Matematický časopis

Pavol Šoltés

A Remark on the Oscillatoriness of Solutions of a Non-Linear Third-Order Equation

Matematický časopis, Vol. 23 (1973), No. 4, 326--332

Persistent URL: http://dml.cz/dmlcz/126579

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1973

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

A REMARK ON THE OSCILLATORINESS OF SOLUTIONS OF A NON-LINEAR THIRD-ORDER EQUATION

PAVOL ŠOLTÉS, Košice

In [2] a theorem is given (Theorem 2, p. 250) which gives sufficient conditions for a non-oscillatory solution of the equation

$$
\begin{equation*}
x^{\prime \prime \prime}+p(t) x^{\prime}+q(t) x^{\alpha}=0 \tag{1}
\end{equation*}
$$

with $\alpha>1, \alpha=m / n$, where m and n are nondivisible odd natural numbers, to have the properties:

$$
\lim _{t \rightarrow \infty} x^{\prime \prime}(t)=\lim _{t \rightarrow \infty} x^{\prime}(t)=0, \quad \lim _{t \rightarrow \infty}|x(t)|=L \geqq 0
$$

It is further shown (in a Corollary) that under the hypotheses of Theorem 凹 (in [2]) with the added assumption $0<\varepsilon<q(t)$ we have for a nun-oscillatory solution $x(t)$

$$
\lim _{t \rightarrow \infty} x(t)=0
$$

In the present remark it is shown that the hypotheses of Theorem 2 (in [2$]$) are sufficient for $L=0$ and thus for $\lim x(t)=0$ to hold. A further theorem is presented which gives sufficient conditions for a non-oscillatory solution $x(t)$ of (1) with $\alpha=m / n>0$, where m and n are relatively prime odd natural numbers, to have the property

$$
\lim _{t \rightarrow \infty} x(t)=0
$$

or

$$
\lim _{t \rightarrow \infty} \inf |x(t)|=0
$$

Theorem 1. Let the hypotheses of Theorem 2 in [2] hold, i.e.: Let $\alpha>1$, $\alpha=m / n$, where m and n are relatively prime odd natural nui bers. Let the functions $p(t)$ and $q(t)$ satisfy the following conditions for sufficiently large t :

1) $q(t)$ is non-negative and continuous:
2) $p(t), p^{\prime}(t)$ are continuous and $p(t)<0, p^{\prime}(t) \geqq 0$;
3) for any constants A, B there exists a $t_{1}>t_{0}$ such that for all $t \geqq t_{1}$ we have

$$
A+B t-\int_{t_{0}}^{t} Q(s) \mathrm{d} s<0, \quad \text { where } \quad Q(t)=\int_{t_{0}}^{t} q(s) \mathrm{d} s
$$

Then any non-oscillatory solution $x(t)$ of the non-linear differential equation (1) has the following properties for large t :
a) $\operatorname{sgn} x(t)=\operatorname{sgn} x^{\prime \prime}(t) \not \equiv \operatorname{sgn} x^{\prime}(t)$, where

$$
\operatorname{sgn} x(t)=\left\{\begin{array}{rl}
1 & \text { if }
\end{array} \quad x(t) \geqq 00\right.
$$

b) $\lim _{t \rightarrow \infty} x^{\prime \prime}(t)=\lim _{t \rightarrow \infty} x^{\prime}(t)=\lim _{t \rightarrow \infty} x(t)=0$;
c) $x(t), x^{\prime}(t)$ and $x^{\prime \prime}(t)$ are monotonous functions.

Proof. We shall prove that $\lim _{t \rightarrow \infty} x(t)=0$. Let $x(t)$ be any non-oscillatory solution of the differential equation (1). Thus there exists a number $t_{1} \geqq t_{0}$ such that $x(t) \neq 0$ for all $t \geqq t$. Since $-x(t)$ is also a solution of the differential equation (1), without loss of generality, assume that $x(t)>0$ for all $t \geqq t_{1}$. Suppose that $\lim x(t)=L>0$. Then from (1) we have:

$$
x^{\prime \prime \prime}(t)=-p(t) x^{\prime}(t)-q(t) x^{\alpha}(t) ;
$$

now, since for sufficiently large $t x^{\prime}(t)<0$, we have

$$
x^{\prime \prime \prime}(t) \leqq-q(t) x^{\alpha}(t)<-L^{\alpha} q(t)
$$

Since, by assumption 3), $\lim _{t \rightarrow \infty} Q(t)=+\infty$, this leads to $x^{\prime \prime}(t) \rightarrow-\infty$ for $t \cdots \infty$, which is a contradiction. Thus necessarily $L=0$.

