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MATEMATICKO-FYZIKALNY CASOJ’IS SAV, 14, 74. 1984

ON SUBSEMIGROUPS OF SEMIGROUPS

JURAJ BOSAK, Bratislava

The first part of the present paper is concerned with the investigation of subsemi-
groups of the cyclic and of the free semigroups. The cardinality of the system of all
subsemigroups of such semigroups is determined.

The second part is concerned with the semigroups in which we obtain from sub-
scmigroups by set-theoretical operations either subsemigroups again or the empty set.

In the paper we use the following symbols: The symbol 6() denotes the greatest
common divisor of all elements of a given set N of natural numbers. The symbol 7(n)
denotes the number of all natural divisors of the natural number n. () If £ > 1 is
a natural number, then the symbol V() denotes the system of all the sets V <
< {1.2...., h — 1} containing no number that is a linear combination of the others
with natural coefficients.(*) Put V(1) = {0}. Evidently, 0 € V(h) for each natural
number /. The union or the difference and the symmetric difference of the sets 4, B
is denoted by the symbols 4 U B, A\ B. and A A B, tespectively. The complement
of the set 4 will be denoted by A*. The symbol C(#4, g), where A, g are natural num-
bers, denotes the cyclic (monogenic) semigroup of the type (4, g), i.e. the finite cyclic
semigroup consisting of mutually distinct elements a. a?, ..., d" "', where &"*? =
= 4". The symbol a(h, g) denotes the number of all subsemigroups of the semigroup
C(h. g). The other terms and notations are used mostly according to [3, 7].

I.SUBSEMIGROUPS OF CYCLIC SEMIGROUPS

Lemma 1. A necessary and sufficient condition for the subset T of the semigroup
Clh, g) 1o be (with respect to the given multiplication) a subsemigroup of the semigroup
C(h. g). is that there exists a set Ve V(h) and a natural x| 6(V U g) such that T =
= [a"1 U e[a]. where e is the idempotent, a the generator of the semigroup C(h, g).(%)

(") It is well-known that if the natural n > 1 has the canonical decomposition into primes n =

PRgt o then () = (k - 1) (/- 1) ... (m - 1). Evidently, 7(1) = 1.

(?) i.c., no number » € ¥ can be written in the form » == ks -+ It - ... -t mu, where k, [ ..., m
are naturals, s. 1, ..., « are elements of the set V, different from ».

(*) We write @ | b, if a divides b. We also use the symbol @ — {a" : v € V'}. The symbol [T] de-
notes the subsemigroup generated by the set 7. The braces will be omitted where any misunder-
standing is out of the question.
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Proof. I. Prove that for each Ve V(h), x| d(V U g) the set
T = [a"] U e[a']
is a subsemigroup of the semigroup S. Evidently, ic is sufficient to prove that:
bel[d"], ceela] = bceela’)

There exist naturals m, n such that b = a", ¢ = ea™. Since a™ e [a"], m is a linear
combination of the elements from ¥; as x divides all elements from V., we have x | m.
Further, x | g, i.e. (x, g) = x | m and evidently also d(x, g) | nx so that 3(x. g) | m +
+ nx, therefore the Diophantine equation

m+ nx = ix — jg

m+nx

has natural solutions i, j. Therefore bc = a"ea™ = ea = ed" "™t = eq™ =
= e(a”)! € e[a”].

II. Let T be a subsemigroup of the semigroup C(h, g). Let T, be the maximal
group of the semigroup T; put T, = T\ T,. Form the set of all naturals & such that
a* e T, and delete those which are linear combinations (with natural cocfficients)
of the others. In this way we obtain a certain set ¥V € V(h). Denote by the symbol v
the least natural number with the property ea” € T. Prove that x| d(V U g). If we
denote ea = d, then {d,d?, ...,d’ = e} is the maximal group of the semigroup
C(h, g), T, is its subgroup. Therefore T, is the cyclic group generated by d* = ea”,
where x is the least natural number for which d* € T,; from this it easily follows
that x | g. If x| v did not hold for some v € V, then the Diophantine equation

ix+jg=0v
would not have integer solutions #, j. On the other hand the element

av+vhg — (av)gh+l e TJ_

mx ghx _mx (gh+m)x

so that it can be written in the form (d%)" = ea™ = a""a™ = a where m is
a natural number. Hence a¥" "™~ = ¢° """, Two elements of the finite cyclic scmigroup,
written as powers of the same generator, can be equal only if their exponents differ
by the integer multiple of the “period” (g in our case). Consequently, v + vgh —
— (gh + m) x = ng where n is an integer. Hence the equation (2) has the solution
i =gh+ m,j=n— vh, which is a contradiction. Thus it is proved that x divides
all elements from V, and since x | g, we have also x| d(V U g).

