Matematický časopis

Pavol Šoltés

Boundedness of Solutions of Non-Linear Differential Equation Systems

Matematický časopis, Vol. 21 (1971), No. 2, 91--105

Persistent URL: http://dml.cz/dmlcz/126435

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1971

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

BOUNDEDNESS OF SOLUTIONS
 OF NON-LINEAR DIFFERENTIAL EQUATION SYSTEMS

PAVEL ŠOLTÉS, Košice

There is a theorem in [l] concerning boundedness of solutions of a non-linear differential equation of order two

$$
\left.x^{\prime \prime}+a(t) f(x)\right)=0
$$

and a generalization of this theorem to a system

$$
x_{i}^{\prime \prime}+a_{i}(t) \frac{\partial F}{\partial x_{i}}=0, \quad i=1,2, \ldots n
$$

In [2] this result is generalized to the system

$$
x_{i}^{\prime \prime}+a_{i}(t) \sum_{k=1}^{n} b_{i, k}(t) x_{k}^{\prime}+a_{i}(t) \frac{\partial F}{\partial x_{i}}=0, \quad i=1,2, \ldots, n
$$

where the function F is, among other conditions, assumed to be a function of x_{1}, \ldots, x_{n} and therefore independent of t. In [3] some results are proved concerning boundedness, oscillatoriness and extension of solutions of several types of nonlinear differential equations of order two.

The aim of the present paper is the investigation of boundedness of solutions of non-linear differential equation systems. Some results are given which are generalizations of those appearing in [1], [2] and [3].

Consider a non-linear differential equation system of the form

$$
\begin{equation*}
x_{i}^{\prime \prime}+f_{i}\left(t, x_{1}, \ldots, x_{n}\right)=0, \quad i=1,2, \ldots, n \tag{1}
\end{equation*}
$$

where $f_{i}\left(t, x_{1}, \ldots, x_{n}\right)$ and $\frac{\partial f_{i}}{\partial t}$ are defined and continuous for $t \geqq t_{0} \geqq 0$, $\sum_{i=1}^{n}\left|x_{i}\right|<\infty$. Suppose further that $f_{i}\left(t, x_{1}, \ldots, x_{n}\right)$ are such that

$$
\sum_{i=1}^{n} \frac{\partial F_{i}}{\partial x_{k}}=0 \quad \text { for } \quad k \neq i, k=1,2, \ldots, n
$$

where $F_{i}\left(t, x_{1}, \ldots, x_{n}\right)=\int_{0}^{x_{i}} f_{i}\left(t, x_{1}, \ldots, x_{i-1}, s, x_{i+1}, \ldots, x_{n}\right) \mathrm{d} s$. Let $F^{\prime}(t, \mathbf{x})=$ $=F\left(t, x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} F_{i}\left(t, x_{1}, \ldots, x_{n}\right)$.

Theorem 1. Suppose that for every continuously differentiable vector function $\mathbf{x}(t)=\left(x_{1}(t), \ldots, x_{n}(t)\right)$ which is defined on the interval $\left(t_{0}, \bar{t}\right), \bar{t} \leqq \infty$ and unbounded for $t \rightarrow \bar{t}_{-}$, there exists a sequence $\left\{t_{k}\right\}_{k=1}^{\infty}$, such that

$$
\begin{equation*}
\frac{\partial F^{\prime}(t, \mathbf{x}(t))}{\partial t} \leqq \frac{\partial F\left(t, \mathbf{x}\left(t_{k}\right)\right)}{\partial t}, \quad t_{0} \leqq t \leqq t_{k} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{k \rightarrow \infty} F\left(t_{0}, \mathbf{x}\left(t_{k}\right)\right)=F \tag{3}
\end{equation*}
$$

where $F \leqq \infty$ is independent of $x(t)$.
Then every solution $\mathbf{x}(t)$ of the system (1), which satisfies the relation

$$
\begin{equation*}
\frac{1}{2}\left\|\mathbf{x}^{\prime}\left(t_{0}\right)\right\|^{2}+F\left(t_{0}, \mathbf{x}\left(t_{0}\right)\right)<F \tag{4}
\end{equation*}
$$

is bounded on its domain $\left\langle t_{0}, \infty\right)$.
(||. || stands for the Euclidean norm).
Proof. Suppose that a vector function $\mathbf{x}(t)$ is a solution of the system (1), satisfies the relation (4) and is nevertheless unbounded for $t \rightarrow \bar{t}_{-}$, where $\left\langle t_{0}, \bar{t}\right\rangle$ is an interval on which this solution is defined. This means that there exists a sequence $\left\{t_{k}\right\}_{k=1}^{\infty}, t_{k} \rightarrow \bar{t}_{-}$for $k \rightarrow \infty$ such that $\lim _{k \rightarrow \infty}\left\|\mathbf{x}\left(t_{k}\right)\right\|=+\infty$.

By multiplying the i-th equation of the system (1) by the function $x_{i}^{\prime}(t)$, summing over $i=1,2, \ldots, n$ and then integrating over the interval $\left(t_{0}, t\right)$, where $t \in\left(t_{0}, \bar{t}\right)$. We get

$$
\frac{1}{2}\left\|\mathbf{x}^{\prime}(t)\right\|^{2}+\int_{t_{0}}^{t} \sum_{i=1}^{n} f_{i}\left(s, x_{1}(s), \ldots, x_{n}(s)\right) x_{i}^{\prime}(s) \mathrm{d} s=\frac{1}{2}\left\|\mathbf{x}^{\prime}\left(t_{0}\right)\right\|^{2}
$$

and therefore, since

$$
\frac{\mathrm{d} F}{\mathrm{~d} t}=\frac{\partial F}{\partial t}+\sum_{k=1}^{n}\left(\sum_{i=1}^{n} \frac{\partial F_{i}}{\partial x_{k}}\right) x_{k}^{\prime}(t)=\frac{\partial F}{\partial t}+\sum_{k=1}^{n} f_{k}\left(t, x_{1}, \ldots, x_{n}\right) x_{k}^{\prime}
$$

$$
\begin{equation*}
\frac{1}{2}\left\|\mathbf{x}^{\prime}(t)\right\|^{2}+F(t, \mathbf{x}(t))=\frac{1}{2}\left\|\mathbf{x}^{\prime}\left(t_{0}\right)\right\|^{2}+F\left(t_{0}, \mathbf{x}\left(t_{0}\right)\right)+\int_{i_{0}}^{t} \frac{\partial F(s, \mathbf{x}(s))}{\partial s} \mathrm{~d} s \tag{5}
\end{equation*}
$$

