Matematický časopis

Daniel Palumbíny; Štefan Znám
On Decompositions of Complete Graphs into Factors with Given Radii

Matematický časopis, Vol. 23 (1973), No. 4, 306--316

Persistent URL: http://dml.cz/dmlcz/126576

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1973

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

ON DECOMPOSITIONS OF COMPLETE GRAPHS INTO FACTORS WITH GIVEN RADII

DANIEL PALUMBÍNY, Zvolen, ŠTEFAN ZNÁM, Bratislara

In paper [l] the decomposition of complete graphs into factors with given diameters is studied. A. Rosa proposed to study the decomposition of complete graphs into factors with given radii. Our article deals with this problem.

The mentioned problem is here completely solved for a decomposition into two factors and some partial results for a decomposition into three factors are given. Further, we consider the decomposition with ecual radii.

Some of our results can also be used for solving the problems studied in [1].

General considerations

We shall consider undirected graphs without loops and multiple edges. Let G be such a graph and V_{G} its vertex set. The radius $r(G)$ of a graph G is defined as

$$
r(G)=\inf _{x \in V_{G}} \sup _{y \in V_{G}} \varrho_{G}(x, y)
$$

where $\varrho_{G}(x, y)$ denotes the distance between two vertices $x, y \in V_{G}$ in G. Hence $r(G)$ is ∞ if G is a disconnected graph or if $\sup _{y \in V_{G}} \varrho_{G}(x, y)$ is infinite for
all x. Obviously $r(G) \leqq d(G)$ (the diameter of G) for any G. Suppose that G is finite and connected. Then the eccentricity $\varepsilon(x)$ of a vertex x in G is max $\varrho_{G}(x, y)$ for all $y \in V_{G}$. Clearly $r(G)=\min _{x \in V_{G}} \varepsilon(x)$ and $d(G)=\max _{x \in V_{G}} \varepsilon(x)$. A vertex v is a center of G if $\varepsilon(v)=r(G)$. The remaining terms are used in the usual sense (see [2]). The complete graph with n vertices will be denoted by $n>$.

We shall study conditions for the existence of a decomposition of n, into factors $F_{1}, F_{2}, \ldots, F_{m}$ with given radii $r_{1}, r_{2}, \ldots, r_{m}$, where $r_{i}=r\left(F_{i}\right)$ $(i=1,2, \ldots, m)$ are naturals or symbols ∞. Denote by $G\left(r_{1}, r_{2}, \ldots, r_{m}\right)$ the smallest natural n for which $\langle n\rangle$ is decomposable into m factors with radii $r_{1}, r_{2}, \ldots, r_{m}$; if such a natural does not exist then put $G\left(r_{1}, r_{2}, \ldots, r_{m}\right)=\infty$.

Theorem 1. If $\langle n\rangle$ is decomposable into factors $F_{1}, F_{2}, \ldots, F_{m}$ with the radii
$r_{1}, r_{2}, \ldots, r_{\text {in }}$, then for any cardinal $N>n$ the graph $\langle N\rangle$ is decomposable in the same way.

Proof. If $m=1$, the assertion is trivial. Therefore let $m \geqq 2$. Denote $H=\langle N\rangle$ and let $U=\langle n\rangle$ be a complete subgraph of H. Denote $A=V_{U}$, $B-V_{H}-V_{U}$ and choose a vertex $v \in A$. Decompose U into factors U_{1}, U_{2}, \ldots, U_{m} with radii $r_{1}, r_{2}, \ldots, r_{m}$. Decompose H into factors $H_{1}, H_{2}, \ldots, H_{m}$ as follows:

1. all the edges of U_{i} belong to $H_{i}(i=1,2, \ldots, m)$,
2. for $a \in A(a \neq v), b \in B$ the edge $a b \in H_{i}$ if the edge $a v \in U_{i}$,
3. the edges of the complete graph with vertex set $B \cup\{v\}$. belong to H_{1}. Obviously, if $r\left(U_{1}\right)=1$, then $r\left(H_{1}\right)=1$, too. For $r_{i}>1$ the statement that $r\left(H_{i}\right)=r_{i}$ can be proved in the same manner as the analogical assertion in Theorem 1 of [1].

From this theorem it follows that if $G\left(r_{1}, r_{2}, \ldots, r_{m}\right)$ is found, then the prublem of the existence of a decomposition of $\langle N\rangle$ into m factors with radii $r_{1} . r_{2}, \ldots, r_{m}$ is solved for any cardinal number N.