Let us prove further that under the given choice of ¥ and x the equality (1) is
valid.

Choose b e T.If b e T, then evidently b € [a"]. It is therefore sufficient to consider
the case where b € T,. According to what has been said, T, = [ea*] = e[a"], so that
b e [ea*]. Hence in both cases b € [@"] U e[a"].

Conversely, pick ce[a’]ue[a']. If ce[d"], then evidently ce T. Further if
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ceela] = [ea"), since ea*e T and T is a semigroup. we have [ea”] < [T] = T.
whence it follows that ce T.
The proof is accomplished.

Theorem 1. The number o(h, g) of all subsemigroups of the finite cyclic semigroup
Clh. gV is
Y TV o gl
Vev(h)
Proof. Let a be the generator, e the idempotent of the semigroup C(#, g). Accor-
ding to lemma 1 all subsemigroups of the semigroup C(%. g) have the form

T = [d"] U e[a"],
where Ve V(h), x| o(V U g).

Let us prove first that by the choice of the subsemigroup 7, ¥ and x are uniquely
determined. Let us assume that We V(#) and the natural number y|Jo(W U g)
also determine the subsemigroup 7. As [@"] U e[a] = [a"] U e[a’], we have V = W.
Assume that x # 1. Let e.g., v < y. We have ea” e T = [a"] U ¢[a*]. Without loos
of generality we can write ea® € e[a*], for if ea* e [a"], then ea* = a”, where w is
a lincar combination (with natural coefficients) of the elements of W. Since v | 3(W U
v g), we have y|w, so that we can write a¥ = a**, where z is a natural number.
Conscquently, we have ea® = e’a” = e(ea®) = ea™ = ea*” € e[a’]. Hence always
ea® € e[a"]. so that ea® = ea", where / is a natural number. Pick the natural number n
such that «" = ¢. From the condition ea® = ea” we obtain a"** = ¢"*". We therefore
have n + x — (n + ly) = kg where k is an integer. Thus the Diophantine equation

kg +ly =x

has integer solutions k, /. Therefore y = d(y, g) | .v, which is according to the condi-
tion v < ¥y not possible (x, y are naturals!).

The assumption of theorem | can now be casily proved, if, with each fixed chosen
I e V(I). we count all possible subsemigroups; there are as many as there are divisors
of the number o(}" U g). i.e. WV U g)).

Corollaries. 1. The number o(1, g) of all subsemigroups of the semigroup C(1. g).
i.e., of the cyclic group of the finite order g, is 1(g). The number of all subgroups of
the semigroup C(h. g)is 1(g).

2.0(2,2) = 1(g) + I.

1(g) + 2, if g is odd.

3.03.¢) =
(3. ) { (g) + 3, if g is even.

] ©wg) + 4, if g is divisible neither by 2 nor by 3.
4.0(4.¢) = § 12 + 5, if g is divisible either by 2 or by 3. but not by 6.
l 8 + 6, if g is divisible by 6.
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Ug) + 6. if g is divisible neither by 2 nor by 3.
©g) + 7, if g is divisible by 3., but not by 2.

S.0(5.2) = | (@) + 8. if g is divisible by 2, bur neither by 3 nor hy 4.
Wg) + 9, if g is divisible either by 4 or by 6. but not hr 12,
©(g) + 10, if g is divisible by 12.

The proof of corollaries 1—35 can be established with the help of the formula
from theorem 1. Considering corollary 1. however. we must remember that cach
subgroup of the semigroup C(h. g) is contained in the maximal subgroup. isomorphic
with the semigroup C(1. g) and that each subsemigroup of the finite group is a group.

Theorem 2. Dcnote the number of sets of the sysiem V) by the symbol oh).
e then have:
wg) + o) — 1 2 oth.g) g+ Y ok,
Fevin
[T
Proof. From theorem 1 it follows that the difference o) = ol ¢) — 1(Q)
reaches a minimum with a fixed 4, if ¢ = 1, namely o,(1) = w(h) — 1. v,(¢) reaches
a maximum, if g = !, namely 0,(&") = X ©(o(V)) where the summation is taken over
all Ve V() not equal to 0. Whence follow the proved incqualities.

Corollary. 7(g) + h — 1 S aolh, g) s tig) + 2" ' = O = 1)
The proof follows if we use elernentary estimates for the expressions in the inequa-
hties of theorem 2.

