
Matematický časopis

Pavol Šoltés
A Remark on the Oscillatoriness of Solutions of a Non-Linear Third-Order Equation

Matematický časopis, Vol. 23 (1973), No. 4, 326--332

Persistent URL: http://dml.cz/dmlcz/126579

Terms of use:
© Mathematical Institute of the Slovak Academy of Sciences, 1973

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/126579
http://project.dml.cz


Matematický časopis 23 (1973), N o . 4 

A REMARK ON THE OSCILLATORINESS 
OF SOLUTIONS OF A NON-LINEAR THIRD-ORDER EQUATION 

P A V O L S O L T E S , Kosice 

In [2] a theorem is given (Theorem 2, p. 250) which gives sufficient conditions 
for a non-oscillatory solution of the equation 

(1) x'" + p(t)x' + q(t)x* = 0 , 

with a > 1, a = m\n, where m and n are nondivisible odd natural numbers, 
to have the properties: 

lim x"(t) = lim x'(t) = 0, lim \x(t)\ = L ^ 0 . 

I t is further shown (in a Corollary) that under the hypotheses of Theorem 2 
(in [2]) with the added assumption 0 < e < q(t) we have for a non-oscillatory 
solution x(t) 

]imx(t) = 0. 

In the present remark it is shown that the hypotheses of Theorem 2 (in [2]) 
are sufficient for L = 0 and thus for lim x(t) = 0 to hold. A further theorem 
is presented which gives sufficient conditions for a non-oscillatory solution x(t) 
of (I) with a — m\n > 0, where m and n are relatively prime odd natural 
numbers, to have the property 

lim x(t) =- 0 
£-»co 

or 

lim inf \x(t)\ = 0 . 
t->CG 

Theorem 1. Let the hypotheses of Theorem 2 in [2 J hold, i.e.: Let a > 1, 
cc = mjn, where m and n are relatively prime odd natural numbers. Let the 
functions p(t) and q(t) satisfy the following conditions for sufficiently large t: 

1) q(t) is non-negative and continuous: 
2) p(t), p'(t) are continuous and p(t) < 0, p'(t) ^ 0; 

326 



3) for any constants A, B there exists a h > lo such that for all t *> h we have 

t t 

A + Bt— J* Q(s) ds < 0, where Q(t) = | q(s) ds . 
to to 

Then any non-oscillatory solution x(t) of the non-linear differential equation (1) 
has the following properties for large t: 

a) sgn x(t) = sgn x"(t) -/^ sgn x'(t), ivhere 

( 1 if x(t) >. 0 
sgn x(t) = I 

{-I if x(t)<0; 

b) lim x"(t) = lim x'(t) = lim x(t) = 0; 
t->00 £->00 £->00 

c) x(t), x'(t) and x"(t) are monotonous functions. 

Proof . We shall prove that lim x(t) = 0. Let x(t) be any non-oscillatory 
£->oo 

solution of the differential equation (1). Thus there exists a number h >= l0 

such that x(t) ^- 0 for all t ^ t . Since — x(t) is also a solution of the differential 
equation (1), without loss of generality, assume tha t x(t) > 0 for all t ^ h. 
Suppose that lim x(t) = L > 0. Then from (1) we have: 

£->oo 

x"'(t) = —p(t)x'(t) — q(t)x«(t) ; 

now, since for sufficiently large t x'(t) < 0, we have 

x'"(t) ^ -q(t)x«(t)< -L«q(t). 

Since, by7 assumption 3), lim Q(t) = -fco, this leads to x"(t) -> —- oo for t — GO, 
£->00 

which is a contradiction. Thus necessarily L = 0. 

Theorem 2. Let oc = mjn > 0, where m and n are relatively prime odd 
natural numbers. Let the functions p(t), p'(t) and q(t) be continuous and for 
sufficiently large l0 let for all t >. l0 

p(t) ^ 0, q(t) ^ 0, p'(t) ?k 0 . 