Theorem 2. Let $\alpha=m / n>0$, where m and n are relatively prime odd natural numbers. Let the functions $p(t), p^{\prime}(t)$ and $q(t)$ be continuous and for sufficiently large t_{0} let for all $t \geqq t_{0}$

$$
p(t) \geqq 0, \quad q(t) \geqq 0, \quad p^{\prime}(t) \leqq 0 .
$$

If for any constants A and B

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\left(A+B t-\int_{t_{0}}^{t} Q(s) \mathrm{d} s\right)=-\infty \tag{2}
\end{equation*}
$$

where $Q(t)=\int_{t_{0}}^{t} q(s) \mathrm{d} s$, then a solution $x(t)$ of (1), for which

$$
\begin{equation*}
x^{\prime \prime}\left(t_{0}\right) \cdot c^{\prime}\left(t_{0}\right)-{ }_{2}^{1} x^{\prime 2}\left(t_{0}\right)+{ }_{2}^{1} p\left(t_{0}\right) x^{2}\left(t_{0}\right) \leqq 0, \tag{3}
\end{equation*}
$$

is cither oscillatory or $\lim _{t \rightarrow \infty} x(t)=0$.
Proof. Let $x(t)$ be any non-oscillatory solution of the differential cquation (1) satisfying (3). Thus there exists a number $t_{1} \geqq t_{0}$ such that $x(t)=0$ for all $t \geqq t_{1}$. Since $-x(t)$ is also a solution of the differential equation (1), assume without loss of generality, that $x(t)>0$ for all $t \geqq t_{1}$. Then from (1) we have

$$
\begin{gather*}
\frac{x^{\prime \prime}(t)}{x^{\alpha}(t)}-\frac{\alpha}{2} \frac{x^{\prime 2}(t)}{x^{\alpha+1}(t)}+\int_{t_{1}}^{t} \frac{p(s) x^{\prime}(s)}{x^{\alpha}(s)} \mathrm{d} s+ \tag{4}\\
+\frac{\alpha(\alpha+1)}{2} \int_{t_{1}}^{t} \frac{x^{\prime 3}(s)}{x^{\alpha+1}(s)} \mathrm{d} s=K_{1}-\int_{i_{1}}^{t} q(s) \mathrm{d} s .
\end{gather*}
$$

An integration from t_{1} to $t \geqq t_{1}$ equality (4) gives

$$
\begin{gathered}
\frac{x^{\prime}(t)}{x^{\alpha}(t)}+\int_{t_{1}}^{t} \frac{(t-s) p(s) x^{\prime}(s)}{x^{\alpha}(s)} \mathrm{d} s+\frac{\alpha(\alpha+1)}{2} \int_{t_{1}}^{t} \frac{(t-s) x^{\prime 3}(s)}{x^{\alpha+2}(s)} \mathrm{d} s \leqq \\
\leqq K_{2}+K_{1} t-\int_{t_{1}}^{t} Q(s) \mathrm{d} s .
\end{gathered}
$$

This implies that there is no number t_{2} such that $x^{\prime}(t) \geqq 0$ holds for any $t \geqq t_{2}$. Thus we have two possibilities:

1) There exists a number $t_{2} \geqq t_{1}$ such that $x^{\prime}(t) \leqq 0$ for any $t \geqq t_{2}$.
2) For any t_{2} there exists a number $t_{3} \geqq t_{2}$ such that $x^{\prime}\left(t_{3}\right)>0$.

Now let t_{2} be such number that for all $t \geqq t_{2} \geqq t_{1}$ we have $K_{2}+K_{1} t-$ $-\int_{t_{1}}^{t} Q(s) \mathrm{d} s<0$. We shall prove that then we have $x^{\prime}(t) \leqq 0$ for any $t \geqq t_{2}$, i. e. the possibility 2) does not hold. Let $t_{3} \geqq t_{2}$ be such number that $x^{\prime}\left(t_{3}\right)>0$ and let $x^{\prime}\left(t_{4}\right)=0$ for any $t_{4} \geqq t_{1}, t_{4}<t_{3}$.