‘Vheorem 3. Ler S be a free semigroup over the set M. Then it is true foi the cardi-
nality | of the system of all subsemigroups of the semigroup S that:(*)

Ng. i M| =
f= 1N\ i< |

l.
= M| < N,.

l 2 M| 2N,

Proof. . Let | M| = 1. Denote the (single) element of the set M by the symbol «:
then S = {a,a* a’. ...} is an infinite cyclic semigroup. Since [d]. [¢7]. [«%). ... arc
mutually different subsemigroups of the semigroup S. f = N,.. To prove that f £ N, .
let us assign to any subsemigroup 7 of the semigroup S a finite set 77 of naturals
thus: Let # be the smallest natural number such that «"¢ 7. T will then consist of
the number n and of all naturals 1 > n such that ¢ € T, but ' "¢ 7. 77 is a linile
set, since from each residuc class modulo 77 it contains at most one clement. Evidently.
different finite sets arc assigned to different subsemigroups. Hence the number f
of all subsemigroups of the semigroup .S can be only less than or equal to the number
of all finite sets of naturals. Therefore f < N,. From the assertions f < N,. [ 22 N,
it follows that f = N,.

(*) The symbol M denotes the cardinality of the set A/,
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I Let | < | M| <Ny, Then | S| =Ny, therefore the cardinality of the system
of all subsets of the set §is 2% = 2o = N, so that f < N. It is therefore sufficient
to prove that /= N, Let us choose a, h € M (¢ %= b). Let us form the set M* =
= tab.oab®. ab?. ... The set M* has N subscts. cach of which generates a different
subsemigroup of the semigroup S. Thercfore /= N.

I Let | M| =Ny, Then | S| = | M|, sothat f<2% =2" The set M has
2 Y subscets. cach of which generates a different subsemigroup of the semigroup S.
Therefore = 2 and hence f = 2V,

Note I. It evidently foilows from the proof that the theorem remains valid if,
in addition. we suppose the validity of the commutative law in S.

Note 2. The first assertion of theorem 3 (casc | M | = 1) says that the infinite
cvelic semigroup has exactly W, subsemigroups.

Theorem 4. All cyclic semigioups S, including exactly n subsemigroups (n < 5)
are given in table U (where p. g are primes).

Table |

! : L

i 2 .can |

C(l.p) }
RIS TR b |
j, : CQ2.p) ‘
! ('(|,112_l i

19

| + C(3,p) P
Cceph

IV

Cll.pg) p g

CQ.ph
CQR.py) P q
Colph

The proof follows from the inequalities i = T, t(g) =z LLt(g) + h — 1 S o(h, g) <
= 5 (corollary of theorem 2) and from the evaluation of the function (g) according
o). The semigroups that can be considered under these conditions will be verifie
to("). Th Mg that b lered under il it il t fied
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according to the corollaries of theorem 1 and the number of their subsemigroups will
be found. We shall see that, apart from C (3, 4) and C (4, p). all of them have less
than 6 subsemigroups.

Note. The mentioned results were used in [2] to obtain some results formulated
and partly also deduced with the help of the theory of graphs. Conversely. using [2].
we can easily establish some results, closely related to the subject of our investigation
and not using any terms from the theory of graphs. These are the results:

1. A semigroup has no proper subsemigroups if and only if it has a single element.
It follows from lemma 2 in [2]; this result, of course, is evident directly: we are mention-
ing it for the sake of completencss.

2. A semigroup has no proper subsemigroups(®) apart from one-element subsemi-
groups if and only if it has less than three elements or if it is a cyclic group of a prime
order. (This follows from theorems 2 and 3 in [2].) Tamura devotes his paper [13]
to another proof of this assertion. Both assertions are found in Chion [5], generalized
for convex subsemigroups of partially ordered semigroups.

3. A semigroup has a finite number of subsemigroups if and only if it is finite.
This follows from lemma 2 in article [2].

4. If a semigroup has less than S subsemigroups then it either consists of two
idempotents or has a single idempotent. All semigroups with less than 5 subsemigroup
are determined in theorem 3 in [2].

2. SEMIGROUPS WHOSE SYSTEM OF SUBSEMIGROUPS
IS CLOSED WITH RESPECT TO CERTAIN SET OPERATIONS

It is well-known that the system of all subsemigroups of a given semigroup (with
the empty set added) is closed with respect to the operation of intersection so that
the intersection of two subsemigroups is always a subsemigroup or an empty sct (.
In [1] we considered semigroups with a system of subsemigroups closed with respect
to the operation of union. Such semigroups are a special case of semigroups with
a distributive lattice of subsemigroups (with the empty set added and with the orde-
ring by means of the set inclusion): this lattice will be denoted by X" — sce. e.g. [10].
With the investigation of semigroups S, for which Z'(S) is a distributive lattice.
papers [4, 10] are concerned. Now we shall consider semigroups with a system of
subsemigroups (and () closed with respect to other set opzrations. [ wish to mention
that the systems of sets closed with respect to certain set operations were studied by
Kluvanek [6] from an abstract point of view.

