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Matematický časopis 18 (1968), No. 3 

ON RADICALS OF SEMIGROUPS 

JURAJ BOSAK, Bratislava 

To a given semigroup 8 and its ideal J 6 further significant sets can be 
assigned: the radical of Schwarz Rj(8), of Sevrin Lj(S), of Clifford R*(8)9 

of McCoy Mj(S), of Jiang Luh Cj(S) and the set Nj(S) of all nilpotent 
elements (the definitions are given below). I n this paper we prove (Theorem 2) 
t h a t we always have (1) 

J c Rj(S) c Mj(S) c Lj(8) c Bj{8) c Nj(>S) c C^fl) c 5; 

however, there exists a semigroup U with an ideal I such that 

7 c 2J/(17) c M7(U) cz i 7 (U) c i^*(U) c N7(U) c O7(U) cz £/\ 

The essential part of the work is to elucidate the relation between the Sevrin 
and the McCoy radical (Theorem 1). The rest easily follows from known results 
(relations between individual radicals were studied already in [1], [3], [9], 
[10], [11], [19], [20] and [21]). The same results are valid if we consider only 
periodic semigroups. The case of commutative semigroups and tha t of finite 
semigroups are treated separately. (Corollaries 1 and 2.) 

In terminology and notation we follow book [5]. 
First we state some definitions; all mentioned ideals are two-sided. 
Suppose a semigroup S with an ideal J to be given. Denote by Nj (S) the 

set of all elements of S nilpotent with respect to J, i. e. such that some power 
of them belongs to J . Now we define 5 radicals of 8 with respect to J. 

By the Schwarz (or nilpotent) radical we understand (cf. [14]) the union 
Rj(S) of all ideals of 8 nilpotent with respect to 8 (that is, such that some 
power of them is a subset of J). 

By the Sevrin (locally nilpotent) radical we understand [16], [22] the union 
Lj(S) of all ideals of 8 locally nilpotent with respect to J (i. e. of such ideals, 
every finitely generated subsemigroup of which is nilpotent with respect to J). 

(x) The symbol c. denotes the set-theoretic inclusion as well as the symbol c=; the 
latter is used only in the case of proper subsets. 
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By the Clifford (nil-) radical we mean [4] the union B*(S) of all nil-ideals 
of S with respect to J (i. e. such that all its elements are nilpotent with respect 
to J). 

By the McCoy(2) (prime) radical we mean [10] the intersection Mj(S) of 
all prime ideals of S containing J (an ideal 7 of S is called prime if for any ideals 
A and B of S from the condition AB ^ 7 it follows tha t either i c / o r D 1 c 
c / ) . I t is easy to prove (see [7], [10] and [19]) tha t the McCoy radical Mj(S) 
consists exactly of such elements x tha t every m-system containig x has a 
non-empty intersection with J (by an m-system we mean a set A c S with 
the property that to any a and b of A there exists x e S so that axb e A). 

By the Jiang Luh (completely prime) radical^) we mean [10] the intersection 
Cj(S) of all completely prime ideals of S including J (an ideal 7 of S is called 
completely prime (4) if for any a, b e S from the condition ab e I it follows 
tha t either a e I or b e I). 

In the case of a semigroup S with a zero element 0 if J = {0}, the index J 
in the symbols Nj(S), Bj(S), Lj(S), B*(S), Mj(S) and Cj(S) will be omitted. 

Let us remark that we shall not deal with radicals mentioned in [9] and [12] 
as well as with various types of radicals studied in a number of papers by 
H o e h n k e (see, e. g. [6]) and S e i d e l [15]. We also do not consider radicals of 
topological semigroups [13]. 

In the proof of our Theorem 1 we shall use twice the following lemma by 
K o n i g (see [2], chapter 3, p . 17 — 18). 

Lemma 1. Let {A±, A2, ..., Ajc, ...} be a sequence of finite, non-empty sets 
which are pairwise disjoint, and let -< be a relation defined between the elements 
of two consecutive sets: if for all xjc e Ajc (h ^ 2) an element xjc-i e Ajc-± exists 
such that xjc-i -Kxjc, a sequence {a±, a2, ..., ajc, ...} exists with ajc e Ajc for all 
h such that: 

a± < a2 -< a3 -< . . . -< <% -< . . . 