Then from (1) we have:

$$
x^{\prime \prime}(t) x(t)-\frac{1}{2} x^{\prime 2}(t)+{ }_{2}^{1} p(t) x^{2}(t)+\int_{t_{0}}^{t} q(s) x^{\alpha+1}(s) \mathrm{d} \cdot s=
$$

$$
=x^{\prime \prime}\left(t_{0}\right) x\left(t_{0}\right)-\frac{1}{2} x^{\prime 2}\left(t_{0}\right)+\frac{1}{2} p\left(t_{0}\right) x^{2}\left(t_{0}\right)+\frac{1}{2} \int_{t_{0}}^{t} p^{\prime}(s) x^{2}(s) \mathrm{d} s,
$$

thus for all $t \geqq t_{0}$

$$
x^{\prime \prime}(t) x(t)-x^{\prime 2}(t) \leqq x^{\prime \prime}(t) x(t)-\frac{1}{2} x^{\prime 2}(t) \leqq 0
$$

and therefore for all $t \geqq t_{1}$

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left[\frac{x^{\prime}(t)}{x(t)}\right] \leqq 0
$$

An integration from t_{4} to t_{3} gives

$$
\frac{x^{\prime}\left(t_{3}\right)}{x\left(t_{3}\right)} \leqq \frac{x^{\prime}\left(t_{4}\right)}{x\left(t_{4}\right)}=0
$$

which is impossible, because $x^{\prime}\left(t_{3}\right)>0$. Hence $x^{\prime}(t) \leqq 0$ for all $t \geqq t_{2}$. Thus $x(t)$ is a non-increasing function with a finite lower bound so that $\lim _{t \rightarrow \infty} x(t)=$

$$
L \geqq 0 .
$$

Now suppose that $\lim x(t)=L>0$. Then (1) yields $x^{\prime \prime}(t)=x^{\prime \prime}\left(t_{2}\right)+$ $+p\left(t_{2}\right) x\left(t_{2}\right)-p(t) x(t)+\int_{t_{2}}^{\substack{t \rightarrow \infty \\ t}} p^{\prime}(s) x(s) \mathrm{d} s-\int_{t_{2}}^{t} q(s) x^{\alpha}(s) \mathrm{d} s$,
where $t \geqq t_{2}$. Therefore

$$
x^{\prime \prime}(t) \leqq K_{3}-L^{\alpha} \int_{t_{3}}^{t} q(s) \mathrm{d} s
$$

and from this it follows that $x^{\prime \prime}(t) \rightarrow-\infty$ for $t \rightarrow \infty$, which contradicts the assumption that $x(t)>0$ for $t \geqq t_{2}$.

Theorem 3. Let $\alpha=m / n>0$, where m and n are relatively prime odd natural numbers. Let the functions $p(t), p^{\prime}(t), q(t)$ and $f(t)$ be continuous and for sufficiently large t_{0} let for all $t \geqq t_{0}$

$$
p(t) \geqq 0, \quad q(t) \geqq 0, \quad p^{\prime}(t)+|f(t)| \leqq 0
$$

Suppose that (2) holds and that $x(t)$ is a solution of the equation

$$
\begin{equation*}
x^{\prime \prime \prime}+p(t) x^{\prime}+q(t) x^{\alpha}=f(t) \tag{5}
\end{equation*}
$$

for which

$$
\begin{equation*}
x^{\prime \prime}\left(t_{0}\right) x\left(t_{0}\right)-\frac{1}{2} x^{\prime 2}\left(t_{0}\right)+\frac{1}{2} p\left(t_{0}\right) x^{2}\left(t_{0}\right)+\frac{1}{2} \int_{i_{0}}^{\infty}|f(t)| \mathrm{d} t \leqq 0 . \tag{6}
\end{equation*}
$$

