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ON RADICALS OF SEMIGROUPS
JURAJ BOSAK, Bratislava

To a given semigroup S and its ideal J 6 further significant sets can be
assigned: the radical of Schwarz R;(S), of Sevrin L;(S), of Clifford R%(S),
of McCoy M (S), of Jiang Luh C;(S) and the set Ns(S) of all nilpotent
elements (the definitions are given below). In this paper we prove (Theorem 2)
that we always have (1)

J < Ry(S) = My(S) = Ly(S) = R¥S) = Ns(8) < Cy(8) = S;
however, there exists a semigroup U with an ideal I such that
I < RI(U) < MI(U) < L](U) c R}k(U) c NI(U) < OI(U) < U.

The essential part of the work is to elucidate the relation between the Sevrin
and the McCoy radical (Theorem 1). The rest easily follows from known results
(relations between individual radicals were studied already in [1], [3], [9],
[10], [11], [19], [20] and [21]). The same results are valid if we consider only
periodic semigroups. The case of commutative semigroups and that of finite
- semigroups are treated separately. (Corollaries 1 and 2.)

In terminology and notation we follow book [5].

First we state some definitions; all mentioned ideals are two-sided.

Suppose a semigroup S with an ideal J to be given. Denote by Nj(S) the
set of all elements of S nilpotent with respect to .J, i. e. such that some power
of them belongs to J. Now we define 5 radicals of § with respect to J.

By the Schwarz (or nilpotent) radical we understand (cf. [14]) the union
R;(8) of all ideals of S nilpotent with respect to S (that is, such that some
power of them is a subset of J).

By the Sevrin (locally nilpotent) radical we understand [16], [22] the union
Lj(8) of all ideals of S locally nilpotent with respect to JJ (i. e. of such ideals,
every finitely generated subsemigroup of which is nilpotent with respect to J).

(1) The symbol < denotes the set-theoretic inclusion as well as the symbol <; the
latter is used only in the case of proper subsets.
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By the Clifford (nil-) radical we mean [4] the union R%(S) of all nil-ideals
of § with respect to J (i. e. such that all its elements are nilpotent with respect
to J).

By the McCoy(?) (prime) radical we mean [10] the intersection Ms(S) of
all prime ideals of S containing J (an ideal I of S is called prime if for any ideals
A and B of 8 from the condition 4B < I it follows that either 4 =< I or B <
c I). It is easy to prove (see [7], [10] and [19]) that the McCoy radical M ;(S)
consists exactly of such elements z that every m-system containig x has a
non-empty intersection with J (by an m-system we mean a set 4 = § with
the property that to any a and b of 4 there exists z € S so that axb € 4).

By the Jiang Luh (completely prime) radical(3) we mean [10] the intersection
Cs(8S) of all completely prime ideals of S including J (an ideal I of S is called
completely prime (4) if for any a, b € § from the condition ab e I it follows
that either a e I or b e l).

In the case of a semigroup S with a zero element 0 if J = {0}, the index J
in the symbols N;(S), R;(S), Ls(S), R3(S), M;(S) and C;(S) will be omitted.

Let us remark that we shall not deal with radicals mentioned in [9] and [12]
as well as with various types of radicals studied in a number of papers by
Hoehnke (see, e. g. [6]) and Seidel [15]. We also do not consider radicals of
topological semigroups [13].

In the proof of our Theorem 1 we shall use twice the following lemma by
Konig (see [2], chapter 3, p. 17—18).

Lemma 1. Let {41, Az, ..., Ag, ...} be a sequence of finite, non-empty sets
which are pairwise disjoint, and let < be a relation defined between the elements
of two consecutive sets: if for all xp € Ay (k 2 2) an element xx—1 € Ap—1 exists

such that xx1 < xx, o sequence {a1, asz, ..., a, ...} exists with ax € Ax for all
k such that:

n<mp<az<..<ap<...

