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Matematický časopis 21 (1971), No. 2 

ON THE SUMMABILITY OF SUBSEQUENCES 

JOZEF ANTONI, Bratislava 

The present paper deals with regular matrix summability methods and their 
relations to the sets of limit points of transformed subsequences. 

First we introduce some preliminary results. Let {sn}n = i he an arbitrary 
sequence. With each subsequence {sm}'jc

==1 we can associate the number 
00 

x0 = 2 2n i. Conversely, let 0 < x < 1 and 
l = i 

(1) x = 0 . aia2a3 .... 

be its dyadic expansion with infinitely many Vs. Let {mi}^==1 be the set of all 
indices in (1) such that ocm = 1. Using {mi} we can associate to x the sub
sequence {sm}™==1, which will be denoted by {s(n, x)}. This one-to-one mapping 
of all subsequences of a sequence {sn} on the interval (0,1> have been utilized 
by B u c k and P o l l a r d [1] to s tudy certain properties of subsequences. 

Let T = (amn) be a regular summability method . Let (1) be the dyadic 
expansion of the number x with ocnk= l a n d a w = Oforw 4= mdk — 1, 2, 3, . . . ) . 
Let us p u t 

00 

a(m, x) = ^ Umks(k, x), where s(k, x) = snk, 
k=l 

(p(k, m) = sup {v : 2 \amn\ < k~1} 
n=l 

00 

ip(k, m) = min {v : 2 \amn\ < k~1} 
n=v+l 

and F(k) = sup {\(p(k, m) — ip(k, m)\}. 
m 

We now recall the definition of the homogeneous set and two sufficient 
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conditions for the homogeneity of a set from [3]. Let \A\ (\A\e) denote the 
Lebesque measure (the exterior Lebesque measure) of the set A. 

Definition. A set M ^ (0, 1> is said to be, homogeneous if for two arbitrary 
intervals Ii, I2 ^ (0, 1> the equality 

\hnM\e \hnM\e 

\h\ \h\ 

holds. 

Theorem A. A set M c: (0, 1> is homogeneous if an arbitrary interval I c: 
c: (0, 1> can be divided into a countable system of intervals In with the following 
properties: 

a) every two intervals Itn 4= Im have at most one endpoint in common, 

00 

b) | u In\ = \I\ 
n=l 

c) for every n the set In n M is geometrically analogous either to the set M 
or to a set Mn, being distinct from M in at most a set of the measure zero. 

Theorem B. Let M c= (0, 1> be such a measurable set that for an arbitrary 
irrational number x^ G (0, 1>, XQ = 0 . octets ... either all or none of numbers 
xp = 0 . ocp+1ocp+2 . . . (p — 0,1, 2, ...) belong to M. Then M is a homogeneous set 
and \M\ = 0 or 1. 

In [1] and [4] a restricted definition of the homogeneous set is used. This 
definition is convenient as a criterion and is given in Theorem C. 

Theorem C. Let a measurable set M c: (o, 1> have the following property. 
If x = 0 . ocioc2&s . . . 8̂ the dyadic expansion of a point x of M, then the point 
obtained by altering a finite number of oci also belongs to M. Then M is a homo
genous set and \M\ = 0 or 1. 

Let {sn}^ be a bounded sequence and T be a regular matrix summability 
method . G o l u b o v [2] (Theorem 2) proved that there is a set Q residual 
in (0, 1> such tha t for every xeQ the inclusion {a(n, x)}' ZD {8^}' is valid. 
({tn}

f denotes the set of all limit points of the sequence {tn}™^). The following 
asserts tha t the set 

Q1 = {x G (0, 1> : {a(n, x)}' 3 {84'} 

is measurable. Inclusion Qi =5 Q is evident. 

Theorem 1. Let {sn}^=1 be a bounded sequence, T a regular matrix summability 
method. Then the set Q\ is a union of a countable set and a G# set. 

Proof . Let M be the set of all rational numbers of the interval (0, 1>. 
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Let X = (0, 1> — M, Q2 = Qi n X and { î ,w2,%3, .••%,...} ( ^ ^ 1,2,...) 
be a dense subset of the set {sn}'. Let us put 

Smnp = {x G X:\ a(n + P,X) — U™\ < k~X} 

and 

ok i i qk 

P-l 

We shall show that 

00 oo 

(2) o^ П П П# mn 
m k=l ?г=l 

Let x belong to the right-hand side of (2). Then the statement 

(3) V v v a \a(n + P> x) — um\ < k~l 

m k n p 

is valid. The validity of the statement um e {a(n, x)}' for every m follows 

from (3). Since {um} = {sn},' we obtain {sn}' <~ {a(n, x)}'. As x e X, we have 

xeQ2. 