Then $x(t)$ is either oscillatory or $\lim \inf |x(t)|=0$.
Proof. Let $x(t)>0$ for all $t \geqq t_{1} \geqq t_{0}$, let $x(t)$ satisfy (6) and let $\lim \inf x(t)=$ $=L>0$. Thus there exists a number $t_{1}^{*} \geqq t_{1}$ such that $x(t) \geqq \stackrel{t \rightarrow \infty}{L_{1}}=L / 2$ for all $t \geqq t_{1}^{*}$. From (5) we have for $t \geqq t_{1}^{*} \geqq t_{1}$

$$
\begin{gather*}
\frac{x^{\prime \prime}(t)}{x^{\alpha}(t)}+\int_{i_{1}}^{t} \frac{p(s) x^{\prime}(s)}{x^{\alpha}(s)} \mathrm{d} s+\frac{\alpha(\alpha+1)}{2} \int_{t_{*_{1}}}^{t} \frac{x^{\prime 3}(s)}{x^{\alpha+2}(s)} \mathrm{d} s \leqq K_{1}- \tag{7}\\
-\int_{i_{*_{1}}}^{t} q(s) \mathrm{d} s+\frac{1}{L_{1}^{\alpha}} \int_{i_{*_{1}}}^{t}|f(s)| \mathrm{d} s
\end{gather*}
$$

which, analogously as in the proof of Theorem 2, implies the existence of $t_{2} \geqq t_{1}^{*}$ such that for all $t \geqq t_{2} x^{\prime}(t) \leqq 0$; thus $\lim x(t)=L$.

Using (5), we have for $t \geqq t_{2}$

$$
x^{\prime \prime}(t) \leqq K_{3}-L^{\alpha} \int_{i_{2}}^{t} q(s) \mathrm{d} s+\int_{t_{2}}^{t}|f(s)| \mathrm{d} s
$$

and using (2), we see that $x^{\prime \prime}(t) \rightarrow-\infty$ for $t \rightarrow \infty$, which contradicts the assumption that $x(t)>0$ for all $t \geqq t_{2}$. Therefore $\lim _{t \rightarrow \infty} \inf x(t)=0$.

Now let $x(t)<0$ for all $t \geqq t_{1} \geqq t_{0}$, let $x(t)$ satisfy (6) and let $\lim _{t \rightarrow \infty} \inf |x(t)|=$ $=L>0$. Integrating (7) from t_{1}^{*} to $t \geqq t_{1}^{*}$, we get

$$
\begin{gathered}
\frac{x^{\prime}(t)}{x^{\alpha}(t)}+\int_{t^{*_{1}}}^{t} \frac{(t-s) p(s) x^{\prime}(s)}{x^{\alpha}(s)} \mathrm{d} s+\frac{\alpha(\alpha+1)}{2} \int_{t^{*_{1}}}^{t} \frac{(t-s) x^{\prime 3}(s)}{x^{\alpha+2}(s)} \mathrm{d} s \leqq \\
\leqq K_{2}+K_{1} t-\int_{i^{*_{1}}}^{t} Q(s) \mathrm{d} s .
\end{gathered}
$$

Since for all $t \geqq t_{1}^{*} x^{\alpha}<0$ holds, we have from the last inequality that there exists a number $t_{2} \geqq t_{1}^{*}$ such that $x^{\prime}(t) \geqq 0$ for all $t \geqq t_{2}$. In fact, let $x^{\prime}\left(t_{3}\right)<0$ and $x^{\prime}\left(t_{4}\right)=0$, where $t_{1} \leqq t_{4}<t_{3}$. Then from equation (5) we have:

$$
\begin{aligned}
& x^{\prime \prime}(t) x(t)-\frac{1}{2} x^{\prime 2}(t)+\frac{1}{2} p(t) x^{2}(t) \leqq x^{\prime \prime}\left(t_{0}\right) x\left(t_{0}\right)-\frac{1}{2} x^{\prime 2}\left(t_{0}\right)+ \\
& +\frac{1}{2} p\left(t_{0}\right) x^{2}\left(t_{0}\right)+\frac{1}{2} \int_{t_{0}}^{t}|f(s)| \mathrm{d} s+\frac{1}{2} \int_{i_{0}}^{t}\left[p^{\prime}(s)+|f(s)|\right] x^{2}(s) \mathrm{d} s
\end{aligned}
$$

and therefore

$$
x^{\prime \prime}(t) x(t)-x^{\prime 2}(t) \leqq x^{\prime \prime}(t) x(t)-\frac{1}{2} x^{\prime 2}(t) \leqq 0
$$

for all $t \geqq t_{0}$. If $t \geqq t_{4}$, then $x^{2}(t) \neq 0$ and

$$
\frac{x^{\prime}(t)}{x(t)} \leqq \frac{x^{\prime}\left(t_{4}\right)}{x\left(t_{4}\right)}
$$

