n J/<y -7-= 0 and J) has a non-empty intersection with some element 
of <&. If S£ <L & does not hold, we have J/x — J/® ^ 0. Let G G ̂  — . //<%. 
We have G C 23, therefore 23 n G j± 0 for any 23 e #", but G n G = 0 for 
all G G ^ . Therefore G is joined to the element 23 G # \ but to no element 
of %/. According to this assertion we can obtain the ordering of ££ A (2l)/O. 

Analogously to O we may define the relation O*. If an algebra 21 has only 
one minimal subalgebra, then for two subalgebras 23, G of 21 we have (21, 23) G O* 
if and only if they contain exactly the same quasi-minimal subalgebras. Now 
the following three theorems hold. 

Theorem 6. Let O* be the relation on the lattice ££'(21) of subalgebras of a finite 
algebra 21 with only one minimal subalgebra defined so that for two subalgebras 
23, G O/21 we have (23, G) G O* if and only if the subalgebras 23, G contain exactly 
the same quasi-minimal subalgebras of 21. Then the relation O* is a congruence 
on the lower semilattice ££A (21), but in general not on the lattice J§?(21). 

Theorem 7. Let C*(2l) be the modified intersection graph of a finite algebra 21 
with only one minimal subalgebra. Let O* be the congruence on the lower semi-
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lattice JS? A (21) of subalgebras of 21 defined in Theorem 6. Let SC be a class of the 
congruence Q*. Then 2£ — {21} is a maximal CF-set in O*(2l). 

Theorem 8. Let J§?A (21) be the lower semilattice of subalgebras of a finite 
algebra 21 with only one minimal subalgebra, let Q* be the congruence on ££A (21) 
defined in Theorem 6. Then the factor-semilattice J§? A (2l)/£* is uniquely determined 
by the modified intersection graph 6?* (21) of 21. 

Proofs of these theorems are analogous to the proofs of Theorems 3, 4, 5. 
Here we shall give only a counterexample showing that Q* need not be a con­
gruence on the lattice JSf(2l). By Ji*(%), where I is a subalgebra of 21 (not 
minimal), we shall denote the set of quasi-minimal subalgebras of %. 

Let 21 be the semigroup given by the following Cayley table: 

a Ъ Ъ2 c d e 

a a a a a a a 

Ъ a Ъ2 a d e a 

Ъ2 a a a e a a 

c a c c a a a 
d a d d a a a 

e a e e a a a 

The semigroup 21 contains only one idempotent a and therefore only one 
minimal subsemigroup {a}. The quasi-minimal subalgebras of 21 are the sub-
semigroups {a, b2}, {a, c}, {a, d}, {a, e}. Now let S i = {a, b, b2}, S 2 = {a, b2}, 
<£, = (£2 = {a, c}. Wehave.#*(23i) = Ji*(%2) = {{a, b2}}, Ji*(di) = ^ * ( G 2 ) = 
— {{a, c}}, therefore ( S i , S 2 ) e D * , (Ci, C2) eg* . The semigroup 23iV Gi is 
the whole semigroup 21, therefore Ji*(SiV d ) = {{&, b2}, {a, c}, {a, d}, {a, e}}. 
The semigroup S2V G2 = {a, b2, c, e} and Ji*(*B>2\l G2) = {{a, b2}, {a, c}, 
{a,e}}^Ji*(^y eo. 

Obviously, in some cases Q may be a congruence even on JSf (21). In this case 
for all the subalgebras S , d of 21 necessarily Ji(*&\j (£) = Ji(%), where 2) 
is the subalgebra of 21 generated by the union of all subalgebras from Ji(S&) U 
U Ji(d). One of these cases is the case of a commutative semigroup. 

Theorem 9. Let % be a finite commutative semigroup. Let Q be the relation 
defined in Theorem 3. Then Q is a congruence on the lattice J§?(21) of subsemi-
groups of 21. 

Proof . According to Theorem 3 the relation Q is a congruence on JSf A (21). 
Therefore it is sufficient to prove that ( S ] , S2) e Q, ( G i , G 2 ) e o implies 
(SiV Go, S2V (£2) E Q. The minimal subalgebras of a finite semigroup are 
one-element subsemigroups consisting of idempotents. Therefore S i and S 2 