From this, taking into account (2), we get

$$
\begin{aligned}
& F\left(t_{k}, \mathbf{x}\left(t_{k}\right)\right) \leqq \frac{1}{2}\left\|\mathbf{x}^{\prime}\left(t_{0}\right)\right\|^{2}+F\left(t_{0}, \mathbf{x}\left(t_{0}\right)\right)+\int_{t_{0}}^{t_{k}} \frac{\partial F\left(s, \mathbf{x}\left(t_{k}\right)\right.}{\partial s} \mathrm{~d} s= \\
& =\frac{1}{2}\left\|\mathbf{x}^{\prime}\left(t_{0}\right)\right\|^{2}+F\left(t_{0}, \mathbf{x}\left(t_{0}\right)\right)+F\left(t_{k}, \mathbf{x}\left(t_{k}\right)\right)-F\left(t_{0}, \mathbf{x}\left(t_{k}\right)\right)
\end{aligned}
$$

or

$$
F\left(t_{0}, \mathbf{x}\left(t_{k}\right)\right) \geqq \frac{1}{2}\left\|\mathbf{x}^{\prime}\left(t_{0}\right)\right\|^{2}+F\left(t_{0}, \mathbf{x}\left(t_{0}\right)\right),
$$

which means that for $k \rightarrow \infty$ we have

$$
F \leqq \frac{1}{2}\left\|\mathbf{x}^{\prime}\left(t_{0}\right)\right\|^{2}+F\left(t_{0}, \mathbf{x}\left(t_{0}\right)\right),
$$

which contradicts the assumption that $x(t)$ satisfies the relation (4).
It is now necessary to prove that $\bar{t}=+\infty$, or that every solution satisfying the condition (4) can be extended to $\left\langle t_{0}, \infty\right)$.

Let $\bar{t}<\infty$. It is enough to prove that there exist finite limits $\lim _{t \rightarrow t_{-}} \mathbf{x}(t)$ and $\lim \mathbf{x}^{\prime}(t)$. As $\mathbf{x}(t)$ is bounded on $\left\langle t_{0}, \bar{t}\right)$, clearly every component $x_{i}(t)$ $t \rightarrow t-$
of the vector $\mathbf{x}(t)$ is bounded. If the $\lim \mathbf{x}(t)$ does not exist, the same must be true for at least one component limit $\lim x_{i}(t)$. By the corresponding Lemma in [3] $\lim \sup x_{i}^{\prime}(t)=+\infty$ and $\lim \stackrel{t \rightarrow t--}{\inf } x_{i}^{\prime}(t)=-\infty$, so that there exists $t \rightarrow t-$
a sequence $\left\{t_{k}\right\}_{k=1}^{\infty}$ such that $t_{k} \rightarrow \bar{t}_{-}$for $k \rightarrow \infty$ and $\lim _{k \rightarrow \infty} x_{i}^{\prime}\left(t_{k}\right)=+\infty$.
For $t=t_{k}$ we get from (1)

$$
x_{i}^{\prime}\left(t_{k}\right)=x_{i}^{\prime}\left(t_{0}\right)-\int_{t_{0}}^{t_{k}} f_{i}\left(s, x_{1}(s), \ldots, x_{n}(s)\right) \mathrm{d} s
$$

and therefore

$$
\lim _{k \rightarrow \infty} \int_{t_{0}}^{t_{k}} f_{i}\left(s, x_{1}(s), \ldots, x_{n}(s)\right) \mathrm{d} s=-\infty
$$

But this contradicts the assumption that $\bar{t}<\infty$, as $\mathbf{x}(t)=\left(x_{1}(t), \ldots, x_{n}(t)\right)$ is bounded for $t \in\left\langle t_{0}, \bar{t}\right)$ and the functions $f_{i}\left(t, x_{1}, \ldots, x_{n}\right)$ are continuous for $t \geqq t_{0} \geqq 0, \sum_{i=1}^{n}\left|x_{i}\right|<\infty$. This completes the proof.

Remark 1. Evidently if $F=+\infty$, then every solution of (1) is bounded on $\left\langle t_{0}, \infty\right)$.

Theorem 2. Suppose that for every $t \geqq t_{0} \geqq 0, \sum_{i=1}^{n}\left|x_{i}\right|<\infty$ we have

$$
\begin{equation*}
\frac{\partial F(t, \mathbf{x})}{\partial t} \leqq 0 \tag{6}
\end{equation*}
$$

If for every sequence $\left\{t_{k}\right\}_{k=1}^{\infty}$ such that $t_{k} \rightarrow \infty$ for $k \rightarrow \infty$ and every sequence $\left\{\mathbf{x}^{(k)}\right\}_{k=1}^{\infty}, \mathbf{x}^{(k)}=\left(x_{1}^{(k)}, x_{2}^{(k)}, \ldots, x_{n}^{(k)}\right)$ such that $\left\|\mathbf{x}^{(k)}\right\| \rightarrow \infty$ for $k \rightarrow \infty$ we have

$$
\begin{equation*}
\lim _{k \rightarrow \infty} F\left(t_{k}, \mathbf{x}^{(k)}\right)=F \tag{7}
\end{equation*}
$$

then every solution of (1) which satisfies the condition

$$
\begin{equation*}
\frac{1}{2}\left\|\mathbf{x}^{\prime}\left(t_{0}\right)\right\|^{2}+F\left(t_{0}, \mathbf{x}\left(t_{0}\right)\right)<F \tag{8}
\end{equation*}
$$

is bounded on $\left\langle t_{0}, \infty\right)$.
Proof: If the solution $\mathbf{x}(t)$ satisfies the condition (8) and is defined on $\left\langle t_{0}, \infty\right.$), the proof is simple. Using (5) and (6) we get

$$
\begin{equation*}
\frac{1}{2}\left\|\mathbf{x}^{\prime}(t)\right\|^{2}+F(t, \mathbf{x}(t)) \leqq \frac{1}{2}\left\|\mathbf{x}^{\prime}\left(t_{0}\right)\right\|^{2}+F\left(t_{0}, \mathbf{x}\left(t_{0}\right)\right) \tag{9}
\end{equation*}
$$