Theorem 1. Let J be an ideal of a semigroup 8. Then M;(8S) = Ly(S).
Further, there exists a semigroup T such that M(T) < L(T).

Proof. (i) To show that M,(S) < Ly(S) it is sufficient to prove that if
x ¢ Ly(S), then x¢ M;(S). Suppose z¢ Ly(S). Then the principal ideal
J(x) =2V Sz U 28 U Sz8 is not locally nilpotent with respect to J, i. e. it
has a subsemigroup 7' < J(z) generated by a finite set G = {g1, g2, ..., gn}
(in the notation of [5] we can write (G = T') such that 7' is not nilpotent,
that is, T% s]; J for any natural number k. Evidently, we have:

(2) In [7] this radical is called the Baer-McCoy radical.

(3) In [9] this radical is called the Thierrin (compressed) radical.
(4) In [5] a somewhat different terminology is used.
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Tk =GtV @ UG2Y ... (k=1,2,3,...).

If Gk < J, then necessarily G¥ < J for every k' = k. Therefore from the
condition 7% <z J it follows that G¥ = J (k =1, 2, 3, ...). Obviously each
G* contains only a finite number of elements. Denote by 4 (k =1, 2,3, ...)
the set of all (ordered) pairs of the form (k, y) where y € G%, y ¢ J. Evidently
{A1, Aa, A3, ...} is a sequence of finite, non-empty and pairwise disjoint sets.
Define a relation < between the elements of two consecutive sets thus: (&,
y1) < (k2, y2) if and only if ks — k1 = 1 and y2 € y1(. Obviously for all x; €
€ Ax (k = 2) an element xy—; € Ay—1 exists such that xz1 < xx. According
to Lemma 1 a sequence {a1, az, ..., a, ...} exists with az € Ay for all k such
that a1 < a2 < as < ... < ap < ... Further, if we put ax = (k, y;), we have:
vie@ yi¢d, yracyiG (k=1,2,3, ...).

(ii) From (i) it follows that there exists an infinite word of the form s =
= ¢i,9i:0s, ... Where g, e < J(x) (k=1, 2, 3, ...), no finite (connected)
section of which belongs to J. Now, by means of s we shall construct an m-
system containing # and no element of J so that a ¢ M;(S) and the proof of
the first assertion of Theorem 1 will be completed.

Denote by B the set of all finite non-empty (and connected) sections of s.
Let us suppose that we have constructed a sequence H of non-empty finite
sets Hy, Ho, Hs, ... such that 1° H; <« B (1 =1, 2, 3, ...); 2° If n > 1, then
every word of H, can be written in the form ¢ = wvu, where w € H,_1, v € B;
3° H, c @G.

Then the sequence {B;, B, B3, ...}, where B; (j =1, 2, ...) consists of all
pairs of the form (j, z), z € H; will satisfy the suppositions of Lemma 1, if we
define (j1, 21) < (j2, #2) if and only if jo — j1 = 1 and 22 = z1v21, where v € B.
Therefore an infinite sequence of elements b; € By, bz € By, ... exists such
that b1 < b2 <b3 < ... Put b; = (4, z;-"). Each of the words z’f consists of
letigers from G. As G < J(x), every ¢; € G can be written in the form a;xb;,
where a; and b; are empty symbols or elements of S. If we replaze in the words
2¥, 2%, 23, ... every g; by a;xb;, we obtain new words consisting of letters
z, a1, A2, ..., Ay, b1, ba, ..., by. If we omit in each of these words the first and
the last letter, we evidently get an m-system containing x and disjoint with J
so that x ¢ M(S). (All this is valid under the assumption that a sequence H
with the stated properties does exist.)