Theorem 1. Let J be an ideal of a semigroup S. Then Mj(S) c Lj(S). 
Further, there exists a semigroup T such that M(T) c= L(T). 

Proof, (i) To show that Mj(S) ^ Lj(S) it is sufficient to prove that if 
x<£Lj(S), then x^Mj(S). Suppose x^Lj(S). Then the principal ideal 
J(x) = x U Sx U xS U SxS is not locally nilpotent with respect to J, i. e. it 
has a subsemigroup T ^ J(x) generated by a finite set G = {gi, g2, ..., gn} 
(in the notation of [5] we can write <O> = T) such that T is not nilpotent,. 
that is, Tk d= J for any natural number h. Evidently, we have: 

(2) In [7] this radical is called the Baer-McCoy radical. 
(3) In [9] this radical is called the Thierrin (compressed) radical. 
(4) In [5] a somewhat different terminology is used. 
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Tk = Gk U O^+i U Gk+2 U . . . (h = 1, 2, 3, . . . ) . 

If Gk ^ J , then necessarily Gk' c J for every h\ ^ A;. Therefore from the 
condition Tk dz J it follows that 6?* cjz J (k = 1, 2, 3, . . . ) . Obviously each 
Gk contains only a finite number of elements. Denote by Ajc (h = 1, 2, 3, ...) 
the set of all (ordered) pairs of the form (h, y) where y e Gk, y $ J. Evidently 
[A\, A2, As, ...} is a sequence of finite, non-empty and pairwise disjoint sets. 
Define a relation -< between the elements of two consecutive sets thus: (h\, 
yi) •< (&2, yz) if and only if 42 — h\ = 1 and ?/2 e y\G. Obviously for all xjc e 
e Ajc (h ^ 2) an element xjc-\ e Ajc-\ exists such that xk-\ < xjc. According 
to Lemma 1 a sequence {a\, a2, ..., ajc, ...} exists with ajc e Ajc for all h such 
that a\ -< ^2 •< «3 -< . . . •< ctjc -< • •. Further, if we put a# = (k, y*), we have: 
2/* e O, yt £ J, yt+1 e y*<? (* = 1, 2, 3, . . . ) . 

(ii) From (i) it follows that there exists an infinite word of the form s = 
= gixg%S%z ••• where gikeG c J(x) (h = 1, 2, 3, . . . ) , no finite (connected) 
section of which belongs to J . Now, by means of s we shall construct an m-
system containing x and no element of J so that x ^ Mj(S) and the proof of 
the first assertion of Theorem 1 will be completed. 

Denote by B the set of all finite non-empt}^ (and connected) sections of s. 
Let us suppose that we have constructed a sequence H of non-empty finite 
sets Hi, H2, H3, . . . such that 1° Ht c B (i = 1, 2, 3, . . . ) ; 2° Ii n > 1, then 
every word of Hn can be written in the form t = uvu, where u e Hn__\, v e B; 
3° Hi c (?. 

Then the sequence {i?i, i?2, H3, . . . } , where B3- (j = 1, 2, ...) consists of all 
pairs of the form (j, z), ze H; will satisfy the suppositions of Lemma 1, if we 
define (j\, z\) •< ( j 2 , 2̂) if and only if j 2 — j i = 1 and 2:2 = z\vz\, where v e B. 
Therefore an infinite sequence of elements biGHi, b2eH2, . . . exists such 
that bi -< b2 < b3 •< . . . Put bj = (j, zf). Each of the words z* consists of 
letters from G. As G £ J(x), every gi e G can be written in the form a^b i , 
where a% and b$ are empty symbols or elements of S. If we replaoe in the words 
z*, z*, z*, ... every g% by aixbi, we obtain new words consisting of letters 
x, a\, a2, . . . , an, b\, b2, . . . , bn. If we omit in each of these words the first and 
the last letter, we evidently get an m-system containing x and disjoint with J 
so that x $ M(S). (All this is valid under the assumption that a sequence H 
with the stated properties does exist.) 

(iii) To accomplish the proof of the first part of Theorem 1 it suffices now 
to construct a sequence H of non-empty finite sets fulfilling the conditions 
1°, 2° and 3° from (ii). 