Let x e Q2. Let m, n, k be three arbitrary positive integers. Since {a(n, x)}' ZD 

ZD {sn}' ID {um}, we have um e {a(n, x)}' for every m. Also there is a strongly 

increasing sequence of positive insegers m < wi < nz < . . . such that a(n\, x) -> 

-> um. We can choose I such t h a t ni> n and \a(ni,x) — um\ < k~l. Let 

p = n\ — n. Then cr(?it, x) = a(n + p, x) and |cr(?i -f- p̂, x) — t t m | < k"1. Since 

x e X, from the definition of Sk

nwp it follows that x e Sk

mn for arbitrary m, /?, k 

and thus x belongs to the right-hand side of (2). 

We now show t h a t Smnp is an open set in X. I t is suffitient to prove that 

a(n -f- p, x) is a continuos function of the variable x e X. Let xo be an ar

bitrary point from X. Since {%}^=1 is a bounded sequence, there exists a 

number G > 0 such t h a t \sm\ ^ G (m = 1, 2, . . . ) . Let ?/ be an arbitrary 
00 

number. Let us choose N such t h a t 2 \an+Pi\ < vl^• Let ^ 0 = 0 . ajajj . . . 
Z=./Y+l 

be the dyadic expansion of xo with infinitely many digits equal to 1. Let 

N' ^ N be a positive integer such that among the first N' digits of the dyadic 

expansion of xo exactly N digits are equal to 1. Let 0Xo be an open set in X 

such t h a t xo e0Xo and for each x eOXo, x = 0 . oci^ocs ... we have OL\ = aj' 

{I = 1, 2, . . . # ' ) . Then -?(/, x) = s(l, x0) for x e 0Xo and Z = 1, 2, . . . N. Thus 

we get 

00 

\a{n + p,x) — G{n + p, XQ)\ < 2 K+.rfl l*('» x ) ~ s ^ ' x°)l ^ 
?-JV+l 
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< 2C 2 K,vi\ < n 
rift 

Hence a(n + p, x) is a continuous function of the variable x and the sets Smnp 
are open in X . Q2 is a G<$ set in X, as it follows from (2) and Q% is a (?<$ s e^ 
in (0, 1>, too. The set M n Qi is countable. Qi = Q2 U (Jf n Qi) and the 
theorem is proved. 

The following theorem gives a sufficient condition for Qi to be a hotf10-

geneous set. 
Theorem 2. Let {sn}^=1 be a bounded sequence. Let T = (amn) be a regi^ar 

matrix summability method satisfying the following two conditions 

(i) l imsup \amn\ = 0 

(ii) F(k) = o(k). 

Then Qi is a homogeneous set. 

Corollary. If a sequence {sn}nz=1 and a regular summability method satisfy 
the conditions of Theorem 2, then \Q{\ = 0 or 1. 

To prove Theorem 2 we need the following lemma. 

Lemma. Let T be a regular summability method defined by the matrix (amn). 
Then there exists a positive integer mo such that y(k, m) < +00 and cp(k, m) ^ 
^ ip(k, m) for each m ^ mo and k ^ 3. 

00 

Proof . Let Am = 2 amn and 0 < r\ < 2_ 1 . I t is known that Am-> 1 and 
n=l 

v v 

obviously 2 \amn\ ^ 2 amn- ^je^ u s choose a natural number mo = mo(rj) 
n=l n=l 

such tha t 

(4) | 4 w - i | < iy/2 

for m ^ ^ o . Since 2 a?nn-> Am for v-> 00, then there exists a ^o(ra) such tha t 

n=l 

v 

(5) 1 2 a™* - ^wl < ??/2 

7 1 = 1 
V 

for r > i!o(^). The inequality 2 amn > 1 — r] follows from (4) and (5). If we 
rc=l 

consider k ^ 3, then 1 — r\ > k_1. Thus <p(k, ra) < 00 for k ^ 3 and ra ^ m0 . 
Suppose that (p(k, m) > ip(k, m) for some k > 3 and m ^ mo- Then 
q>{k,m) oo 00 

2 law™| + 2 \°/mn\ ^ 2 \a™n\ ^ ^™ 
n = l «=v>(A;,m)+l w = l 
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<p(k,m) oo 

Since 2 \amn\ < k~x and 2 la™"l < ^ _ 1 ' 
n=l v(^.í")+l 

?(A,m) 

|awiw| < & - 1 a n d _ 
y(k,m)+l 

we have by (4) 