(iii) To accomplish the proof of the first part of Theorem 1 it suffices now
to construct a sequence H of non-empty finite sets fulfilling the conditions
1°, 2° and 3° from (ii). ’

As before let » be the number of elements of . Define a sequence {c;,
¢z, 3, ...} of positive integers thus: ¢; = 1, ¢x41 = 3cx(n + 1)* for k=1,
2, 3, ...
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Further, define a sequence H = {H;, Hz, Hs3, ...} of sets as follows. H; =
= G\ J; Hg41is the set of all words over G belonging to B whose length (= num-
ber of letters) is not greater than cx4; and which can be written in the form
t = uvu, where ue Hy,ve B (k =1, 2, 3, ...). Obviously H is a sequence of
finite sets satisfying the conditions 1°, 2° and 3°. It remains to prove only
that all these sets are non-empty. By induction we shall even prove a stronger
assertion (k =1, 2, 3, ...):

(Tx) If the word s is decomposed into connected sections containing each ¢
letters, then any of these sections contains as a subword at least one
element of Hj.

The assertion (T:) is evidently true. Suppose that for some k (Tg) takes
place, that is, each of the sections with ¢, letters contains as a subword an
element of Hy. Let Sii1 be any section from the decomposition of s into
sections with cz41 letters. Evidently, s contains 3(n + 1)cx sections with ¢
letters: any of these sections contains an element of Hy and the length of this.
element does not exceed c; thus the number of such elements cannot exceed
(n + 1)*. Therefore at least one element u € Hy occurs in Si1 at least three
times as a subword of disjoint sections with ¢, letters. Consequently in Syt
there is a subword of the form wvu, v € B. Thus the first assertion of Theorem 1
is proved.

(iv) Now we shall construct a semigroup 7' with a zero element containing
an element a € T' such that a € L(T), a ¢ M(T), so that L(T) + M(T), and,
taking into account the first, already proved part of Theorem 1, M(T) < L(T).

Let T be the semigroup generated by a three-element set {0, a, b} subject.
to the generating relations

a2 =00 =0a0 =0b=00=02=0,
bab®ab®a...ab’* = 0

for every finite sequence (s1, S2, ..., 8p) of natural numbers such that s; +
+s2+ ... + 8y < (n — 2)2 where » runs through the set of all natural
numbers.

(v) We first prove that a € L(T'). It suffices to prove that J(a) = a U Ta U
U al U TaT is a locally nilpotent ideal. Let U be any subsemigroup of J(a)
generated by a finite set G. If G < {a, 0}, then evidently U2 = 0, so that U
is a nilpotent semigroup. If @ S]; {a, 0}, then in G elements different from 0
and a must occur; such elements can be expressed uniquely as words over the
alphabet {a, b}. Let ¢ be the greatest exponent of b occuring in these expre-
ssions. We shall prove that U2+9 = ¢,

Let xe U249, x & 0. Consequently x = xixs ... T21+9, where z,e U <
c J(a) fori=1,2, ..., 2t + 9. Each of the factors z;, considered as a word
over {a, b}, contains the element a. In addition, since a2 = 0, at least ¢ 4 4
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of these factors x1, xs, ..., Z249 contains — once or several times — the ele-
ment b with some natural exponents. The element x can be written in the
form

z = yb"ab"ab™a ... ab®+z,
where y and z are the empty symbols or elements of S, and s; < ¢ for ¢ = 1,

2, ..., t+ 4.
Therefore s; +s2 4+ ... 4 844 = (8 + 4)t < (£4 2)2, so that b™ab™a.. . ad™* =

= 0. Whence it follows that = y0z = 0, which contradicts the assumption
z % 0.