have equal sets of idempotents and so have (£1 and (£2. The subsemigroup 
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SiV Si contains all the idempotents which are contained in 8 1 , all the idem-
potents which are contained in (£1 and all the idempotents which are products 
of an idempotent of 81 and an idempotent of (£1. Now assume that S iV Si 
contains an idempotent a such that a ^ S i , a $ (£1 and a is not a product 
of an idempotent of S i with an idempotent of (£1. As 81V (£1 is generated 
by the set 81 U (£1 and S i , (£1 are subsemigroups, the element a must be 
a product of an element b e 81 and an element c e (£1. According to the 
assumption at least one of the elements b, c is not an idempotent; without 
the loss of generality let it be b. As 21 is a finite semigroup, there exist positive 
integers k, I such that bk, cl are idempotents (any periodical semigroup, there­
fore also a cyclic one, contains an idempotent). Now as a is an idempotent, 
we have akl = a, this means (bc)kl = bkl ckl = a. But as bk, cl are idempotents, 
we have bkl = (bk)1 = bk, ckl = (cl)k = cl, so bkcl = a and a is the product 
of an idempotent bk e 81 and an idempotent cl e (£1, which is a contradiction. 
Thus we have proved that ^ ( S i V (£1) contains all the idempotents of 8 1 , 
all the idempotents of (£1, all the products of the idempotents of 81 with the 
idempotents of (£1 and no other idempotents. Analogously JUJ&vM (£2) contains 
all the idempotents of 8 2 , all the idempotents of (£2, all the products of the 
idempotents of S 2 with the idempotents of (£2 and no other idempotents. 
But as e#(« i ) = ^ ( 8 2 ) , */#((£i) = -#(e 2 ) , we see that ^ ( S i V 61) = 
= .#(82V (£2). 

Analogous considerations can be made also for Q*. If Q* is a congruence 
on JS?(H), then for all subalgebras 8 , (£ of % necessarily Jt*(*8>\J C) = ^ * ( £ ) , 
where 2) is the subalgebra of 31 generated by the union of all subalgebras 
from JT*(&) u */#*((£). 

Theorem 10. Let % be a finite Abelian group. Let Q* be the relation defined 
in Theorem 6. Then Q* is a congruence on the lattice j£?(2l) of the subgroups of%. 

Proof . The quasi-minimal subalgebras of a finite Abelian group are cyclic 
subgroups of prime orders. Let S i , 82 , (£1, (£2 be the subgroups of 21. Consider 
the subgroup SiV Gi generated by the set 81 U(£i . Among the elements 
of prime order in 81V (£1 there are all the elements of prime order from S i 
and from (£1 and all the elements which are products of an element of prime 
order from S i with an element of the same order from (£1. We shall prove 
that S i V Si contains only these elements of prime order. As it is well known, 
in an Abelian group the order of a product is the least common multiple of 
the orders of the factors. Therefore the product of two non-unit elements has 
a prime order if and only if these elements have both the same prime order. 
Thus we see that ^#*(8iV Ci) is uniquely determined by ^ * ( S i ) and J/*((£i). 
AsJ/*(<B2) = - / /*(Si) , ~#*((£2) = ^#*((£i), we have -^T*(SiV (£1) = V/*(82V 
V ©2) and (81V Ci, S2V G2) eg*. 
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Finally we shall pay attention to the factor-semilattices j£?A(2l)/o and 
J^A(2l)/o*. The semilattice J§?A(2l)/o is a one-element semilattice if and only 
if 21 contains only one minimal subalgebra. In this case all the subalgebras 
of 21 contain this minimal subalgebra and no other, therefore the relation o is 
the universal relation on jSf A(2l). Analogously j5?A(2l)/o* is a one-element 
semilattice if and only if 21 contains only one quasi-minimal subalgebra. 

Now let us study the reverse case: when J§?A(2l)/o ^ J§?A(2l), i. e. wheno is 
the relation of equality. In this case we have J/(18) = J/((&) if and only 
if 25 = e. 

Theorem 11. Let 21 be a finite algebra, let Q be the relation defined in Theorem 3. 
Then the following three assertions are equivalent: 

(i) o is the relation of equality on J§?(21). 
(ii) Any subalgebra of 21 is either minimal, or generated by a union of minimal 

subalgebras. 
(iii) Any monogeneous subalgebra of% is either minimal, or generated by a union 

of minimal subalgebras. 
R e m a r k . A monogeneous subalgebra of an algebra is a subalgebra generated 

by a single element. 

Proof, (i) => (ii). Let o be the relation of equality on o5f(2l). This means 
that ($,(£) e o implies 25 = C As ( S , C ) e o means J/(*&) = .#(©), any 
subalgebra 25 of 21 is uniquely determined by the set J/(?&) of minimal sub­
algebras contained in it. Let IB' be the subalgebra of 21 generated by the union 
of all subalgebras from J/(S&)\ this algebra must be contained in 25, because 
all the subalgebras from J/(S&) are subalgebras of 25. Thus 25' C 25 and 
therefore also J/(fB') C J/(S&). But 25' must contain all the elements of J/(fB) 
as its subalgebras, therefore J/(%) CJ/(W). This implies J/(%>) = J/(<&'), 
which means (25, 25') e Q. AS O is the relation of equality, we have 25 = 25' 
and thus 25 is generated by a union of minimal subalgebras. 