2 ?7 
^ — ^ Am > 1 — — > 

h 9 

This contradiction completes the proof of the lemma. 
P r o o f of T h e o r e m 2. The validity of the statement "Qi is a measurable 

set" can be easily verified by Theorem 1. We are permitted to consider only 
irrational numbers of Qi when investigating the homogeneity of the set Q\ 
by Theorem A. xv has the ...same meaning as in Theorem B. Let \sn\ ^ C 
(n = 1, 2, ...) and e > 0. Let us choose k0 ^ 3 and M0 such tha t (p(k, m) < oo, 
cp(k, m) ^ xp(k, m), 4cC/k < f/2, 2CF (k)jk < e\2 for k > k0 and m> Mo. I t can 
be done according to (ii). Let us choose a fixed k > k0. We conclude from (i) 
tha t there exists an Mi ^ if0 such that \amn\ < k~l (n = 1, 2, 3, ...) m > M\. 
If xo G Qi and k, m > illi are choosen in the above mentioned way, we obtain 

co oo <p(m,k) 

\a(m, .r0) - a(m, xp)\ = \ £ amrs„r - S an,vsj < £ K J \ s „ , — *,J + 
f ^ l ?=l v=l 

V'(A-.m) co 2 C 7 

+ 2 Kvl K - *J + 2 KJ K - *jj <~" + 
<p(k,m)+l yik,m)+l fC 

2C\y>(k,m)-<p(k,m)\ 2C 
< e. 

k k 

Hence lim \o(m, xo) — a(m, xv)\ = 0 holds for every p. Thus {o(m, xv)}
f -D 

m->oo 

z^{o(m9xo)y ID {sn}
f and xveQi . Qi is a homogeneous set according to Theo

rem B. 

Henceforth a subsequence of the sequence {8W}^=1 means the sequence 
{an8w}n=i > where an — 0 or 1 and ocn = 1 for infinitely many w. Also a one-to-one 
mapping bet wen the set of all subsequences of the sequence {sn}™^ and the 
inserval (0, 1> can be defined in an analogous way as in the first part of the 
paper. Let x e (0, 1) and x = 0 . oci^oc^ ... be the dyadic expansion with 
infinitely many digits equal to 1. If T — (amn) is a regular matrix summability 
method, then we put 

00 

r(m, X) = 2 a>mn<*n8n> 
n~l 
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An analogous theorem to Theorem 1 can be obtained if a(n, x) is replaced 
by T(n, x). The following theorem is analogous to Theorem 2 but any other 
conditions for the summability method except that of regularity are not 
required. 

Theorem 3. Let {sn}^=1 be a bounded sequence and T a regular summability 
method. Then 

Ql = {xG(0,l}:{T(n,x)}f => {sn}'} 

is a measurable homogeneous set (and hence \Qi\ = 0 or 1). 

Proof . I t can be easily shown that Qi is a measurable set. Let x = 
= 0 . aia2a3 . . . (a* = 0 or 1 and for infinitely many i we have on = 1) belong 
to Qi. Let y = 0 . (ixfefe ... be a point obtained by altering a finite number 
of the oa and \sn\ ^ C, C > 0 (n = 1, 2, 3, . . . ) . Let e > 0 and 

FCo = niin {k: oci = $% for i >k}. 

Since T is a regular matrix summability method, there exists an integer Mo 
such tha t \amn\ < ejKoG for m > Mo and n = 1, 2, . . . , Ko. Then we have 
for m ^ Mo 

00 00 00 

|r(m, X) — T(m, y)\ = | ^ ^mnOCnSn — ^ amnfinSn\ ^ 2 la™»l la™ "" 0»l Is"! < e • 
n=l «=1 w=l 

Thus we obtain tha t lim \r(m, x) — r(m, y)\ = 0 and therefore y eQi . Q\ 
m->oo 

is a homogeneous set according to Theorem C. 

R e m a r k . The assumption of regularity in Theorem 3 is essential. If the 
regularity of a summability method is not required, then there exists a summa
bility method summing every convergent sequence and a bounded sequence 
such tha t \Q\\ = 2~v. The construction of this method for p = 1 is given 
in the following example. 

E x a m p l e . Let {8w}n=i he a bounded sequence for which s± ^0, sn-> oc 
and \sn\ > C. We define the summability method A by the matrix (amn)9 

where am\ = 3Cs^ (m = 1, 2, . . . ) , amn = 1 (m = 2, 3, ...) and anlc = 0 for 
00 

k =£ 1, n. Let T(U, X) = ^ ^nkOcjcSjc- Then r(n, x) = ocnsn for x e (0, J> and 
fc="i 

T(n, x) = 3C + ocnsn for x e ( | , 1>. I t follows from the above that 

\{xe(0, l}:{T(n,x)}f =. {8„}'}| - \. 

1 6 5 
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