If $\mathbf{x}(t)$ were unbounded for $t \rightarrow \infty$, there would exist a sequence $\left\{t_{k}\right\}_{k=1}^{\infty}$ such that $t_{k} \rightarrow \infty$ for $k \rightarrow \infty$ and $\lim _{k \rightarrow \infty}\left\|\mathbf{x}\left(t_{k}\right)\right\|=\infty$. By (9) and (7) we get

$$
F \leqq \frac{1}{2}\left\|\mathbf{x}^{\prime}\left(t_{0}\right)\right\|^{2}+F\left(t_{0}, \mathbf{x}\left(t_{0}\right)\right)
$$

which contradicts the assumption (8).
Now let $\mathbf{x}(t)$ be a solution of (1) satisfying the condition (8) which is defined on $\left\langle t_{0}, \bar{t}\right), \bar{t}<\infty$ and suppose that for $t \rightarrow \bar{t}_{-} \mathbf{x}(t)$ is unbounded. In that case there exists a sequence $\left\{t_{k}\right\}_{k=1}^{\infty}, t_{k} \rightarrow \bar{t}_{-}$such that for $k \rightarrow \infty, t_{k} \rightarrow \bar{t}_{-}$and $\lim _{k \rightarrow \infty}\left\|\mathbf{x}\left(t_{k}\right)\right\|=+\infty$. Let $\left\{\tilde{t}_{k}\right\}_{k=1}^{\infty}$ be any sequence such that

$$
t_{k} \leqq \tilde{t}_{k} \quad(k=1,2, \ldots, n, \ldots), \tilde{t}_{k} \rightarrow \infty \text { for } k \rightarrow \infty
$$

By (6) and (9)

$$
F\left(\tilde{t}_{k}, \mathbf{x}\left(t_{k}\right)\right) \leqq F\left(t_{k}, \mathbf{x}\left(t_{k}\right)\right) \leqq \frac{1}{2}\left\|\mathbf{x}^{\prime}\left(t_{0}\right)\right\|^{2}+F\left(t_{0}, \mathbf{x}\left(t_{0}\right)\right),
$$

which again contradicts the assumption (8).
The proof that any solution satisfying the condition (8) can be extended to $\left\langle t_{0}, \infty\right)$ is completely analogous to that of Theorem 1.

Theorem 3. In addition to the hypotheses of Theorem 2 , suppose that $F(t, \mathbf{x}) \geqq 0$ for $t \geqq t_{0} \geqq 0, \sum_{i=1}^{n}\left|x_{i}\right|<\infty$.

Then any solution of (1) which satisfies the condition (8) as well as the first
derivative of any solution, are bounded on their domain which is $\left\langle t_{0}, \infty\right)$ if the said solution satisfies the condition (8).

Proof. The boundedness of a solution satisfying (8) is ensured by Theorem 2.

In view of the assumption $F(t, \mathbf{x}) \geqq 0$ for $t \geqq t_{0} \geqq 0, \sum_{i=1}^{n}\left|x_{i}\right|<\infty$, we get from (9)

$$
\frac{1}{2}\left\|\mathbf{x}^{\prime}(t)\right\|^{2} \leqq \frac{1}{2}\left\|\mathbf{x}^{\prime}\left(t_{0}\right)\right\|^{2}+F\left(t_{0}, \mathbf{x}\left(t_{0}\right)\right)
$$

which means that the first derivative of any solution is bounded on its domain.
Consider the system

$$
\begin{equation*}
x_{i}^{\prime \prime}+\left(1+\varphi_{i}(t)\right) f_{i}\left(t, x_{1}, \ldots, x_{n}\right)=0 \quad(i=1,2, \ldots, n) \tag{10}
\end{equation*}
$$

where $f_{i}\left(t, x_{1}, \ldots, x_{n}\right)$ are the same functions as in (1), while $\varphi_{i}(t)$ and $\varphi_{i}^{\prime}(t)$ are defined and continuous for all $t \geqq t_{0} \geqq 0$.

Theorem 4. In addition to the hypotheses of Theorem 1 suppose that

$$
\begin{equation*}
1+\varphi_{i}(t) \geqq k>0, \quad \varphi_{i}^{\prime}(t) \geqq 0 \tag{11}
\end{equation*}
$$

for every $t \geqq t_{0} \geqq 0$ and $i=1,2, \ldots, n$.
Then any solution of (10) which satisfies the condition

$$
\begin{equation*}
\frac{1}{2} \sum_{i=1}^{n} \frac{x_{i}^{\prime 2}\left(t_{0}\right)}{1+\varphi_{i}\left(t_{0}\right)}+F\left(t_{0}, \mathbf{x}\left(t_{0}\right)\right)<F \tag{12}
\end{equation*}
$$

is bounded on $\left\langle t_{0}, \infty\right)$.
Proof. Suppose that $\mathbf{x}(t)=\left(x_{1}(t), \ldots, x_{n}(t)\right)$ is again a solution of (10), defined on $\left\langle t_{0}, \bar{t}\right\rangle$ which satisfies the condition (12) and is not bounded for $t \rightarrow \bar{t}_{-}$.

By (10)

$$
\sum_{i=1}^{n} \int_{i_{0}}^{t} \frac{x_{i}^{\prime \prime}(s) x_{i}^{\prime}(s)}{1+\varphi_{i}(s)} \mathrm{d} s+\sum_{i=1}^{n} \int_{i_{0}}^{t} f_{i}\left(s, x_{1}(s), \ldots, x_{n}(s)\right) x_{i}^{\prime}(s) \mathrm{d} s=0
$$

where $t \in\left(t_{0}, \bar{t}\right)$. Moreover,

$$
\begin{equation*}
\frac{1}{2} \sum_{i=1}^{n} \frac{x_{i}^{\prime 2}(t)}{1+\phi_{i}(t)}+\frac{1}{2} \sum_{i=1}^{n} \int_{t_{0}}^{t} \frac{x_{i}^{\prime 2}(s) \varphi_{i}^{\prime}(s)}{\left[1+\varphi_{i}(s)\right]^{2}} \mathrm{~d} s+F(t, \mathbf{x}(t))= \tag{13}
\end{equation*}
$$

$$
=\frac{1}{2} \sum_{i=1}^{n} \frac{x_{i}^{\prime 2}\left(t_{0}\right)}{1+\varphi_{i}\left(t_{0}\right)}+F\left(t_{0}, \mathbf{x}\left(t_{0}\right)\right)+\int_{t_{0}}^{t} \frac{\partial F(s, \mathbf{x}(s))}{\partial s} \mathrm{~d} s
$$

or

$$
\begin{equation*}
F(t, \mathbf{x}(t)) \leqq \frac{1}{2} \sum_{i=1}^{n} \frac{x_{i}^{\prime 2}\left(t_{0}\right)}{1+\varphi_{i}\left(t_{0}\right)}+F\left(t_{0}, \mathbf{x}\left(t_{0}\right)\right)+\int_{t_{0}}^{t} \frac{\partial F(s, \mathbf{x}(s))}{\partial s} \mathrm{~d} s \tag{14}
\end{equation*}
$$

from which similarly as in the proof of Theorem 1 we get

$$
F \leqq \frac{1}{2} \sum_{i=1}^{n} \frac{x_{i}^{\prime 2}\left(t_{0}\right)}{1+\varphi_{i}\left(t_{0}\right)}+F\left(t_{0}, \mathbf{x}\left(t_{0}\right)\right),
$$

which contradicts the assumption (12).
The proof that any solution can be extended to $\left\langle t_{0}, \infty\right)$ is analogous to that of Theorem 1 .