As before let n be the number of elements of G. Define a sequence {c\, 
c2, c3, ...} of positive integers thus: c\ = I, ck+1 = 3c*(w + l)Ck for h = I, 
2, 3, . . . 
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Further, define a sequence H = {Hi, H2, H3, .-•} of sets as follows. Hi = 
= G\J; Hjc+i is the set of all words over G belonging to B whose length ( = num­
ber of letters) is not greater than Cjc+i and which can be written in the form 
t = uvu, where u e Hjc, v e B (h = 1, 2, 3, . . . ) . Obviously H is a sequence of 
finite sets satisfying the conditions 1°, 2° and 3°. I t remains to prove only 
that all these sets are non-empty. By induction we shall even prove a stronger 
assertion (h = 1, 2, 3, . . . ) : 
(Tjc) If the word s is decomposed into connected sections containing each Cjc 

letters, then any of these sections contains as a sub word at least one 
element of Hjc. 

The assertion (Ti) is evidently true. Suppose that for some h (Tjc) takes 
place, that is, each of the sections with Cjc letters contains as a sub word an 
element of Hjc. Let Sjt+i be any section from the decomposition of s into 
sections with Cjc+i letters. Evidently, s contains 3(n + l)c# sections with Ct 
letters: any of these sections contains an element of Hjc and the length of this 
element does not exceed c#; thus the number of such elements cannot exceed 
(n + l ) c \ Therefore at least one element u e Hjc occurs in Sjc+i at least three 
times as a subword of disjoint sections with Cjc letters. Consequently in Sjc+i 
there is a subword of the form uvu,veB. Thus the first assertion of Theorem 1 
is proved. 

(iv) Now we shall construct a semigroup T with a zero element containing; 
an element aeT such that aeL(T), a$M(T), so that L(T) * M(T), and, 
taking into account the first, already proved part of Theorem 1, M(T) c= L(T).. 

Let T be the semigroup generated by a three-element set {0, a, b} subject-
t o the generating relations 

a2 = 0a = aO = Ob = bO = 02 = 0, 

bSlabS2abS3a...abSn = 0 

for every finite sequence (si, S2, . . . , sn) of natural numbers such that s± + 
+ «2 + • • • + sn < (n — 2)2 where n runs through the set of all natural 
numbers. 

(v) We first prove that a e L(T). I t suffices to prove that J (a) = a U Ta U 
U aT U TaT is a locally nilpotent ideal. Let U be any subsemigroup of J (a) 
generated by a finite set ff. If 6 c {a, 0}, then evidently U2 = 0, so tha t U 
is a nilpotent semigroup. If G c|z {a, 0}, then in G elements different from 0 
and a must occur; such elements can be expressed uniquely as words over the 
alphabet {a, b}. Let t be the greatest exponent of b occuring in these expre­
ssions. We shall prove that U2t+9 = 0. 

Let x e U2t+9, x =j= 0. Consequently x = x\X2 . . . #2t+9, where x\ e U ^ 
c J (a) for i = 1, 2, .. . , 2t + 9. Each of the factors x%, considered as a word 
over {a, b}, contains the element a. In addition, since a2 = 0, at least t + 4 
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of these factors x±, x2, ..., x2t+$ contains — once or several times — the ele­
ment b with some natural exponents. The element x can be written in the 
form 

x = ybSlabS2abS3a . . . abSt+% 

where y and z are the empty symbols or elements of S, and Si ^ t for i — 1, 
2, . . . , t + 4. 

Therefore s± + s2+ ... + sM ^ (t + 4)t <(t + 2)2, so that bSlabS2a... abSt+A = 
= 0. Whence it follows that x = yOz = 0, which contradicts the assumption 
x #= 0. 