(ii) => (iii) trivially. 
(iii) => (ii). Let 25 be a non-monogeneous subalgebra of 21. The subalgebra 25 

is generated by all monogeneous subalgebras of 21 generated by the elements 
of 25. As any of these monogeneous subalgebras is either minimal, or generated 
by a union of minimal subalgebras, the subalgebra 25 is generated by the 
union of all of these minimal subalgebras and unions of minimal subalgebras, 
which is again a union of minimal subalgebras of 21. 

(ii) => (i). If (ii) holds, we shall prove that any subalgebra 25 of 21 is ge­
nerated by the union of elements of J/(S&). Let */V(25) be some set of minimal 
subalgebras of 21 whose union generates 25 (if 25 is minimal, then JV(9&) is 
a one-element set). Any element of ^ ( 2 5 ) must be a subalgebra of 25, therefore 
vV(25) C.J/(*&) and thus 25, as the subalgebra generated by the union of 
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elements of ^V(5B), must be contained in the subalgebra generated by the 
union of elements of Jt(SB). On the other hand, the subalgebra of 21 generated 
by the union of elements of J£(?B) must be contained in fB, because this union 

is in fB. We have proved that fB is generated by the union of the elements 
of^(fB), therefore it is uniquely determined by ./#(©). Thus J/(fB) = Jl(<&) 
implies fB = d and D is the relation of equality. 

With the help of Theorem 5 we obtain a corollary. 

Corollary 1. Let the assertions of Theorem 11 hold. Then the lattice j£?(2l) 
of the subalgebras of 21 is uniquely determined by the intersection graph O(2l) 
of the algebra 21. 

Now we shall express a theorem analogous to Theorem 10 and concerning 
the relation £*. 

Theorem 12. Let 21 be a finite algebra with exactly one minimal subalgebra, 
let O* be the relation defined in Theorem 6. Then the following three assertions 
are equivalent: 

(i) O* is the relation of equality on J§?(21). 
(ii) Any non-minimal subalgebra of 21 is either quasi-minimal, or generated 

by a union of quasi-minimal subalgebras. 
(hi) Any monogeneous non-minimal subalgebra of 21 is either quasi-minimal, 

or generated by a union of quasi-minimal subalgebras. 
The proof is analogous to the proof of Theorem 11. 

Corollary 2. Let the assertions of Theorem 12 hold. Then the lattice ££(21) 
of the subalgebras of 21 is uniquely determined by the modified intersection graph 
O*(2l) of the algebra 21. 

Now we shall apply Theorems 11 and 12 to semigroups, groups and lattices. 

Theorem 13. Let 21 be a finite semigroup, let Q be the relation defined in Theorem 3. 
Then Q is the relation of equality on j£?(2l) if and only if all the elements of 21 are 
idempotents. 

Proof . If all the elements of 21 are idempotents, then any monogeneous 
subsemigroup of 21 is a one-element subalgebra and therefore it is minimal. 
Thus (ii) from Theorem 11 holds, which implies (i). If some element b of 21 is 
not an idempotent, the monogeneous subsemigroup 2$ of 21 generated by b 
contains more than one element and contains exactly one idempotent r. 
Then J/(fB) = Jt({c}) = {{c}}, but 23 ^ {c}, thus Q is not the relation of 
equality. 

Theorem 14. Let 21 be a finite lattice, let Q be the relation defined in Theorem 3. 
Then Q is the relation of equality on j£?(2l). 

Proof . Any monogeneous sublattice of a lattice consists only of one element 
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and any one-element sublattice is minimal. Therefore (iii) and also (i) holds 
in Theorem 11. 

Theorem 15. Let 21 be a finite group, let Q* be the relation defined in Theorem 6. 
Then Q* is the relation of equality on ££(21) if and only if the order of any element 
of 21 is not divisible by the square of a prime number. 

Proof . If the order of any element of 21 is not divisible by the square of 
a prime number, then the monogeneous (cyclic) subgroup of 21 generated by 
a non-unit element a has the order which is either a prime number or a product 
of pairwise different prime numbers. In the first case it is quasi-minimal, in 
the second case it can be expressed as a direct product of groups of prime 
orders; these groups are quasi-minimal subgroups of 21 and their direct product 
is generated by their union. Thus (iii) in Theorem 11 holds and so does (i). 
On the other hand, if some element b of 21 has the order p2r, where p is a prime 
number, r is a positive integer, then br has the order p2; let © be the cyclic 
subgroup of 21 generated by br. The subgroup 2$ is not quasi-minimal; it 
contains a quasi-minimal proper subgroup 2$' generated by the element b?>r. 
©' is a unique quasi-minimal subgroup of S , therefore Jt(?&) — {2$'}. As 23 
contains only one quasi-minimal subgroup as a proper subgroup, it evidently 
cannot be generated by a union of quasi-minimal subgroups. According to 
Theorem 11 the relation Q* is not the relation of equality on jSf(2l). 

The Theorems 13, 14, 15 show that in these cases the lattice J§?(21) is uniquely 
determined by the graph 6?(2l) or 6?*(2l). 
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