Theorem 5. Suppose that, in addition to the hypotheses of Theorem 2, (11) holds. Then any solution of (10) satisfying (12) is bounded on $\left\langle t_{0}, \infty\right)$.

Proof. The theorem can be proved using the relation (14). By using (6), we get

$$
F\left(t, \mathbf{x}(t) \leqq \frac{1}{2} \sum_{i=1}^{n} \frac{x_{i}^{\prime 2}\left(t_{0}\right)}{1+\varphi_{i}\left(t_{0}\right)}+F\left(t_{0}, \mathbf{x}\left(t_{0}\right)\right)\right.
$$

which, by (7) contradicts the assumption (12).
Evidently the following theorem also holds:
Theorem 6. Suppose that, in addition to the hypotheses of Theorem 3, the functions $\varphi_{i}(t)$ satisfy the condition (11). Then every solution of (10) which satisfies the condition (12) is bounded on $\left\langle t_{0}, \infty\right.$).

If in addition to this for every i and all $t \geqq t_{0} \varphi_{i}(t)<\infty$, then also the first derivative of any solution is bounded on its domain.

Theorem 7. Suppose that the hypotheses of Theorem 3 are valid and that $F=+\infty$ in (7). If for all $t \geqq t_{0} \geqq 0, i=1,2, \ldots, n$

$$
\begin{equation*}
0<\alpha \leqq 1+\varphi_{i}(t) \leqq \beta<\infty, \int_{i_{0}}^{\infty}\left|\varphi_{i}^{\prime}(t)\right| \mathrm{d} t<\infty \tag{15}
\end{equation*}
$$

then every solution of (10) and its first derivative are bounded on $\left\langle t_{0}, \infty\right)$.

Proof. Suppose that a vector function $x(t)$ is a solution of (10), is defined on $\left\langle t_{0}, \bar{t}\right)$ and that $\lim _{t \rightarrow t} \sup \|\mathbf{x}(t)\|=+\infty$.

Using (13), (6) and the assumption $F(t, x) \geqq 0$, we get

$$
\begin{gathered}
\frac{1}{2} \sum_{i=1}^{n} \frac{x_{i}^{\prime 2}(t)}{1+\varphi_{i}(t)} \leqq \frac{1}{2} \sum_{i=1}^{n} \frac{x_{i}^{\prime 2}\left(t_{0}\right)}{1+\varphi_{i}\left(t_{0}\right)}+F\left(t_{0}, \mathbf{x}\left(t_{0}\right)\right)+ \\
+\frac{1}{2} \sum_{i=1}^{n} \int_{t_{0}}^{t} \frac{x_{i}^{\prime 2}(s)}{\left[1+\varphi_{i}(s)\right]^{2}}\left|\varphi_{i}^{\prime}(s)\right| \mathrm{d} s
\end{gathered}
$$

and therefore

$$
\left\|\mathbf{x}^{\prime}(t)\right\|^{2} \leqq 2 \beta K_{0}+\frac{\beta}{\alpha^{2}} \int_{t_{0}}^{t} \sum_{i=1}^{n} x_{i}^{\prime 2}(s)\left|\varphi_{i}^{\prime}(s)\right| \mathrm{d} s,
$$

where

$$
K_{0}=\frac{1}{2} \sum_{i=1}^{n} \frac{x_{i}^{\prime 2}\left(t_{0}\right)}{1+\varphi_{i}\left(t_{0}\right)}+F\left(t_{0}, \mathbf{x}\left(t_{0}\right)\right)
$$

Further

$$
\left\|\mathbf{x}^{\prime}(t)\right\|^{2} \leqq 2 \beta K_{0}+\frac{\beta}{\alpha^{2}} \int_{t_{0}}^{t}\left\|\mathbf{x}^{\prime}(s)\right\|^{2} \sum_{i=1}^{n}\left|\varphi_{i}^{\prime}(s)\right| \mathrm{d} s
$$

Using Bellman's lemma [4] we get

$$
\left\|\mathbf{x}^{\prime}(t)\right\|^{2} \leqq 2 \beta K_{0} \exp \left[\frac{\beta}{\alpha^{2}} \int_{t_{0}}^{t} \sum_{i=1}^{n}\left|\varphi_{i}^{\prime}(s)\right| \mathrm{d} s\right] \leqq K_{1}<\infty
$$

so that $\mathbf{x}^{\prime}(t)$ is bounded.
We have still to prove that $\mathbf{x}(t)$ is also bounded. This can be done by using (13) again. We get

$$
F(t, \mathbf{x}(t)) \leqq K_{0}+\frac{1}{2} \sum_{i=1}^{n} \int_{i_{0}}^{t} \frac{x_{i}^{\prime 2}(s)}{\left[1+\varphi_{i}(s)\right]^{2}}\left|\varphi_{i}^{\prime}(s)\right| \mathrm{d} s
$$

and therefore

$$
F(t, \mathbf{x}(t)) \leqq K_{0}+\frac{K_{1}}{2 \alpha^{2}} \sum_{i=1}^{n} \int_{t_{0}}^{t}\left|\varphi_{i}^{\prime}(s)\right| \mathrm{d} s \leqq K_{2}<\infty
$$

for all $t \in\left\langle t_{0}, \bar{t}\right)$. Suppose that $\left\{t_{k}\right\}_{k=1}^{\infty}$ is a sequence such that $t_{k} \rightarrow \bar{t}_{-}$for $k \rightarrow \infty$ and $\lim \left\|\mathbf{x}\left(t_{k}\right)\right\|=+\infty$.
$k=1$
For this sequence we obtain, using the last inequality, a result which contradicts (7) with $F=+\infty$. This completes the proof.

Theorem 8. Suppose that the hypotheses of Theorem 7 are all valid except (15). If

$$
\lim _{t \rightarrow \infty} \varphi_{i}(t)=0, \quad \int_{t_{0}}^{\infty}\left|\varphi_{i}^{\prime}(t)\right| \mathrm{d} t<\infty, \quad i=1,2, \ldots, n
$$

then there exists t_{1}, such that $t_{1} \geqq t_{0} \geqq 0$ and every solution of the system (10) is bounded on $\left\langle t_{1}, \infty\right)$.