Now we prove the following
Lemma 1. Let r and n be positive integers, then for a graph G with n vertices and radius r we have

$$
\begin{equation*}
2 r \leqq n \tag{1}
\end{equation*}
$$

Proof. The case $r=1$ is trivial. Therefore we can suppose $r \geqq 2$. Let v be an arbitrary center of G. Since $\varepsilon(v)=r$, there exists a vertex w in G such that $\varrho_{G}(v, w)=r$. Let $v v_{1} v_{2} \ldots v_{r-1} w$ be a shortest path from v to w. Denote by S the set of such vertices of G that no shortest path joining them to v is passing through v_{1}. It is easy to show that $\operatorname{deg} v \neq 1$, which implies $S \neq \emptyset$. Let $s-\max _{x \in S} \varrho_{G}(v, x)$. Clearly $s \geqq r-1$. If the opposite were true, then $\varepsilon\left(v_{1}\right) \leqq r-1$, which contradicts the fact that r is the radius of G. Thus there exists a path (beginning in v) of the length $r-1$ in G not containing vertices in common with the path $v_{1} v_{2} \ldots v_{r-1} w$. Hence G contains at least $2 r$ vertices.

In our considerations we shall need the following results (see [3]):
Theorem 2. Let n and r be positive integers such that $2 r \leqq n$. Then the maximal number of edges in a graph with n vertices and radius r is

$$
f(n, r)= \begin{cases}\frac{n(n-1)}{2}, & \text { if } r=1 \\ \frac{\left[\frac{n(n-2)}{2}\right],}{} & \text { if } r=2 \\ \frac{n^{2}-4 r n+5 n+4 r^{2}-6 r}{2}, & \text { if } r \geqq 3\end{cases}
$$

Corollary. For $2 \leqq r<\infty$ we have $f(2 r, r)=2 r$.
Theorem 3. Let n and r be positive integers such that $4 \leqq 2 r \leqq n$, then the maximal degree of the vertices of a graph with n vertices and radius r is $n-2 r+2$.

Analogically as in [1] (see Theorem 2) it can be shown that if $\langle n\rangle$ is decomposable into m factors with natural radii, then

$$
\begin{equation*}
2 m \leqq n . \tag{2}
\end{equation*}
$$

Theorem 4. Let naturals $m, n, r_{1}, r_{2}, \ldots, r_{m}$ be given. If the complete graph n, is decomposable into m factors with radii $r_{1}, r_{2}, \ldots, r_{m}$, then

$$
\begin{gather*}
n^{2}-n-2 \sum_{i=1}^{m} f\left(n, r_{i}\right) \leqq 0 \tag{3}\\
2 \max r_{i} \leqq n \tag{4}
\end{gather*}
$$

Proof. Denote by h_{i} the number of edges in the factor F_{i}. Then obviously $\binom{n}{2}=\sum_{i=1}^{m} h_{i} \leqq \sum_{i=1}^{m} f\left(n, r_{i}\right)$ and (3) follows. According to (1) we have (4).

Corollary. For arbitrary naturals $m, n, r_{1}, r_{2}, \ldots, r_{m}$ we have

$$
G\left(r_{1}, r_{2}, \ldots, r_{m}\right) \geqq 2 \max \left(m, \max r_{i}\right)
$$

Theorem 5. For $m \geqq 3$ and $r_{2}=r_{3}=\ldots=r_{m}=\infty$ we have

$$
G\left(r_{1}, r_{2}, \ldots, r_{m}\right)= \begin{cases}3, & \text { if } r_{1}=\infty \\ 2 r_{1}, & \text { if } r_{1}<\infty\end{cases}
$$

Proof. The proof of the first part is evident. If a graph contains a factor with natural radius r_{1}, then it has to have at least $2 r_{1}$ vertices (see Lemma l). Therefore it is sufficient to decompose the graph $\left\langle 2 r_{1}\right\rangle$ into m factors with radii $r_{1}, \infty, \ldots, \infty$. It can be done as follows. Denote the vertices of ϑr_{1} by $v_{1}, v_{2}, \ldots, v_{2 r_{1}}$. The factor F_{1} consists of the cycle $v_{1} v_{2} \ldots v_{2 r_{1}} v_{1}$. The factor F_{2} consists of all edges between $v_{2}, v_{3}, \ldots, v_{2 r_{1}}$ except of those contained in F_{1}. F_{3} consists of the remaining edges and F_{i} for $i \geqq 4$ (if $m>3$) are nullgraphs. It is easy to check that this decomposition fulfils the required conditions.