(vi) Now we prove that a ^ M(T). Is is sufficient to construct an m-system 
M containing a and not containing 0. Put 

M = {a, abxia, abxmbx*a, abxiabx*abx*a, . . . } , 

where x% = 10c, i = 2cd, d — 1 (mod 2). 
Words from M can be considered as certain sections of an infinite word 

abafroabafrooabafroabafroooabafroabafrooabafroabafrooooa.,., 

formed successively from the word ab in such a way that in each step the 
whole word is repeated once more but the last exponent of b is multiplied by 10. 
Evidently M is an m-system containing a. If 0 e M, some word of M would 
have to contain a subword of the form bSlabS2a.. .abSn, where 

(1) *i + * 2 + . . . +sn <(n-2)*, 

which is possible only if n ^ 5. I t is easy to prove that among any 2m consecu­
tive members of the sequence {xt} at least one ^ 10m. I t follows tha t 

(2) S2 + S3 + . . . + Sn-2 + Sn-! ^ 10B°*<»-2>].(5) 

We need two auxiliary inequalities: 

(3) 10* > 4*+- + 1 (Jc = 2, 3, 4, . . . ) . 

(4) 10[iog2(^-2)i > (^ _ 2)2 (n _ 5, 6, 7, . . . ) . 

The former — (3) — can be easily proved by induction. The latter — (4) — 
is evident for n == 5; for n ^ 6 (4) follows from (3) thus: Let 2k <; n — 2 < 
< 2k+1, where h is a natural number (obviously h ^ 2). We have: 

10[Jog-(nr-2)] „ 1Qk > 4*+i + l > (2fc+l __ i)2 ^ ( n - 2)2. 

(5) The symbol [q] denotes the integral part of a number q. 
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Using (2) and (4) we obtain 

Sl + S2 + . . . + 8n > 52 + • • • + «»-l ^ 10^(^2)1 > (n - 2)2, 

but this contradicts (1). The theorem follows. 

Theorem 2. If J is an ideal of a semigroup S, then 

J c= Rj(8) c Mj(8) c Lj(8) c R*(S) c Nj(S) c OV(S) c S. 

_Bw£ £7&ere e#i«s£s a (periodic) semigroup U with a zero element 0 such that 

0 cz B(U) c i¥(L7) cz £(U) c iJ*(CI) c N(U) cz O(U) cz U. 

Proof . The relation Mj(S) c Lj(S) follows from Theorem 1. The relations 
-L7j(>S) c Mj(S), Rj(S) c Nj(£) c (^(S) have been proved by S u l k a |[19] 
(and in the case J = {0} already by J i a n g L u h [10]). The relations J cz 
c Uj(fif), Lj(S) c iJ*(S) and Cj(S) c S are obvious. Thus the first part 
of the theorem is proved. 

Now let us construct a semigroup U with the required properties. First we 
define the semigroups Si , $2, $3 and S4 as follows. 

Si is defined by the multiplication table: 

I 0i z a b c d e 

01 01 Øi Øi Øi Øi Øi Øi 
Z 01 Øi Øi Øi Øi Øi z 
a 01 Øi a Ь Øi Øi a 
b 01 Øi Øi Øi a Ъ Ь 
c 01 Øi c d Øi Øi c 
d Øi Øi Øi Øi c đ d 
e Øi z a Ь c <z e 

I t can be easily verified that the multiplication is associative. 
S2 is the semigroup generated by a set {02, a\, a2, a%, ...} subject to the 

generating relations 

02<n = at02 = a\ = 02 (i = 1, 2 ,3 , ...) 
and 

aixa% = 02 (i = 2, 3, 4, ...) 

for every word x over the alphabet {02, a±, a2, a%, ...}. 
P u t S3 = T\{b, b2, b3,...}, where T is the semigroup constructed in Theorem 

1. The zero element of S3 will be denoted by 03. 
Finally, let S4 be the semigroup generated by {04, a, b}, subject to the ge­

nerating relations O^x = #04 = # 3 = 04 for every word x over the given 
alphabet. 
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Form now the direct product U = Si X S2 X S3 X #4, i. e. the semigroup 
of all ordered quadruples (51, s2, S3, s±), st e Si (i = I, 2, 3, 4) with a multi­
plication defined coordinate-wise. Evidently, all St are periodic semigroups 
with a zero element 0%. I t follows that U is a periodic semigroup with a zero 
element 0 = (0U 02, 03, 0±). 

Evidently, we have; .R(ASI) = B*(Si) = {0X, z}, N(Si) = {0U z, b, c}, C(Si) = 
= {0l9 z, a, b, c, d}, so that {0±} <= B(S±) = B*(SJ <= N(S±) <= C(Si) <= .Si. 