for all $t \geqq t_{4}$. For $t=t_{3}$ we have a contradiction.
This proves the existence of $t_{2} \geqq t_{1}^{*}$ such that for $t \geqq t_{2} x^{\prime}(t) \geqq 0$. Then from (5) we have

$$
x^{\prime \prime}(t) \geqq K_{3}+L^{\alpha} \int_{t_{2}}^{t} q(s) \mathrm{d} s-\int_{t_{2}}^{t}|f(s)| \mathrm{d} s
$$

which, owing to (2) and (6), implies $x^{\prime \prime}(t) \rightarrow+\infty$ for $t \rightarrow \infty$ which again contradicts the assumption that $x(t)<0$ for $t \geqq t_{2}$. This completes the proof.

Theorem 4. Let the hypotheses be the same as in Theorem 2 with condition (2) replaced by

$$
\int_{i_{0}}^{\infty} p(t) \mathrm{d} t=+\infty
$$

If $x(t)$ is a solution of the equation (1) which satisfies the condition (3), then it is either oscillatory or $\lim _{t \rightarrow \infty} x(t)=0$.

Proof. Suppose that the hypotheses hold and that $x(t)$ is not oscillatory. Thus there exists a number $t_{1} \geqq t_{0}$, such that $x(t) \neq 0$ for all $t \geqq t_{1}$. Then from (l) we have

$$
\begin{gathered}
x^{\prime \prime}(t) x(t)-\frac{1}{2} x^{\prime 2}(t)+\frac{1}{2} p(t) x^{2}(t) \leqq x^{\prime \prime}\left(t_{0}\right) x\left(t_{0}\right)-\frac{1}{2} x^{\prime 2}\left(t_{0}\right)+ \\
+\frac{1}{2} p\left(t_{0}\right) x^{2}\left(t_{0}\right)+\frac{1}{2} \int_{i_{0}}^{t} p^{\prime}(s) x^{2}(s) \mathrm{d} s
\end{gathered}
$$

thus for $t \geqq t_{1}$

$$
x^{\prime \prime}(t) x(t)-x^{\prime 2}(t) \leqq x^{\prime \prime}(t) x(t)-\frac{1}{2} x^{\prime 2}(t) \leqq-{ }_{2}^{1} p(t) x^{2}(t)
$$

and

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left[\frac{x^{\prime}(t)}{x(t)}\right] \leqq-\frac{1}{2} p(t) \tag{8}
\end{equation*}
$$

and also there exists a number $t_{2} \geqq t_{1}$ such that $x^{\prime}(t) x(t)<0$ for every $t \geqq t_{2}$.
Now let $x(t)>0$ and $x^{\prime}(t)<0$. Then

$$
\lim _{t \rightarrow \infty} x(t)=L \geqq 0
$$

and hence $x(t) \geqq L$ for all $t \geqq t_{2}$. For all $t \geqq t_{2}$ we have

$$
\frac{x^{\prime}(t)}{x(t)} \geqq \frac{x^{\iota}(t)}{L}
$$

from which using (8) and (2') we get $\lim x^{\prime \prime}(t)=-\infty$, which is again contradictory to the assumption that $x(t)>0$ for all $t \geqq t_{2}$.

Now let $x(t)<0$ and $x^{\prime}(t)>0$. Then

$$
\lim _{t \rightarrow \infty} x(t)=L \leqq 0
$$

Analogously as in the first case we prove the impossibility of $\lim _{t \rightarrow \infty} x(t)=L<0$.
This completes the proof.
Evidently the following theorem also holds:
Theorem 5. Let the hypotheses be the same as in Theorem 3 with condition (2) replaced by (2^{\prime}). If $x(t)$ is a solution of the equation (5) which satisfies the cor-dition (6), then it is either oscillatory or $\lim x(t)=0$.

REFERENCES

[1] HEIDEL, J. W.: Qualitative behaviour of solution of a third order nonlinear differential equation. Pacif. J. Math., 27, 1968, $507-526$.
[2] ELIAŠ, J.: Properties of the nonoscillatory solution for a third order nonlinear differential equation. Mat. časop., 20, 1970, 249-253.

Received June 6, 1972
Katedra matematiky
Prírodovedeckej fakulty Univerzity P. J. Šafárika Košice