(®) Tamura [13] does not consider one-element subsemigroups as proper subsemigroups. We
use the term proper subsemigroups of the semigroup S in the sense of Lyapin [7]. i.e.. as subsemi-
groups that are different from S.
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Theorem 5. The following five assertions are equivalen: :

(1) The set difference of any two subsemigroups of the semigroup S is either a sub-
semigroup of the semigroup S or U;

(2) The symmetric difference of any two subsemigroups of the semigroup S is either
a subsemigroup of the semigroup S or 0;

(3) The complement of any proper subsemigroup of the semigroup S is the proper
subsemigroup of the semigroup S;

(4) It is true for any two elements a.b of the semigroup S that ab € {a, b} ;

(5) All non-empty subsets of the semigroup S are. with respect to the given multipli-
cation, subsemigroups.

Proof. It is evidently true that (4) = (5). (5) = (1). The implication (1) = (2)
follows from the relation

A B = {S\[S\ A\ B\ [4\ (4 B)],

valid for any 4 < S, B = S. The implication (2) = (3) follows from the relation

valid for any 4 < S. Therefore only the implication (3) = (4) remains to be proved.

Let (3) hold. We shall prove first that any element @ € .S is an idempotent. Since
[@*] is a semigroup, [«?]* must also be either a semigroup or the empty set. If @ e [a?]*,
then would «? € [¢?]*, which is impossible. Therefore a € [a*]*, so that « € [a?].
Whenee it follows that the element « has a finite order and the semigroup [¢] contains
an idempotent; denote it by e. {e} is a semigroup. therefore also {e}* is a semigroup
or the empty set. [f @ # ¢. then would a € {e}*, and consequently {¢}* = (. There-
fore ¢ (i.c.. a power of the clement a) also belongs to the semigroup {e}*, which is
not possible. since ¢ € {e]. There remains the only possibility that ¢ = ¢, i.c., a is
an idempotent.

Let a.he S. The element ab is an idempotent; therefore {ab} is a semigroup,
tab)* is cither a semigroup or an 0. If @ € {ab}*, and b € {ab}* as well, then {ab}* *
+ 0, Le. lab}* would be a semigroup: in that case also ab € {ab}*, which is impos-
sible. Thercfore cither « or b belongs to {ab}, i.e. abe {a, b}.

Notes. Shevrin [9, 10, 11] proved thal conditions (4) or (5) are equivalent
with any of the following conditions (he calls such semigroups a ““strong band of
one-clement semigroups”):

(6) Z'(S) is a complemented lattice with unique complements;

(7) £'(S) is a modular lattice with complements;

(8) '(S) is a Boolean algebra:
and in case of a commutative semigroup S even with the following condition:

(9) X'(S) is a complemented lattice.

Ego |4. theorem 8.4] mentions similar results. The structure of all semigroups,
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' fulfilling condition (5) was described by Rédei [8, theorem 30, p. 85]. The semigroups
S, whose system Z(S) of all subsemigroups (without 1) is a Boolcan algebra. are
considered in [12].
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O NMOANMOAYIPYIIITAX MNOANVIPYIII
FOpait bocak
Pesiome

B cTaTbe yCTaHABAWBAETCA MOIHOCTS MHOKCCTBA BCEX MOAMOMY FPYIUT LHK. HUYCCKOI{ 0. 1yT pYIILI
¥ CBOOO/IHOM TTOJIYTPYIIILI ¢ NMPOU3BO/IBHBIM YUCAOM 00pasytoumx. B paGore Haitaensl Bee HHKH-
decKMe MOJIYTPYMIbl ¢ MEHBLIE. YeM 6 MOMTOJYTPYNnaMd, M JaHA XapaKTepusalums MoJIyrpymil.
CHCTEMA [TOJAMOIYTIPYUIT KOTOPBIK 3AMKHYTA OTHOCUTENBHO HEKOTOPbIX TCOPE THKO-MHOKECTBCHHBIX
onepanuii. YKa3plBaeTCsl, KaKUC JAIBHEHINE PEe3YIbTATbI MOXKHO HOMy4MTE M3 [2] mpu momoum
Teopun rpados. [1oavYeHHBIE PE3YILTATH CPABHIBAIOTCA C PE3YIBTATAMI APYTHX ABTOPOB.
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