Theorem 6. Let $m \geqq 3, r_{i} \geqq 2(i=1,2, \ldots, m)$ be naturals. Then

$$
G\left(r_{1}, r_{2}, \ldots, r_{m}\right) \leqq 2\left(r_{1}+r_{2}+\ldots+r_{i n}\right)-2 m .
$$

Proof. It is sufficient to find a decomposition of the graph $G=, 2\left(r_{1}+\right.$ $\left.\left.+r_{2}+\ldots+r_{m}\right)-2 m\right\rangle$ into factors $F_{1}, F_{2}, \ldots, F_{m}$ with radii $r_{1}, r_{2}, \ldots, r_{m}$. We shall use the construction from the proof of Theorem 4 of [1] with r_{i}
$=2 r_{i}-1$. It is easy to show that for every factor F_{i} in this construction $v_{i, r_{i} 1}$ is a center of G and $r\left(\boldsymbol{F}_{i}\right)=r_{i}$.

Corollary. For every natural $m>1$ the equality

$$
G(\underbrace{2,2, \ldots, 2}_{m-\text { times }})=2 m
$$

holds.
Proof. For $m=2$ see Theorem 9. For $m>2$ our assertion follows from Theorem 6 and from Corollary of Theorem 4.

Theorem 7. Let $3 \leqq r_{1} \leqq r_{2} \leqq r_{3} \leqq r_{4}<\infty$. Then we have

$$
G\left(r_{1}, r_{2}, r_{3}, r_{4}\right) \leqq 2\left(r_{1}+r_{2}+r_{4}\right)-9
$$

Proof. We shall construct the four factors of the graph $\left\langle 2\left(r_{1}+r_{2}+r_{4}\right)-9\right\rangle$ with the radii $r_{i}(i=1,2,3,4)$. Denote the vertices of the graph $\left\langle 2\left(r_{1}+r_{2}+\right.\right.$ $\left.\left.+r_{4}\right)-9\right\rangle$ by $u_{1}, u_{2}, \ldots, u_{2 r_{1}-3}, v_{1}, v_{2}, \ldots, v_{2 r_{2}-3}, w_{1}, w_{2}, \ldots, w_{2 r_{4}-3}$.
I. The factor F_{1} contains
(a) the edges of the path $u_{1} u_{2} \ldots u_{2 r_{1}-3}$,
(b) $u_{1} w_{1}$,
(c) all the edges $v_{i} w_{j}$ except of $v_{1} w_{1}$,
(d) $w_{i} w_{j}$ with $j-i \geqq 2$ except of:
$w_{3} w_{1}$ and $w_{2} w_{i}, \quad i=r_{3}+1, \quad r_{3}+2, \ldots, 2 r_{4}-3$ for $r_{3}=3$, (if they exist),
$w_{1} w_{4}$ for $r_{3}=4$, the path $w_{3} w_{1} w_{4} w_{2 r_{4}-3} w_{5} w_{2 r_{4}-4} w_{6} \ldots w_{2 r_{4}-r_{3}+2} w_{r_{3}}$ and the edges $w_{2} w_{i}$, $i=r_{3}+1, r_{3}+2, \ldots, 2 r_{4}-r_{3}+1$ for $r_{3} \geqq 5$.
II. The factor F_{2} contains
(a) the path $v_{1} v_{2} \ldots v_{2 r_{2}-3}$,
(b) $v_{1} u_{1}$,
(c) all $u_{i} u_{j}$ except of $u_{1} w_{1}, u_{2} w_{2}, u_{3} w_{2}, u_{3} w_{3}$,
(d) $u_{i} u_{j}$ with $j-i \geqq 2$.
III. the factor F_{3} contains
(a) $u_{1} v_{2}, u_{2} v_{1}, u_{2} v_{2}, u_{3} v_{3}$,
(b) $u_{3} v_{i}$ and $v_{3} u_{i}$ with $i>3$ (if they exist),
(c) $u_{2} w_{2}, u_{3} w_{2}, u_{3} w_{3}$,
(d) $w_{3} w_{1}$,
(e) $w_{2} w_{i}, i=r_{3}+1, r_{3}+2, \ldots, 2 r_{4}-3$ for $r_{3}=3,4$ (if they exist),
(f) $w_{1} w_{4}$ if $r_{3}=4$,
(g) the path $w_{1} w_{4} w_{2 r_{4}-3} w_{5} w_{2 r_{4}-4} w_{6} \ldots w_{2 r_{4}-r_{3+2} w_{r_{3}}}$ and $w_{2} w_{i}, i=r_{3}+1$, $r_{3}+2, \ldots, 2 r_{4}-r_{3}+1$ for $r_{3} \geqq 5$.
IV. The factor F_{4} contains
(a) the path $w_{1} w_{2} \ldots w_{2 r_{4}-3}$,
(b) $v_{1} w_{1}$,
(c) $v_{i} v_{j}$ with $j-i \geqq 2$,
(d) $u_{i} v_{j}$ except of $u_{1} v_{1}, u_{1} v_{2}, u_{2} v_{1}, u_{2} v_{2}, u_{3} v_{3}$ and $u_{3} v_{i}, u_{i} v_{3}$ with $i>3$ (if they exist).