(vi) Now we prove that a ¢ M(T). Is is sufficient to construct an m-system
M containing @ and not containing 0. Put

M = {a, ab®a, ab®:ab®a, ab®ab*:ab%a, ...},

where z; = 10¢, ¢ = 2¢d, d = 1 (mod 2).
Words from M can be considered as certain sections of an infinite word

ababl0ababl00ababl0ababl000ababloabab: 00abablo0ababl0o000q , .

formed successively from the word ab in such a way that in each step the
whole word is repeated once more but the last exponent of b is multiplied by 10.
Evidently M is an m-system containing a. If 0 € M, some word of M would
have to contain a subword of the form b"ab®a...ab*", where

(1) s1+ 824 ...+ s < (n— 2)2

which is possible only if » = 5. It is easy to prove that among any 2m consecu-
tive members of the sequence {z;} at least one = 10m. It follows that

(2) 824 83 + ... + Sn-2 + Sp-1 2 10HB"I) (5)
We need two auxiliary inequalities:

(3) 108 > 4k 41 (k= 2,3, 4, ...).

(4) 1otoe: (=21 > (, — 2)2 (n = 5, 6, 7, ...).

The former — (3) — can be easily proved by induction. The latter — (4) —
is evident for n = 5; for n > 6 (4) follows from (3) thus: Let 2¢ < n — 2 <

< 2k+1 where k is a natural number (obviously & = 2). We have:

10Uos (=] — 10k > 4K+ 4 1 > (2FH1 — 1)2 = (n — 2)2.

(5) The symbol [q] denotes the integral part of a number q.
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Using (2) and (4) we obtain

S14s24 ... sp > .. ospy = 1000RMD] & (y __ 9)2)
but this contradicts (1). The theorem follows.

Theorem 2. If J is an ideal of a semigroup S, then
J < R;(8) < M4(8) < Ls(S) < R¥S) = Ny(8) = 0s(8) = 8.
But there exists a (periodic) semigroup U with a zero element 0 such that
0 < RU) <« M{U) < L(U) <« R¥(U) =« N(U) = C(U) = U.

Proof. The relation M;(8) = Ly(S) follows from Theorem 1. The relations
R;(S) = M4(8), R%(S) = Ns(8) < Cs(S) have been proved by Sulka |[19]
(and in the case J = {0} already by Jiang Luh [10]). The relations J <

< R;(S), Ls(S) = R%(S) and C;(S) = S are obvious. Thus the first part
of the theorem is proved.

Now let us construct a semigroup U with the required properties. First we
define the semigroups S, Sz, Sz and S4 as follows.

81 is defined by the multiplication table:

\ 0p 2 a b ¢ d e
010, 0. 00 01 00 01 Oy
01 01 01 01 01 01
01 01 a b 01 01
01 01 01 01 a b
01 [ d 01 01
00 00 01 O ¢ d
0p 2z a b ¢ d
It can be easily verified that the multiplication is associative.

S is the semigroup generated by a set {0z, a1, a2, as,
generating relations

0 oe
=
i

® Q0 SNa R

...} subject to the

O; = a;02 =a? =02 (1=1,2,3,..))
and

aixa; = 02 (i = 2, 3, 4, )
for every word x over the alphabet {0z, a1, az, a3, ...}

Put 83 = T\ {b, b2, b3,...}. where T'is the semigroup constructed in Theorem
1. The zero element of S3 will be denoted by 0s.

Finally, let S; be the semigroup generated by {04, a, b}, subject to the ge-

nerating relations 0 = z0s = 23 = 04 for every word z over the given
alphabet.
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Form now the direct product U = 81 X Sz X 83 X 84, i. e. the semigroup
of all ordered quadruples (s1, sz, s3, s1), ss €8 (2 =1, 2, 3, 4) with a multi-
plication defined coordinate-wise. Evidently, all §; are periodic semigroups
with a zero element 0;. It follows that U is a periodic semigroup with a zero
element 0 = (01, 02, 03, 04).

Evidently, we have; R(S1) = R*(81) = {01, 2}, N(81) = {01, 2, b, ¢}, O(81) =
= {01, 2, a, b, ¢, d}, so that {01} = R(S1) = R*(S1) < N(81) < C(S1) < S;.

In the third part of [3] we proved that R(S2) < M (S2).