Proof. The proof of this theorem is evident and rests on that of Theorem 7. Namely the condition $\lim _{t \rightarrow \infty} \varphi_{i}(t)=0$ ensures the existence of $t_{1} \geqq t_{0}$ such that for $t \geqq t_{1}$

$$
\frac{1}{2} \leqq 1+q_{i}(t) \leqq \frac{3}{2}
$$

Therefore the condition (15) is also satisfied and the conclusion of the theorem holds.

Remark 2. From this proof it is evident that in Theorems 4, 5 and 6 the condition (11) can be replaced by the following condition:

$$
\lim _{t \rightarrow \infty} \varphi_{i}(t)=0, \quad \varphi_{i}^{\prime}(t) \geqq 0, t \geqq T \geqq t_{0}, \quad i=1,2, \ldots, n
$$

In that case in (12) we substitute for t_{0} a number t_{1} such that $t_{1} \geqq T$ and that for $t \geqq t_{1}$ is $\mathbf{l}+\varphi_{i}(t) \geqq k>0, i=1, \ldots, n$.

Let us now investigate the boundedness of solutions of the system

$$
\begin{equation*}
x_{i}^{\prime \prime}+f_{i}\left(t, x_{1}, \ldots, x_{n}\right)=c_{i}(t), \quad i=1, \ldots, n \tag{16}
\end{equation*}
$$

where $f_{i}\left(t, x_{1}, \ldots, x q\right)$ are again the same as in (1) while $c_{i}(t), c_{i}^{\prime}(t)$ are defined and continuous for all $t \geqq t_{0} \geqq 0$. Under such conditions the following theorem holds:

Theorem 9. Suppose that the hypotheses of Theorem 7 are valid with the exception of (15). If the vector $\mathbf{c}(t)=\left(c_{1}(t), \ldots, c_{n}(t)\right)$ is such that

$$
\int_{t_{0}}^{\infty}\|\boldsymbol{c}(t)\| \mathrm{d} t<\infty
$$

then every solution of (16), together with its first derivative is bounded on the interval $\left\langle t_{0}, \infty\right)$.

Proof. By multiplying the system (16) by $x_{i}^{\prime}(t), i=1,2, \ldots, n$, where $x_{i}(t)$ are the components of a solution $\mathbf{x}(t)$ of the system (16), summing over i and integrating from t_{0} to $t\left(t \in\left(t_{0}, \bar{t}\right)\right.$, where $\left\langle t_{0}, \bar{t}\right)$ is the interval of definition of $\boldsymbol{x}(t))$ we get

$$
\begin{gathered}
\frac{1}{2}\left\|\mathbf{x}^{\prime}(t)\right\|^{2}+F(t, \mathbf{x}(t))=\frac{1}{2}\left\|\mathbf{x}^{\prime}\left(t_{0}\right)\right\|^{2}+F\left(t_{0}, \mathbf{x}\left(t_{0}\right)\right)+ \\
\quad+\int_{t_{0}}^{t} \frac{\partial F(s, \mathbf{x}(s))}{\partial s} \mathrm{~d} s+\sum_{i=1}^{n} \int_{i_{0}}^{t} c_{i}(s) x_{i}^{\prime}(s) \mathrm{d} s
\end{gathered}
$$

and therefore

$$
\begin{equation*}
\frac{1}{2}\left\|\mathbf{x}^{\prime}(t)\right\|^{2}+F(t, \mathbf{x}(t)) \leqq K_{0}+\int_{t_{0}}^{t} \sum_{i=1}^{n}\left|c_{i}(s) x_{i}^{\prime}(s)\right| \mathrm{d} s \tag{17}
\end{equation*}
$$

Now suppose that $\mathbf{x}(t)$ is an arbitrary solution of (16). Then from (17) we get

$$
\frac{1}{2}\left\|\mathbf{x}^{\prime}(t)\right\|^{2} \leqq K_{0}+\int_{t_{0}}^{t} \sum_{i=1}^{n}\left|c_{i}(s) x_{i}^{\prime}(s)\right| \mathrm{d} s,
$$

which means

$$
\left\|\mathbf{x}^{\prime}(t)\right\| \leqq \frac{1}{2}\left\|\mathbf{x}^{\prime}(t)\right\|^{2}+\frac{1}{2} \leqq K_{0}+\frac{1}{2}+\int_{t_{0}}^{t}\|\mathrm{c}(s)\| \cdot\left\|\mathbf{x}^{\prime}(s)\right\| \mathrm{d} s
$$

and therefore

$$
\left\|\mathbf{x}^{\prime}(t)\right\| \leqq K_{1} \exp \int_{i_{0}}^{t}\|\mathbf{c}(s)\| \mathrm{d} s
$$

where $K_{1}=K_{0}+\frac{1}{2}$.
Thus $\boldsymbol{x}^{\prime}(t)$ is bounded and there exists a constant K such that, for all $t \in$ $\in\left\langle t_{0}, \bar{t}\right),\left\|\mathbf{x}^{\prime}(t)\right\| \leqq K$.

From (17) we also get

$$
F(t, \mathbf{x}(t)) \leqq K_{0}+\int_{t_{0}}^{t}\left(\sum_{i=1}^{n} x_{i}^{\prime 2}(s)\right)^{\frac{1}{2}}\left(\sum_{i=1}^{n} c_{i}^{2}(s)\right)^{\frac{1}{2}} \mathrm{~d} s=K_{0}+\int_{t_{0}}^{t}\|\mathbf{c}(s)\| \cdot\left\|\mathbf{x}^{\prime}(s)\right\| \mathrm{d} s
$$

and therefore

$$
F\left(t, \mathbf{x}(t) \leqq K_{0}+K \int_{t_{0}}^{t}\|\mathbf{c}(s)\| \mathrm{d} s\right.
$$

which means that for all $t \in\left(t_{0}, \bar{t}>F(t, \mathbf{x}(t))\right.$ is a bounded function. Thus, since in (7) F is equal to $+\infty,\|x(t)\|$ is bounded.

If $\bar{t}<\infty$, then it is easy to prove that the solution $\mathbf{x}(t)$ can be extended to $\left\langle t_{0}, \infty\right)$. This completes the proof.