It can be proved that the system of the factors F_{i} forms a decomposition of $\left\langle 2\left(r_{1}+r_{2}+r_{4}\right)-9\right\rangle$ and that $r\left(F_{i}\right)=r_{i}$.

Remark 1. Analogical results can be stated (and proved by similar methods) in case of a decomposition into 5 and 6 factors with given radii.

Remark 2. It can be easily proved that for $r_{i} \geqq 4$ the factors F_{i} ($i=1,2,3,4$) in the preceding theorem have diameters $d_{i}=2 r_{i}-1$. Denote by $F\left(d_{1}, d_{2}, d_{3}, d_{4}\right)$ the smallest natural N for which $\langle N\rangle$ can be decomposed into 4 factors with diameters $d_{1}, d_{2}, d_{3}, d_{4}$ (see [1]). Then we get

Theorem 8. Let $6 \leqq d_{1} \leqq d_{2} \leqq d_{3} \leqq d_{4}<\infty$, then

$$
F\left(d_{1}, d_{2}, d_{3}, d_{4}\right) \leqq d_{1}+d_{2}+d_{4}-6 .
$$

Proof. If $d_{1}, d_{2}, d_{3}, d_{4}$ are odd, the proof follows from the considerations above. If some of them are even, it can be done by using a similar consideration.

This theorem can be developed for decomposition into 5 and 6 factors with given diameters, too.

The case $m=2$

It is easy to prove the following
Lemma 2. If $r(G)=1$, then the complement \bar{G} of G is a disconnected graph. If G is a disconnected graph, then $r(\bar{G})$ is 1 or 2.

Lemma 3. If $r(G) \geqq 3$, then $r(\bar{G}) \leqq 2$.
Proof. According to Lemma 2 we may suppose that G is connected. We shall distinguish two cases.
(a) $d(G) \geqq 4$, then due to Lemma 3 of [1] we get $r(\bar{G}) \leqq d(\bar{G}) \leqq 2$.
(b) $(r G)=d(G)=3$. Then for every vertex x there exists a vertex x^{\prime} with $\varrho_{G}\left(x, x^{\prime}\right)=3$. We shall proceed indirectly: suppose there exist two vertices u, v for which $\varrho_{\bar{G}}(u, v)=3$. (Then the edge $u v$ belongs to G.) Let v^{\prime} be a vertex for which $\varrho_{G}\left(v, v^{\prime}\right)=3$. (Then the edge $v v^{\prime}$ belongs to \bar{G}.) Consider the edge $u v^{\prime}$. If $u v^{\prime}$ belongs to G, then $v u v^{\prime}$ is a path of the length 2 in G between the vertices v and v^{\prime}, which is a contradiction. If $u v^{\prime}$ belongs to \bar{G}, then the path $u v^{\prime} v$ is in \bar{G} (the length is 2) - a cotradiction.