/ / for any constants A and B 

t 

(2) lim (A + Bt — | Q(s) ds) = — GO , 
t->oo t„ 

t 

where Q(t) = f q(s) ds, then a solution x(t) of (1), for which 
to 
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<3) x*{loUVo) -

Í6' clther oscillatory or lim ,r(l) — 0. 

i i 
•'•'2(to) + p(to)x2(/0) ^ 0 

Proof . Let x(t) be any non-oscillatory solution of the differential equation (1) 
satisfying (3). Thus there exists a number h ^ lo such that x(t) — 0 for all 
l *> li. Since —-#(£) is also a solution of the differential equation (1), assume 
without loss of generality, that x(t) > 0 for all t ^ l±. Then from (1) ^ e have 

<4) 
xЦt) y. x'Цt) 

xЦt) 2 x*+Цt) 

P(ф'(s) 

xЦs) 
ds + 

f t 

a(oc + 1) f xf*(s) 
+ -^— - I — - ^ - d* = K! -

wx-łl (*) 
q(s) ds 

An integration from li to l ^ h equality (4) gives 

x'(t) 

xЦt) 

[ (t - s)p(s)xf(s) a(a + 1) ľ (t - *)*'3(в) 
- ds + ds ^ 

xЦs) x«+Цs) 

K2 + Kit - j Q(s) ds 

This implies that there is no number h such that x'(t) ^ 0 holds for any 
t ^ h. Thus we have two possibilities: 

1) There exists a number h ^ h such that xr(t) ^ 0 for any t ^ to. 
2) For any l2 there exists a number £3 ^ h such tha t xf(h) > 0. 
Now let l2 be such number that for all t ^ h ^ h we have K» -*- Kit — 

t 

— I Q(s) ds < 0. We shall prove that then we have xf(t) ^ 0 for any t ^ to, 

i. e. the possibility 2) does not hold. Let h ^ h be such number that xf(h) > 0 
and let xf(U) = 0 for any t\ ^ li, l4 < £3. 

Then from (1) we have: 

1 1 
xң (t)x(t) — — x'Цt) + p(t)xЦt) + 

2 2 
g(s)æa+1(s) (ls- -= 
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1 1 1 
= x"(t0)x(t0) — — iłУ-(řo) + -p(to)xҢt0) + -

2 2 2 

p'(s)x2(s) ås , 

to 

thus for all t ^ l0 

x"Џ)x(t) — x'Щ й x"(t)x(t) — —x'*(t) й 0 

and therefore for all t ^ t\ 

x'(t) 
< 0. 

= 0, 

dt [ x(t) J 

An integration from £4 to h gives 

x'(h) x'(h) 

x(h) ~ x(h) 

which is impossible, because #'(£3) > 0. Hence x'(t) ^ 0 for all t ^ h- Thus 
x(t) is a non-increasing function with a finite lower bound so tha t lim x(t) = 

£->00 

L ^ 0. 

Now suppose that lim x(t) = L > 0. Then (1) yields x"(0 = x"(h) + 

t 
+ p(h)x(h) — p(t)x(t) + J p'(s)x(s) ds — J q(s)^(«s) ds , 

where t ^ h. Therefore 

x"(t) й Kъ — L« j* q(s) ås 

and from this it follows that x"(t) -> —00 for £-> 00, which contradicts the 
assumption that x(t) > 0 for t ^ h> 

Theorem 3. Let a = mjn > 0, where m and n are relatively prime odd natural 
numbers. Let the functions p(t), p'(t), q(t) andf(t) be continuous and for sufficiently 
large h let for all t ^ to 

p{t) ^ 0, q(t) ^ 0, p'(t) + \f(t)\ ^ 0 . 

Suppose that (2) holds and that x(t) is a solution of the equation 

(5) x" + p(t)x' + q(t)x« = f(t) , 

for which 
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1 1 1 
(6) x"(t0)x(t0) *'2(lo) + - p(to)xЦt0) + -

z z z 

1/(01 dt < 0 . 

Then x(t) is either oscillatory or lim inf \x(t)\ = 0, 
ř-»oo 

Proof . Let x(t) > 0 for alH ^ £i *> £n • let x(t) satisfy (6) and let lim inf x(t) = 
í-»oo 

= L > 0. Thus there exists a number t* ^ h such tha t x(t) ^ L\ = i /2 fo r 
all t ^ t*. From (5) we have for £ ^ £* ^ £i 

*"(0 Г #(*)*'(*) a ( a + l ) f ж'»(в) 
(7) - Л Л + ds + — — ds й K, ~ 

xa(t) J xa(s) 2 J xaЩs) 
<*i -*i 

t*i 

3(5) ds + — !/( S ) | d S 

^ í J 
which, analogously as in the proof of Theorem 2, implies the existence of 
h >= t* such that for all t >. l2 #'(£) ^ 0; thus lim x(t) = 2v. 