Remark 3. It is possible to generalize Theorems $1-9$ by investigating, instead of the systems (1), (10) and (16), the following systems:

$$
\begin{gather*}
x_{i}^{\prime \prime}+\sum_{k=1}^{n} b_{i, k}(t) x_{k}^{\prime}+f_{i}\left(t, x_{1}, \ldots, x_{n}\right)=0 \tag{18}\\
x_{i}^{\prime \prime}+\left(1+\varphi_{i}(t)\right) \sum_{k=1}^{n} b_{i, k}(t) x_{k}^{\prime}+\left(1+\varphi_{i}(t)\right) f_{i}\left(t, x_{1}, \ldots, x_{n}\right)=0 \tag{19}\\
x_{i}^{\prime \prime}+\sum_{k=1}^{n} b_{i . k}(t) x_{k}^{\prime}+f_{i}\left(t, x_{1}, \ldots, x_{n}\right)=c_{i}(t) \tag{20}
\end{gather*}
$$

where it is further supposed that for any $t \geqq t_{0} \geqq 0, \sum_{i=1}^{n}\left|x_{i}\right|<\infty, b_{i, k}(t)$ is a continuous function and $\sum_{i, k=1}^{n} b_{i, k}(t) x_{i} x_{k} \geqq 0$.

As an example, we shall prove the following:
Theorem 1a. Suppose that the hypotheses of Theorem 1 are valid and that for all $t \geqq t_{0} \geqq 0$

$$
\sum_{i, k=1}^{n} b_{i, k}(t) x_{i} x_{k} \geqq 0
$$

Then every solution of (18) which satisfies the condition (4) is bounded on its domain.

Proof. By multiplying the i-th equation of (18) by $x_{i}^{\prime}(t)$, summing and integrating we get

$$
\begin{aligned}
& \frac{1}{2}\left\|\mathbf{x}^{\prime}(t)\right\|^{2}+\int_{t_{0}}^{t} \sum_{i, k=1}^{n} b_{i, k}(s) x_{k}^{\prime}(s) x_{i}^{\prime}(s) \mathrm{d} s+F(t, \mathbf{x}(t))= \\
& =\frac{1}{2}\left\|\mathbf{x}^{\prime}\left(t_{0}\right)\right\|^{2}+F\left(t_{0}, \mathbf{x}\left(t_{0}\right)\right)+\int_{t_{0}}^{t} \frac{\partial F(s, \mathbf{x}(s))}{\partial s} \mathrm{~d} s
\end{aligned}
$$

Thus

$$
\frac{1}{2}\left\|\mathbf{x}^{\prime}(t)\right\|^{2}+F(t, \mathbf{x}(t)) \leqq K_{0}+\int_{t_{0}}^{t} \frac{\partial F(s, \mathbf{x}(s))}{\partial s} \mathrm{~d} s
$$

where

$$
K_{0}=\frac{1}{2}\left\|\mathbf{x}^{\prime}\left(t_{0}\right)\right\|^{2}+F\left(t_{0}, \mathbf{x}\left(t_{0}\right)\right) .
$$

From here on the proof is similar to that of Theorem 1.

Remark 4. We shall now show how some results of [3] concerning the bounds of solutions of non-linear equations of order 2 can be generalized to systems.

Theorem 1b. Suppose that, in addition to the hypotheses of Theorem 1, the following conditions hold:
a) $g_{i}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right), i=1,2, \ldots, n$ are continuous for every $\mathbf{x}=$ $=\left(x_{1}, \ldots, x_{n}\right)$ and $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)$ and there exist nonnegative constants k_{i} such that

$$
g_{i}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right) y_{i} \geqq k_{i} y_{i}^{2}
$$

for all \mathbf{x} and \mathbf{y};
b) $a_{i}(t), b_{i}(t)$ are continuous nonnegative functions for $t \geqq t_{0} \geqq 0$ and $2 k_{i} b_{i}(t) \geqq$ $\geqq a_{i}^{\prime}(t)$.
Then every solution of the system

$$
\begin{equation*}
a_{i}(t) x_{i}^{\prime \prime}+b_{i}(t) g_{i}\left(x_{1}, \ldots, x_{n}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)+f_{i}\left(t, x_{1}, \ldots, x_{n}\right)=0 \tag{21}
\end{equation*}
$$

which satisfies the inequality

$$
\begin{equation*}
K_{0}=\frac{1}{2} \sum_{i=1}^{n} a_{i}\left(t_{0}\right) x_{i}^{\prime 2}\left(t_{0}\right)+F\left(t_{0}, \mathbf{x}\left(t_{0}\right)\right)<F \tag{22}
\end{equation*}
$$

is bounded on its domain.
Proof. By multiplying the i-th equation of (21) by $x_{i}^{\prime}(t)$, summing and integrating from t_{0} to $t, t \in\left(t_{0}, \bar{t}\right)$, where $\left\langle t_{0}, \bar{t}\right)$ is the domain of the solution $\mathbf{x}(t)=\left(x_{1}(t), \ldots, x_{n}(t)\right)$. We obtain

$$
\begin{gathered}
\frac{1}{2} \sum_{i=1}^{n} \int_{t_{0}}^{t} a_{i}(s) \frac{\mathrm{d}}{\mathrm{~d} s} x_{i}^{\prime 2}(s) \mathrm{d} s+\sum_{i=1}^{n} \int_{t_{0}}^{t} b_{i}(s) g_{i}\left(x_{1}, \ldots, x_{n}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right) x_{i}^{\prime}(s) \mathrm{d} s+ \\
+\sum_{i=1}^{n} \int_{t_{0}}^{t} f_{i}\left(s, x_{1}(s), \ldots, x_{n}(s)\right) x_{i}^{\prime}(s) \mathrm{d} s=0
\end{gathered}
$$

Since $f_{i}\left(t, x_{1}, \ldots, x_{n}\right)$ are the same as in (1), we have

$$
\begin{aligned}
& \frac{1}{2} \sum_{i=1}^{n} a_{i}(t) x_{i}^{\prime 2}(t)+\sum_{i=1}^{n} \int_{t_{0}}^{t}\left[b_{i}(s) g_{i}\left(x_{1}, \ldots, x_{n}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right) x_{i}^{\prime}(s)-\right. \\
& \left.\quad-\frac{1}{2} a_{i}^{\prime}(s) x_{i}^{\prime 2}(s)\right] \mathrm{d} s+F(t, \mathbf{x}(t))=\frac{1}{2} \sum_{i=1}^{n} a_{i}\left(t_{0}\right) x_{i}^{\prime 2}\left(t_{0}\right)+ \\
& \quad+F\left(t_{0}, \mathbf{x}\left(t_{0}\right)\right)+\int_{t_{0}}^{t} \frac{\partial F(s, \mathbf{x}(s))}{\partial s} \mathrm{~d} s
\end{aligned}
$$

Taking into account assumptions a) and b), we have

$$
\frac{1}{2} \sum_{i=1}^{n} a_{i}(t) x_{i}^{\prime 2}(t)+F(t, \mathbf{x}(t)) \leqq K_{0}+\int_{t_{0}}^{t} \frac{\partial F(s, \mathbf{x}(s))}{\partial s} \mathrm{~d} s .
$$

and from here on the proof proceeds similarly as in Theorem 1.
Clearly this theorem is a generalization of our Theorem 1 as well as of Theorem (1) in [3]. Moreover, by adding to the hypotheses of any theorem dealing with the boundedness of solutions of (1) and their derivatives the assumptions a) and b) and substituting the condition (22) for (4) we obtain a valid theorem which, however, states that the solutions, and sometimes their derivatives, are bounded on their interval of definition.