Theorem 9. Let $r_{1} \leqq r_{2}$, then

$$
G\left(r_{1}, r_{2}\right)= \begin{cases}2 & \text { if } r_{1}=1, r_{2}=\infty \\ 4 & \text { if } r_{1}=2, r_{2}=\infty \\ 2 r_{2} & \text { if } r_{1}=2, r_{2}<\infty \\ \infty & \text { in the remaining cases. }\end{cases}
$$

Proof. The proofs of the assertions $G(1, \infty)=2, G(2, \infty)=4$ and $G(2,2)=$ 4 are evident.
If $2<r_{2}<\infty$, then decompose $\left\langle 2 r_{2}\right\rangle$ into two factors as follows. The factor F_{2} consists of a cycle containing all the vertices of $\left\langle 2 r_{2}\right\rangle . F_{1}$ contains all the remaining edges. Then obviously $r\left(F_{1}\right)=2$ and $r\left(F_{2}\right)=r_{2}$.

Clearly $G(1, r)=\infty$ for any finite r. From Lemma 3 it follows that for $r_{1} \geqq 3$, we have $r_{2} \leqq 2$, hence $G\left(r_{1}, r_{2}\right)=\infty$ for $r_{1}, r_{2} \geqq 3$.

The case $\boldsymbol{m}=\mathbf{3}$

Theorem 10. For $3 \leqq r_{1} \leqq r_{2} \leqq r_{3}<\infty$ we have

$$
G\left(r_{1}, r_{2}, r_{3}\right) \leqq 2\left(r_{1}+r_{2}+r_{3}\right)-11 .
$$

Proof. In the proof of the second part of Theorem 6 in [1] a decomposition of $\left\langle d_{1}+d_{2}+d_{3}-8\right\rangle$ into factors F_{1}, F_{2}, F_{3} of diameters d_{1}, d_{2}, d_{3} is given. Put $d_{i}=2 r_{i}-1$. It is easy to prove that the factor F_{i} of the mentioned decomposition has radius equal to r_{i}.

Theorem 11. Let $2 \leqq r_{2} \leqq r_{3}<\infty$, then $G(2,2,2)=6$ and $G\left(2, r_{2}, r_{3}\right)=2 r_{3}$ if $r_{3} \geqq 3$.

Proof. The first assertion follows from Corollary of Theorem 6. From Corollary of Theorem 4 we get $G\left(2, r_{2}, r_{3}\right) \geqq 2 r_{3}$, hence it is sufficient to prove that $\left\langle 2 r_{3}\right\rangle$ can be decomposed into three factors with radii $2, r_{2}, r_{3}\left(r_{3} \geqq 3\right)$. Denote the vertices of $\left\langle 2 r_{3}\right\rangle$ by $v_{1}, v_{2}, \ldots, v_{2 r_{3}}$. We shall distinguish two cases.
(a) $r_{2}=2$. Let the factor F_{3} consist of the path $v_{1} v_{2} \ldots v_{2 r_{3}}$. Obviously $r\left(F_{3}\right)=r_{3}$. Let the edges $v_{2 r_{3}} v_{1}, v_{2 r_{3}} v_{2}, \ldots, v_{2 r_{3}} v_{2 r_{3}-3}, v_{2 r_{3}-1} v_{2 r_{3}-3}, v_{2 r_{3}-2} v_{2 r_{3}-4}$ belong to F_{1} and the edges $v_{1} v_{3}, v_{1} v_{4}, v_{1} v_{5}, \ldots, v_{1} v_{2 r_{3}-1}, v_{2 r_{3}} v_{2 r_{3}-2}, v_{2 r_{3}-1} v_{2}$ belong to F_{2}; the remaining edges are distributed into the factors F_{1} and F_{2} in an arbitrary way. None of the vertices in $F_{i}(i=1,2)$ is of degree $2 r_{3}-1$ and hence $r\left(F_{i}\right)>1$. It is easy to check that $v_{2 r_{3}}\left(v_{1}\right)$ is a center of $F_{\mathrm{i}}\left(F_{2}\right)$ and that $r\left(F_{1}\right)=r\left(F_{2}\right)=2$.
(b) $r_{2} \geqq 3$. $G(2,3,3)=6=2 r_{3}$ (see Fig. 1). Therefore we can suppose $r_{3} \geqq 4$. Now we shall construct the factors F_{i} with radii $2, r_{2}, r_{3}$. The factor F_{3} is equal to the path $v_{2 r_{3}-1} v_{2 r_{3}-3} \ldots v_{9} v_{7} v_{3} v_{2} v_{4} v_{1} v_{5} v_{6} v_{8} v_{10} \ldots v_{2 r_{3}-2} v_{2 r_{3}}$. Thus it has radius r_{3}. We must distinguish 4 cases:
(b_{1}) If $r_{2}=3$, then F_{2} contains the path $r_{2} v_{1} v_{3} v_{6} v_{4} v_{5}$.
(b2) If $r_{2}=4$, then F_{2} contains the path $v_{2} v_{1} v_{3} v_{6} v_{4} v_{5} v_{7} v_{8}$.
(b_{3}) If $r_{2} \geqq 5$ and odd, then F_{2} contains the path $v_{2 r_{2}} v_{2 r_{s}-1} v_{2 r_{2}-4} v_{2 r_{2}-5} \ldots$ $\ldots v_{10} v_{9} v_{2} v_{1} v_{3} v_{6} v_{4} v_{5} v_{7} v_{8} v_{11} v_{12} \ldots v_{2 r_{2}-3} v_{2 r_{2}-2}$, where the vertices $v_{7}, c_{8}, \ldots, v_{2 r_{2}}$ were added to the path $v_{2} v_{1} v_{3} v_{6} v_{4} v_{5}$ in the evident way.
(b_{4}) If $r_{2} \geqq 6$ and even, then F_{2} contains the path $v_{2 r_{2}-2} v_{2 r_{2}-3} v_{2 r_{2}-6} r_{2 r_{2}-7} \ldots$ $\ldots v_{10} v_{9} v_{2} v_{1} v_{3} v_{6} v_{4} v_{5} v_{7} v_{8} v_{11} v_{12} \ldots v_{2 r_{2}-1} v_{2 r_{2}}$.