t-»oo 

Using (o), we have for t 7t £2 

ж*(0 =Ş ^ з - JЬ« | ?(*) ds + j |/(S)| cb 

and using (2), we see that x"(t)-> —oo for £->oo, which contradicts the 
assumption tha t x(t) > 0 for all t >= £2. Therefore lim inf x(t) = 0. 

l5-»oo 

Now let x(t) < 0 for all t ^ h >= t0y let s(0 satisfy (6) and let lim inf \x(t)\ = 
£->oo 

= L > 0. Integrating (7) from t* to t ^ t*, we get 

t t 
x'(t) [ (t — s)p(s)x'(s) oc(a + 1 ) f (* — s)x'3(s) 

— ds + | ds ^ 
жa(ř) ж«(в) 

t\ t*i 

xa+2(s) 

й K2 + Kií (?(*) d5 . 

t*i 

Since for all t >. t* xa < 0 holds, we have from the last inequality that there 
exists a number l2 ^ t* such that x'(t) ^ 0 for all t >. l2. In fact, let x'(fe) < 0 
and x'(ti) = 0, where h ^ £4 < t$. Then from equation (5) we have: 
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1 1 1 
x"(t)x(t) — — x'Щ +—p(t)xЩ й x"(to)x(to) — — x'Щo) + 

2 2 2 

+ -p(to)x*(t0)+-
2* 2 

| / ( S ) | ds + - \ [p'(s) + \f(s)\].--(«) ds , 

and therefore 

1 
x"(t)x(t) — x'Щ й x"(t)x(t) — — x'Щ й 0 

2 

for a lU ^ t0. If t ^ U, then x2(t) ^ 0 and 

x'(t) xf(h) 

x(t) ~ x(h) 

for all t ^ t±. For t = h we have a contradiction. 
This proves the existence of h ^ t* such that for t ^ h x'(t) ^ 0, Then 

from (5) we have 

x"(t) ^ K3 + 2> J* q(s) ds - } | / ( 5 ) | ds 
t% t% 

which, owing to (2) and (6), implies x"(t) -> -f-oo for t -> oo which again con
tradicts the assumption that x(t) < 0 for t ^ h. This completes the proof. 

Theorem 4. Le£ the hypotheses be the same as in Theorem 2 with condition (2) 
replaced by 

(2') 
OD 

J p(t) dt = + 00 . 

/ / x(l) is a solution of the equation (1) which satisfies the condition (3), then 
it is either oscillatory or lim x(t) = 0. 

t-*ao 

Proof . Suppose tha t the hypotheses hold and that x(t) is not oscillatory. 
Thus there exists a number h ^ to, such that x(t) ^ 0 for all t ^ h. Then 
from (1) we have 

1 1 1 
x"(t)x(t) -~x'2(t) + ~p(t)x2(t) ^ x"(to)x(h) -~x'*(to) + 

2 2 2 

i i 
+ -p(t0)xҢt0)+-

2 2 
p'(s)x2(s) ds , 
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thus for t ^ li 

1 1 
x"(t)x(t) — x'Ңt) ѓ x"(t)x(t) — — x'Ңt) ^ — p(t)xҢt) 

and 

d \x'(t) 
(8) ' ăt x(t) -î- ľW, 
and also there exists a number fe ^ î such that x'(l)^(l) < 0 for eveiy t ^ to. 

Now let a;(J) > 0 and x'(t) < 0. Then 

lim x(t) = L ^ 0 
t-MX> 

and hence #(l) ^ £ for all t ^ h. For all £ ^ fe we have 

a:'(J) xc(t) 

x(t) = L 

from which using (8) and (2') we get lim x"(t) = — oo, which is again contra-
t->O0 

dictory to the assumption that x(t) > 0 for all t ^ t2. 

Now let x(t) < 0 and x'(t) > 0. Then 

lim x(t) = £ ^ 0 . 
t->O0 

Analogously as in the first case we prove the impossibility of lim x(t) = L < 0. 
t->oo 

This completes the proof. 
Evidently the following theorem also holds: 
Theorem 5. Let the hypotheses be the same as in Theorem 3 with condition (2) 

replaced by (2'). If x(t) is a solution of the equation (5) ivhich satisfies the con
dition (6), then it is either oscillatory or lim x(t) = 0. 

t-*O0 
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