From the proof of Theorem 1 it follows that M (S3) = L(Ss) (the deleting
of the powers of b from 7' does not change the proof essentially).

Now we prove that L(Ss) < R*(Ss). (In the sixth part of [3] it has been
proved only that R(Ss) #+ R*(S1) = S4.) It suffices to prove that a ¢ L(Ss),
i. e. that the principal ideal J(a) is not locally nilpotent. But it is a consequence
of the fact (see references quoted in [3] and [8]) that in the infinite word

abbabaabbaababbab . ..

no (finite) subword occurs consecutively more than twice. It follows that the

subsemigroup of J(a) generated by ab and ba is not nilpotent so that J(a) is
not locally nilpotent.

We want the following relations:

{0y = {0} X {02} x {03} X {0a},

R(U) = R(81) X R(Sz) X R(S3) X R(S4),
M(U) = M(Sy) X M(S2) x M(Ss) x M(S),
L(U) = L(S1) x L(S2) X L(Ss) x L(S4),
R*(U) = R*(81) X B*(Ss) x R*(Ss) x R*(S1),
N(U) = N(81) x N(S2) X N(Ss) x N(Sa),
O(U) = Ci81) x O(S2) X C(Ss) X C(Sa),

U =81 X S2 X S3 X Ss.

The first and the last of these relations are evident, the remaining ones follow
from [1]. Since we already have proved that {01} = R(S:) = B*(S1) < N(81) <
< C(81) < 81, B(S2) = M(Ss), M(Ss) = L(8Ss), L(Ss) = R*(S4) and consider-
ing that according to the first — already proved — part of Theorem 2 we
have {07;} = R(Sz) = .Zl[(Si) < L(Si) < R*(Si) < N(Si) < O(Si) c S (’I, =1,
2, 3, 4), consequently {0} c R(U) <« M(U) < L(U) =« B¥(U) =« N(U) =
<« CWU)<U,q.e.d

Corollary 1. If J is an ideal of a commutative semigroup S, then R;(S) =
= M;(8) = Ls(S) = R%(S) = Ny(8) = Cs(S); but there exists a commutative
semigroup V with a zero element 0 such that {0} < R(V) < V.

Proof. Let V be the semigroup with three elements 0, z and 1 with a multi-
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plication defined thus Iz = 2I = 2, 12 = I and all remaining products equal
to 0. Evidently, V has the required properties.

The relations Rs(S) = M;(S) = R}(S) = N(S) = Cs(S) have been proved
by Sulka [19]. The rest of the proof follows from Theorem 2.

Lemma 2. (8) Let I be a nil-ideal of a semigroup S with respect to an ideal J
of S. We have: If x€ 8, ec I, x = e, then x € J.
Proof. Suppose e¥ e J. Then © = xe = xe2 = ... = ekt e J.

Lemma 3. (?) If I is a nil-ideal of a finite semigroup S with respect to an ideal
J of S, then I is a nilpotent ideal of S with respect to J.

Proof. Let n be the cardinality of §. We prove that I» < J. Suppose
zelr i.e. x =mas...an, €I, 1 =1,2, ..., n. Put b; = a1a2...0;. If b1,
b2, ..., by are mutually different, then they are all the elements of S, so that.
at least one of them belongs to J; but in this case z belongs to J, too. In the
second case, i. e. if at least two elements of b1, b2, ..., b, are equal — e. g.
let b; = b;, ¢ <j — we have: bj(a;11ai+2...0;) = b;. Lemma 2 implies b; € J,.
so that also b, =z e J.

Corollary 2. If J is an ideal of a finite semigroup S, then Ry(S) = M,(S) =
= Ly(8) = R%(8); but there exists a finite semigroup W with a zero element O
such that {0} < R(W) <« N(W) < C(W) = W.

Proof. From Lemma 3 it follows that every nil-ideal of a finite semigroup
S with respect to J is nilpotent with respect to J. Therefore R}(S) = R;(S).
In view of Theorem 2 the first part of Corollary 2 is proved. For the proof of the
second part if suffices to take as W the semigroup S; from the proof of Theo-
rem 2.