Fig. 1.
If $r_{2}<r_{3}$, then F_{2} contains besides the mentioned path also the edges $v_{4} v_{2 r_{2}+1}, v_{4} v_{2 r_{2}+2}, \ldots, v_{4} v_{2 r_{3}}$ (in all four cases). It can be shown that in all cases $r\left(F_{2}\right)=r_{2}$.

The factor $F_{2}\left(F_{3}^{\prime}\right)$ consists of $2 r_{3}-1$ edges. Put all the remaining edges into the factor F_{1}. We have to prove that $r\left(F_{1}\right)=2$. It can be shown that F_{1} is a connected graph (it contains the path $v_{1} v_{6} v_{2} v_{5} v_{3} v_{4}$ and the edges $v_{1} v_{i}$ for $i>6) . F_{1}$ contains

$$
X=\binom{2 r_{3}}{2}-2\left(2 r_{3}-1\right)=2 r_{3}^{2}-5 r_{3}+2
$$

edges. We now show that

$$
\begin{equation*}
X>f\left(2 r_{3}, r\right)=2 r_{3}^{2}-4 r_{3} r+5 r_{3}+2 r^{2}-3 r \tag{5}
\end{equation*}
$$

for $3 \leqq r \leqq r_{3}$ and $r_{3} \geqq 4$ (see Theorem 2). We have two cases:
(a) If $r=3$, then $f\left(2 r_{3}, 3\right)=2 r_{3}^{2}-7 r_{3}+9$. Since $r_{3} \geqq 4$, which implies $2 r_{3}>7$, we have $2 r_{3}^{2}-5 r_{3}+2>2 r_{3}^{2}-7 r_{3}+9$ i. e. $X>f\left(2 r_{3}, 3\right)$.
(b) If $r \geqq 4$, then $4 r-10>2 r-3$. Since $r_{3} \geqq r>0,4 r-10>0$ and 2r-3>0, we have $r_{3}(4 r-10)>r(2 r-3)$. The last inequality implies $2 r_{3}^{2}-5 r_{3}+2>2 r_{3}^{2}-4 r_{3} r+5 r_{3}+2 r^{2}-3 r$, i. e. $X>f\left(2 r_{3}, r\right)$ for $4 \leqq$ $\leqq r \leqq r_{3}$.

We have proved that (5) holds, hence $r\left(F_{1}\right) \leqq 2$. However $r\left(F_{1}\right)>1$ because none of the vertices $\operatorname{in} F_{1}$ is of degree $2 r_{3}-1$. Thus $r\left(F_{1}\right)=2$.

Theorem 12. Let $3 \leqq r_{3}<\infty$. Then

$$
G\left(3,3, r_{3}\right)=2 r_{3} .
$$

Proof. According to Corollary of Theorem 4 we have $G\left(3,3, r_{3}\right) \geqq 2 r_{3}$. It can be shown that $G(3,3,3)=6$ (see Fig. 2) and $G(3,3,4)=8$ (see Fig. 3).