In the third part of [3] we proved tha t B(S2) <= M(S2). 
From the proof of Theorem 1 it follows that M(S3) <= L(S3) (the deleting 

of the powers of b from T does not change the proof essentially). 
Now we prove that L(SA) <= B*(S^). (In the sixth part of [3] it has been 

proved only that .#(£4) 4= B*(S/}) = £4.) I t suffices to prove tha t a^L(S^), 
i. e. that the principal ideal J (a) is not locally nilpotent. But it is a consequence 
of the fact (see references quoted in [3] and [8]) that in the infinite word 

abbabaabbaababbab... 

no (finite) sub word occurs consecutively more than twice. I t follows that the 
subsemigroup of J (a) generated by ab and ba is not nilpotent so that J(a) is 
not locally nilpotent. 

We want the following relations: 

{0} = {0^ x {02} x {O3} X {04}, 
B(U) = B(Si) X B(S2) x B(SZ) X B(S4), 
M(U) = M(Si) X M(S2) x M(S3) X M(S*)9 

L(U) = L(SJ x L(S2) x L(S3) X L(SA), 
B*(U) = B*(S{j X B*(S2) x B*(Sd) X B*(SA), 
N(U) = N<Si) X N(S2) x N(S*) X N(Si), 
C(U) = CiSi) x C(S2) x C(S3) x C(St), 
U =Si x S2 x S3 x £ 4 . 

The first and the last of these relations are evident, the remaining ones follow 
from [1]. Since we already have proved that {0±} cz B(Si) = B*(Si) cz N^i) cz 
<= C(Si) <= Si, B(S2) a M(S2), M(Ss) <= L(S2), L(S*) cz B*(S4) and consider­
ing that according to the first — already proved — part of Theorem 2 we 
have {Oi} cz B(St) cz M(St) cz L(St) cz B*(St) cz N(St) cz C(St) <= St (i = 1, 
2, 3, 4), consequently {0} cz B(U) c M(U) cz L(U) cz B*(U) cz N(U) cz 
cz C(U) cz U, q. e. d. 

Corollary 1. If J is an ideal of a commutative semigroup S, then Bj(S) = 
= Mj(S) = Lj(S) = Bj(S) = Nj(S) = Cj(S); but there exists a commutative 
semigroup V with a zero element 0 such that {0} cz B(V) cz V. 

Proof . Let V be the semigroup with three elements 0, z and 1 with a multi-
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plication defined thus lz = zl = z, P = 1 and all remaining products equal 
to 0. Evidently, V has the required properties. 

The relations Bj(S) = Mj(S) = B*(S) = Nj(S) = Cj(S) have been proved 
by S u l k a [19]. The rest of the proof follows from Theorem 2. 

Lemma 2. (6) Let I be a nil-ideal of a semigroup S with respect to an ideal J 

of S. We have: If xe S, eel, x = xe, then x e J. 

Proof . Suppose ek e J. Then x = xe = xe2 = . . . = xek e J. 

Lemma 3. (7) If I is a nil-ideal of a finite semigroup S with respect to an ideal 
J of S, then I is a nilpotent ideal of S with respect to J. 

Proof . Let n be the cardinality of S. We prove t h a t In c J . Suppose 
x e In, i. e. x = a\a<i ...an, ate I, i = 1, 2, ..., n. P u t bi = a\a^ ...at. If b±, 
&2, •.., bn are mutually different, then they are all the elements of S, so t h a t 
at least one of them belongs to J; but in this case x belongs to J , too. I n the 
second case, i. e. if at least two elements of bi, b2, ..., bn are equal — e. g. 
let bi = bj, i <j — we have: &f(a«+ia$+2...a/) = 6*. Lemma 2 implies bi e J,, 
so that also bn = x e J. 

Corollary 2. If J is an ideal of a finite semigroup S, then Bj(S) = Mj(S) = 
= Lj(S) = Bj(S); but there exists a finite semigroup W with a zero element 0' 
such that {0} cz B(W) cz N(W) c C(W) c W. 

Proof . From Lemma 3 it follows that every nil-ideal of a finite semigroup 
S with respect to J is nilpotent with respect to J. Therefore B*(S) c= Bj(S). 
In view of Theorem 2 the first part of Corollary 2 is proved. For the proof of the 
second part if suffices to take as W the semigroup Si from the proof of Theo­
rem 2. 