REFERENCES

[1] A6pran U., O muoocecmear HULLNOMEHMHBLL I4EMEHMO8 U PAOUKAIAX NPAMOZO NPO-
ussedenusn noayepynn, Mat. éasop. 18 (1968), 25—33.

[2] Berge C., The theory of graphs and its applications, Methuen, London 1962.

[3] Bocaxk I0., O padurasaz noayepynn, Mat.-fyz. dasop. 12 (1962), 230—234.

[4] Clifford A. H., Semigroups without nilpotent ideals, Amer. J. Math. 71 (1949),.
834—844. )

[56] Clifford A. H., Preston G. B., The algebraic theory of semigroups I, Amer. Math..
Soc., Providence 1961. '

[6] Hoehnke H.-J., Uber das untere und obere Radikal einer Halbgruppe, Math. Z. 89’
(1965), 300—311.

(6) Cf. Lemma 2.3 of [16] and Lemma 1 of [18].
(7) Cf. Lemma 2.11 of [16], Theorem 3.2 of [17] and Theorem 3 of [18].

211



[7]1 Joulain C., Sur les anneaux non commutatifs, I. Radical, Semin. P. Dubreil, M.-L.
Dubreil-Jacotin et C. Pisot, Fac. sci. Paris 1961—1962, 16 (1963), fasc. 2, 13/01—
13/13.

[8] Houur A., 3 kxomburnamopuku Koneurnwix nocaedosameavnocmeii, Mat.-fyz. casop. 14
(1964), 75—82.

[9] Lallement G., Petrich M., Décompositions I-matricielles d’un demi-groupe, J.
math. pures et appl. 45 (1966), 67—117.

[10] Luh Jiang, On the concepts of radical of semigroup having kernel, Portug. math. 19
(1960), 189—198.

[11] Luh Jiang, On reflective ideals of a ring and of a semigroup, Portug. math. 20 (1961),
119—125.

[12] Munn W. D., Semi-groups satisfying minimal conditions, Proc. Glasgow Math.
Assoc. 3 (1957), 145—152.

[13] Numakura K., On bicompact semigroups with zero, Bull. Jamagata Univ. 4 (1951),
405—411.

[14] Schwarz 8., K tedrii pologriip, Sbornik pric Prirodovedeckej fakulty Slovenskej
univerzity v Bratislave 6 (1943), 1—64.

[15] Seidel H., Uber das Radikal einer Halbgruppe, Math. Nachr. 29 (1965), 255—263.

[16] HIespun JI. H., K o6weii meopuu noayepynn, Mat. c6. 53 (1961), 367—386.

[17] HleBpun JI. H., Huabnoayepynnw, c¢ nexomopvimu ycaosuamu korewrnocmu, Mar.
c6. 55 (1961), 473—480.

[18] WeBpun JI. H., O noayepynnaz, ece nodnoayzpynney Komopuiz nusbnomernmusi, Cuo.
Mar. . 2 (1961), 936—942.

[19] HIynka P., O nusbnomenmublz snemenmaz, udearax u padukaiar nosyepynnut,
Mat.-fyz. ¢asop. 13 (1963), 209—222.

[20] IHynka P., Bamemra o padurarax ¢ parmopnoayepynnax, Mat.-fyz. ¢asop. 14 (1964),
297—300.

[21] I ynka P., Paduraart u monoaozus 6 noayepynnax, Mat.-fyz. éasop. 15 (1965), 3—14.

[22] Sulka R., Note on the Sevrin radical in semigroups, Mat. asop. 18 (1968), 57—58.

Received January 9, 1967. Matematicky vstav
Slovenskej akadémie vied,
Bratislava

212



		webmaster@dml.cz
	2012-07-31T16:47:39+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