Hence it is sufficient to find a decomposition of $\left\langle 2 r_{3}\right\rangle$ for $r_{3} \geqq 5$ into three factors with radii $3,3, r_{3}$. Denote the vertices of $\left\langle 2 r_{3}\right\rangle$ by $u_{1}, u_{2}, \ldots, u_{r_{3}}, v_{1}$, $v_{2}, \ldots, v_{r_{3}}$. For $i>r_{3}$ we define $u_{i}\left(v_{i}\right)$ in the following manner: $u_{i}\left(v_{i}\right)=u_{s}\left(v_{s}\right)$ with $s-i\left(\bmod r_{3}\right), 0<s \leqq r_{3}$.

Fig. 2.

Fig. 3.
Let the factor F_{1} contain the edges
(a) $u_{i} u_{j}$ and $v_{i} v_{j}$ for $j \not \equiv i+1\left(\bmod r_{3}\right)$ and $j \not \equiv i-1\left(\bmod r_{3}\right)$, $\quad \cdot$
(b) all the edges $u_{i} v_{i+r_{3}-2}$.

Then $r\left(F_{1}\right)=3\left(\varrho_{F_{1}}\left(u_{i}, v_{i+r_{3}-1}\right)=3\right.$ and every vertex is a center of $\left.F_{1}\right)$.
The factor F_{2} contains the edges
(a) $u_{i} v_{i+1}, u_{i} v_{i+2}, \ldots, u_{i} v_{i+r_{3}-3}$,
(b) $u_{i} u_{i+1}$ and $v_{i} v_{i+1}$.

Obviously $r\left(F_{2}\right)=3\left(\varrho_{F_{2}}\left(u_{i}, v_{i+r_{3}-1}\right)=3\right.$ and every vertex is a center of $\left.F_{2}\right)$.
The factor F_{3} contains the remaining edges $u_{i} v_{i}$ and $v_{i} u_{i, 1}$ which form a cycle of the length $2 r_{3}$.

Remark. Fig. 4 shows that $G(3,4,4)=8$, but it can be easily proved that $G(3, r, r)>2 r$ for $4<r<\infty$. To prove it (indirectly), we suppose that the graph $\langle 2 r\rangle(5 \leqq r<\infty)$ is decomposable into three factors with radii $3, r, r$. Then the factors F_{2} and F_{3} have at most $2 r$ edges each (see Corollary of Theorem 2). Thus F_{1} contains at least $Y=\binom{2 r}{2}-4 r=2 r^{2}-5 r$ edges.

According to Theorem 2 we have $f(2 r, 3)=2 r^{2}-7 r+9$. It is easy to check that $Y>f(2 r, 3)$ for $r>4$. Hence $r\left(F_{1}\right) \neq 3$, which is a contradiction.

Fig. 4.

Theorem 13. We have
I. $G\left(2, r_{2}, \infty\right)=2 r_{2}$ for $2 \leqq r_{2}<\infty$,
II. $\max \left\{2 r_{2}, \frac{4}{3}\left(r_{1}+r_{2}-2\right)\right\} \leqq G\left(r_{1}, r_{2}, \infty\right) \leqq 2\left(r_{1}+r_{2}\right)-6$ for $3 \leq$ $\leqq r_{1} \leqq r_{2}<\infty$.
Proof. I. The first assertion follows from Theorem 9 (take as F_{3} the nullgraph).
II. Suppose that for some n with

$$
\begin{equation*}
n<\frac{4}{3}\left(r_{1}+r_{2}-2\right) \tag{6}
\end{equation*}
$$

the graph $\langle n\rangle$ can be decomposed into three factors F_{i} with $r\left(F_{1}\right)=r_{1}, r\left(F_{2}\right)$ $=r_{2}, r\left(F_{3}\right)=\infty$. The factor F_{3} is disconnected, hence the vertices of n can be split into two disjoint sets A and B so that all the edges between A and B belong to F_{1} or F_{2}. From (6) we get

$$
2\left(2 n-2 r_{1}-2 r_{2}+4\right)<n .
$$

Hence one of the sets - say $A-$ contains at least $2 n-2 r_{1}-2 r_{2}+5$ elements. Let v be an arbitrary element of B. According to Theorem 3 the desree of v in F_{1} is at most $n-2 r_{1}+2$ and in the factor F_{2} at most $n-2 r_{2}+2$. This is a contradiction.