Analogously the theorem roncerning the boundedness of the solution of (16) can be generalized to solutions of the system

$$
a_{i}(t) x_{i}^{\prime \prime}+b_{i}(t) g_{i}\left(x_{1}, \ldots, x_{n}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)+f_{i}\left(t, x_{1}, \ldots, x_{n}\right)=c_{i(t)},
$$

where $i=1, \ldots, n$.
The following theorem is a generalization of Theorem 3 in [1].
Theorem 10. Suppose that $F(\mathbf{x})=F\left(x_{1}, \ldots, x_{n}\right)$ satisfies the hypotheses of Theorem 3 in [1], i. e. that it is a continuous, twice differentiable function and

$$
\min _{|\mathbf{x}|=r} F\left(x_{1}, \ldots, x_{n}\right)=m(r) \rightarrow \infty, \quad \text { for } \quad r \rightarrow \infty .
$$

Suppose further that $a_{i}(t)>0, a_{i}^{\prime}(t) \geqq 0, g_{i}\left(y_{1}, \ldots, y_{n}\right)>0$ are defined and continuous for $t \geqq t_{0} \geqq 0, \sum_{i=1}^{n}\left|y_{i}\right|<\infty, \quad i=1, \ldots, n$. If $\frac{\partial G_{i}}{\partial y_{k}}=0, \quad i \neq k$ $i, k=1, \ldots, n$, where $\left.G_{i}\left(y_{1}, \ldots, y_{n}\right)=\int_{0}^{y_{i}} \frac{s}{g_{i}\left(y_{1}, \ldots, y_{i-1}\right.}, s, y_{i+1}, \ldots, y_{n}\right) \mathrm{d} s$,
then every solution $\mathbf{x}(t)$ of the system

$$
\begin{equation*}
x_{i}^{\prime \prime}+a_{i}(t) \frac{\partial F}{\partial x_{i}} g_{i}\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)=0, i=1, \ldots, n \tag{23}
\end{equation*}
$$

is bounded on its domain.
Proof. By multiplying the i-th equation of (23) by $\frac{x_{i}^{\prime}(t)}{a_{i}(t) g_{i}\left(x^{\prime}\right)}, g_{i}\left(\mathbf{x}^{\prime}\right)=$ $=g_{i}\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)$, summing and integration we get

$$
\int_{t_{0}}^{t} \sum_{i=1}^{n} \frac{x_{i}^{\prime \prime} x_{i}^{\prime}}{a_{i}(s) g_{i}\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)} \mathrm{d} s+F(\mathbf{x}(t))=F\left(\mathbf{x}\left(t_{0}\right)\right)
$$

which gives us the relation

$$
\int_{t_{0}}^{t} \sum_{i=1}^{n} \frac{1}{a(s)} \frac{\mathrm{d}}{\mathrm{~d} s} G_{i}\left(\boldsymbol{x}^{\prime}(s)\right) \mathrm{d} s+F(\mathbf{x}(t))=F\left(\mathbf{x}\left(t_{0}\right)\right),
$$

where $\mathbf{x}^{\prime}(s)=\left(x_{1}^{\prime}(s), \ldots, x_{n}^{\prime}(s)\right)$. Therefore

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{1}{a_{i}(t)} G_{i}\left(\mathbf{x}^{\prime}(t)\right)+F(\mathbf{x}(t)) \leqq F\left(\mathbf{x}\left(t_{0}\right)\right)+\sum_{i=1}^{n} \frac{1}{a_{i}\left(t_{0}\right)} G_{i}\left(\mathbf{x}^{\prime}\left(t_{0}\right)\right)=K_{0} \tag{24}
\end{equation*}
$$

so that

$$
\begin{equation*}
F(\mathbf{x}(t)) \leqq K_{0}, \tag{25}
\end{equation*}
$$

and consequently, $\|\mathbf{x}(t)\|<\infty$ for every t in the interval of definition of $\mathbf{x}(t)$.
Theorem 11. Suppose that, under the assumptions made in Theorem 10, $a_{i}(t) \leqq k$ for $t \geqq t_{0} \geqq 0$ and $i=1,2, \ldots, n$. If

$$
\min _{|\mathrm{y}|=r} G\left(y_{1}, \ldots, y_{n}\right) \rightarrow \infty \quad \text { for } \quad r \rightarrow \infty
$$

where $G(\mathbf{y})=G\left(y_{1}, \ldots, y_{n}\right)=\sum_{i=1}^{n} G_{i}\left(y_{1}, \ldots, y_{n}\right)$ then every solution of (23) and its first derivative are bounded on $\left\langle t_{0}, \infty\right)$.

Proof. Let $\boldsymbol{x}(t)$ be a solution of (23) which is defined on $\left\langle t_{0}, \bar{t}\right)$. The boundedness of its first derivative can be deduced from (24) and (25). In fact

$$
\sum_{i=1}^{n} \frac{1}{a_{i}(t)} G_{i}\left(\mathbf{x}^{\prime}(t)\right) \leqq K_{0}-F(\mathbf{x}(t)),
$$

so that

$$
G\left(\mathbf{x}^{\prime}(t)\right) \leqq k\left(K_{0}-F(\mathbf{x}(t))\right),
$$

which means that for all $t \in\left\langle t_{0}, \bar{t}\right\rangle$ we have

$$
G\left(\mathbf{x}^{\prime}(t)\right) \leqq k\left(\left|K_{0}\right|+\left|K_{0}\right|\right)
$$

and therefore $\left\|\mathbf{x}^{\prime}(t)\right\|<\infty$.