REFERENCES 

[1] A б p г a н И., O мнoжecmвax нuлъnomeнmныx элeмeнmoв u paдuкaлax npямoгo npo-
uзвeдeнuя noлyгpynn, Mat. časop. 18 (1968), 25—33. 

[2] B e r g e C , The theory of graphs and its applications, Methuen, London 1962. 
[3] Б o c a к Ю., O paдuкaлax noлyгpynn, Mat.-fyz. časop. 12 (1962), 230—234. 
[4] Clifford A. H., Semigroups without nilpotent ideals, Amer. J . Math. 71 (1949),. 

834—844. 
[5] Clifford A. H., P r e s t o n G. B., The algebraic theory of semigroups I, Amer. Math.. 

Soc, Providence 1961. 
[6] H o e h n k e H.-J., Über das untere und obere Badikal einer Halbgruppe, Math. Z. 8W 

(1965), 300—311. 

(6) Cf. Lemma 2.3 of [16] and Lemma 1 of [18]. 
(7) Cf. Lemma 2.11 of [16], Theorem 3.2 of [17] and Theorem 3 of [18]. 

2 1 1 



[7] Joulain C, Sur les anneaux non commutatifs, I. Radical, Ѕеmin. P. Dubrеil, M.-L. 
Dubrеil-Jacotin еt C Piѕot, Fac. ѕci. Pariѕ 1961—1962, U (1963), faѕc. 2, 13/01— 
13/13. 

[8] Koциг A., Из кoмбuнamopuкu кoнeчныx nocлeдoвameлънocmeй, Mat.-fyz. čaѕop. 14 
(1964), 75—82. 

[ 9 ] L a l l е m е n t C , P е t r i c h M., Décompositions I-matricielles ďun demi-groupe, J. 
math . purеѕ еt appl. 45 (1966), 67—117. 

[10] L u h Jiang, On thе concepts of radical of semigroup having kernel, Poгtug. math . 19 
(1960), 189—198. 

[11] L u h Jiang, On reflective ideals ofa ring and of a semigroup, Portug. math . 20 (1961), 
119—125. 

[12] M u n n W. D., Semì-groups satisfying minimal conditions, Proc. Glaѕgow Math. 
Aѕѕoc. 3 (1957), 145—152. 

[13] N u m a k u r a K., On Ыcompact semigroups with zero, Bull. Jamagata Univ. 4 (1951), 
405—411. 

[14] Ѕ c h w a r z Š., K teórii pologrúp, Ѕbomík prác Prírodovеdеckеj fakulty Ѕlovеnѕkеj 
univеrzity v Bratiѕlavе 6 (1943), 1—64. 

[15] Ѕе idе l H., Über das Radikal einer Halbgruppe, Mаth. Nаchr. 29 (1965), 255—263. 
[16] Ш е в p и н Л. H., К oбщeй meopuu noлyгpynn, Mат. cб. 53 (1961), 367—386. 
[17]Шевpин Л. H., Huлъnoлyгpynnы c нeкomopымu ycлoвuямu кoнeчнocmu, Mат. 

cб. 55 (1961), 473—480. 
[18]Шевpин Л. H., O noлyгpynnax, вce noдnoлyгpynnы кomopыx нuлъnomeнmны, Cиб. 

мат. ж. 2 (1961), 936—942. 
[19] Ш у л к а P., O нuлъnomeнmныx элeмeнmax, uдeaлax u paдuкaлax noлyгpynnы, 

Mаt.-fуz. čаѕop. 13 (1963), 209—222. 
[20] Ш у л к а P., Зaмemкa o paдuкaлax в фaкmopnoлyгpynnax, Mаt.-fуz. čаѕop. 14 (1964), 

297—300. 
[21] Ш у л к а P., Paдuкaлы u monoлoгuя в noлyгpynnax, Mаt.-fуz. čаѕop. 15 (1965), 3—14. 

[22] Šu l kа R., Note on íhe Ševrin radical in semigroups, Mаt. čаѕоp. 18 (1968), 57—58. 

Rеcеivеd Jаnuаry 9, 1967. Matematický ústav 
Slovenskej akadémie vied, 

Bratislava 

212 


		webmaster@dml.cz
	2012-07-31T16:47:39+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