To complete the proof we must show that $G\left(r_{1}, r_{2}, \infty\right) \leqq 2 r_{1}+2 r_{2} \quad 6$. It can be done by considerations analogical to those of the proof of Theorem 8 from [1] (see part $I(b))$. Namely, if we take $d_{i}=2 r_{i}-1 \quad(i=1,2)$, then we can see that the factors F_{1} and F_{2} of the graph $\left\langle d_{1}+d_{2}-4\right.$ $=\left\langle 2 r_{1}+2 r_{2}-6\right\rangle$ have the radii r_{1} and r_{2}. The factor F_{3} is obviously disconnected. (There is no path from v_{1} to any v_{i} with $i \geqq 2$ in F_{3}.)

Decomposition into 3 and 4 factors with equal radii

Denote $G(r, r, r)=g(r)$.
Theorem 14. The following holds
I. $g(\infty)=3, g(1)=\infty, g(2)=g(3)=6$,
II. $(3+\sqrt{3}) r-9<g(r) \leqq 6 r-11$ for $4 \leqq r<\infty$.

Proof. The first part follows from evident considerations. The estimation $g(r) \leqq 6 r-11$ holds due to Theorem 10 . Now, if $\langle n\rangle$ is decomposable into three factors with equal radii r, then owing to Theorem 2 we get

$$
3 \frac{n^{2}-4 r n+5 n+4 r^{2}}{2}-6 r\binom{n}{2}
$$

After some modifications of the last inequality we get

$$
\begin{equation*}
s_{r}(n)=n^{2}+(8-6 r) n+\left(6 r^{2}-9 r\right) \geqq 0 \tag{7}
\end{equation*}
$$

It can be easily checked that $s_{r}(2 r)<0$ and $s_{r}((3+\sqrt{3}) r-9)<0$ for all $r \geqq 4$. The function $s_{r}(n)$ is convex and hence from (7) we get $n>(3+\sqrt{3}) r-$ -9 . The theorem follows.

Now denote $G(r, r, r, r)=H(r)$.
Theorem 15. For $3 \leqq r<\infty$ we have

$$
4 r-8 \leqq H(r) \leqq 6 r-9
$$

Proof. The estimation $H(r) \leqq 6 r-9$ follows from Theorem 7. Further we have to prove that $\langle 4 r-9\rangle$ cannot be decomposed into 4 factors with equal radii r. For $r=3$ and 4 this follows from (2); so we can suppose $r \geqq 5$. Suppose $\langle n\rangle$ is decomposable into 4 factors with radii r. Then according to Theorem 2 we have

$$
\begin{equation*}
4^{n^{2}-4 m+5 n+4 r^{2}-6 r} \frac{2}{2}-\binom{n}{2} \tag{8}
\end{equation*}
$$

After some modifications

$$
t_{r}(n)=3 n^{2}+(21-16 r) n+\left(16 r^{2}-24 r\right) \geqq 0
$$

For $r \geq 5$ obviously $t_{r}(2 r)<0$ and it can be shown that (for $\left.r \geqq 6\right) t_{r}(4 r-8) \leqq$ $\leq 0 . t_{r}(n)$ is a convex function of the variable n for any r and hence if n fulfils
(8) where $r \geqq 6$, then $n \geqq 4 r-8$. As for $r=5$ we have $t_{5}\left(\frac{35}{3}\right)=0$ and $H(5) \geqq{ }_{3}^{35}=11 \frac{2}{3}$. Since $H(5)$ is an integer, we get $H(5) \geqq 12=4.5 \quad 8$. Remark. From Corollary of Theorem 6 it follows that $H(2)=8$.

REFERENCES

[1] BOSÁK, J., ROSA, A., ZNÁM, Š.: On decompositions of complete graphs into factors with given diameters, In: Theory of graphs, Budapest 1968, 37 $\quad \mathbf{5 6}$.
[2] ORE, O.: Theory of graphs. 1. ed. Providence 1962.
[3] ВИЗИНГ, В. Г.: О числе ребер в графе с данным радиусом, Д.АІ СС.СР. 1\%.3, 1967, 1245-1246.

Received April 13, 1971
Katedra matematiky a deskriptirnej geometrie Vysokej školy lesníchej a drevirskoj

Zvolen

Katedra algebry a teórie čisel
Prirodovedeckej fakulty Cniverzity Komenského
Bratislara