It remains to be proved that $\bar{t}=+\infty$ or that any solution can be extended to $\left\langle t_{0}, \infty\right)$. To do this we shall show that if $\bar{t}<\infty$, then there exist finite limits $\lim \mathbf{x}(t)$ and $\lim \mathbf{x}^{\prime}(t)$.

If $\lim \mathbf{x}(t)$ does not exist, then for at least one $i \lim x_{i}(t)$ does not exist. $t \rightarrow \bar{t}$
In this case, however, according to the lemma in [3], $\lim \sup x_{i}^{\prime}(t)=+\infty$ $t \rightarrow \bar{t}-$
and $\lim \inf x_{i}^{\prime}(t)=-\infty$. This contradicts the assumption that $\mathbf{x}^{\prime}(t)$ is bounded . $t \rightarrow \bar{t}$
Suppose now that $\lim \mathbf{x}^{\prime}(t)$ does not exist. Using the same lemma as before, $t \rightarrow \bar{t}$
we conclude that $\lim \sup x_{i}^{\prime \prime}(t)=+\infty$ and $\lim \inf x_{i}^{\prime \prime}(t)=-\infty$ for at least $t_{t \rightarrow \bar{t}_{-}}^{t}{ }_{t \rightarrow \bar{t}_{-}}$
one i. Consider this i and the corresponding $x_{i}(t)$. If $\lim \sup x_{i}^{\prime \prime}(t)=+\infty$, then there exists a sequence $\left\{t_{k}\right\}_{k=1}^{\infty}$, such that for $\stackrel{t \rightarrow t-}{k \rightarrow} \rightarrow \infty, t_{k} \rightarrow \bar{t}_{-}$and $\lim x_{i}^{\prime \prime}\left(t_{k}\right)=+\infty$. For this sequence we get (using (23)) $k \rightarrow \infty$

$$
\lim _{k \rightarrow \infty}\left[a_{i}\left(t_{k}\right) \frac{\partial F\left(\mathbf{x}\left(t_{k}\right)\right)}{\partial x_{i}} g_{i}\left(x_{1}^{\prime}\left(t_{k}\right), \ldots, x_{n}^{\prime}\left(t_{k}\right)\right)\right]=-\infty,
$$

which contradicts the assumptions that $a_{i}, \partial F / \partial x_{i}$ and g_{i} are continuous, $\bar{t}<\infty,\|\mathbf{x}(t)\|<\infty$ and $\left\|\mathbf{x}^{\prime}(t)\right\|<\infty$. Thus we have proved that there exist finite limits $\lim x(t)$ and $\lim \boldsymbol{x}^{\prime}(t)$ and completed the proof.

$$
t \rightarrow \bar{t}_{-} \quad \because \quad a^{t \rightarrow \bar{t}_{-}}
$$

A further generalization of this theorem and of Theorem 18 in [3] is the following theorem which deals with boundedness of solutions of the system

$$
\begin{equation*}
x_{i}^{\prime \prime}+f_{i}\left(t, x_{1}, \ldots, x_{n}\right) g_{i}\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)=0, \quad i=1, \ldots, n \tag{26}
\end{equation*}
$$

where $f_{i}\left(t, x_{1}, \ldots, x_{n}\right)$ are the same functions as those in (1) and where $g_{i}\left(y_{1}, \ldots, y_{n}\right)$ and $G_{i}\left(y_{1}, \ldots, y_{n}\right)$ satisfy the assumptions of Theorem 10 .

Theorem 12. Assuming the validity of the hypotheses of Theorem 1, any solution of (26) which satisfies the inequality

$$
\begin{equation*}
K_{0}=G\left(\mathbf{x}^{\prime}\left(t_{0}\right)\right)+F\left(t_{0}, \mathbf{x}\left(t_{0}\right)\right)<F, \tag{27}
\end{equation*}
$$

is bounded on its domain.
Proof. From (26) we get

$$
\frac{x_{i}^{\prime \prime} x_{i}^{\prime}}{g_{i}\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)}+f_{i}\left(t, x_{1}, \ldots, x_{n}\right) x_{i}^{\prime}=0
$$

and therefore

$$
\begin{equation*}
G\left(\mathbf{x}^{\prime}(t)\right)+F(t, \mathbf{x}(t))=G\left(\mathbf{x}^{\prime}\left(t_{0}\right)\right)+F\left(t_{0}, \mathbf{x}\left(t_{0}\right)\right)+ \tag{28}
\end{equation*}
$$

$$
+\int_{t_{0}}^{t} \frac{\partial F(s, \mathbf{x}(s))}{\partial s} \mathrm{~d} s
$$

From here on the proof is analogous to that of Theorem 1.
Remark 5. Theorem 2 will also hold for solutions of (26) if for condition (8) we substitute (27) with F defined by the relation (7).

Theorem 13. Suppose that $G(y)=G\left(y_{1}, \ldots, y_{n}\right)$ satisfies the conditions of Theorem 11 and that the assumptions of Theorem 3 are valid. Then every solution of (26) satisfying the condition (27) and its first derivative are bounded on $\left\langle t_{0}, \infty\right)$.

Proof. That the solution itself is bounded is evident from Remark 5. From (28) we get

$$
G\left(\mathbf{x}^{\prime}(t)\right) \leqq G\left(\mathbf{x}^{\prime}\left(t_{0}\right)\right)+F\left(t_{0}, \mathbf{x}\left(t_{0}\right)\right),
$$

which means that $G\left(\mathbf{x}^{\prime}(t)\right)$ is a bounded function of t and therefore $\left\|\mathbf{x}^{\prime}(t)\right\|$ is also bounded.

The proof that a solution satisfying (27) can be extended to $\left\langle t_{0}, \infty\right.$) is analogous to the corresponding part of the proof of Theorem 11. This completes the proof.

REFERENCES

[1] Клоков И. А., Некоторые теоремь об ограниченности решений обыкновенных дифференчиальных уравней, Успехи матем. наук т. ХІІІ., вып. 2 (80), (1958), 189-194.
[2] Клоков Й. А., Некоторые теоремь об ограниченности и устойчивости решений систем обыкновенных дифференчиальных уравнений вида

$$
x_{i}^{\prime \prime}+a_{i}(t) \sum_{k=1}^{n} b_{i, k}(t) x_{k}^{\prime}+a_{i}(t) \frac{\partial F}{\partial x_{i}}=0,
$$

Научные доклады высшей школы (Физико-математические науки) 4 (1958), 55-58.
[3] Šoltés P., On certain properties of solutions of nonlinear differential equation of order 2, Arch. Math. (to appoar).
[4] Беллман Р., Теория устойчивости решений дифференчиальных уравнений, Москва 1954.

Received February 28, 1969

