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Mat. čas. 24, 1974, No 2, 155—1S9 

POSITIVITY W I T H RESPECT TO THE ROUND CONE 

MIROSLAV F I E D L E R 

Dedicated to Professor Stefan SGHWARZ on the occasion of his sixtieth birthday 

In this note we shall first find formulae for the minimum of a quadratic 
non-homogeneous function on a sphere. Then we obtain necessary and suffi
cient conditions for a quadratic form to be copositive with respect to the 
round selfdual cone and for a linear operator to be positive with respect t o 
this cone. 

We shall choose the coordinate system in an ^-dimensional Euclidean 
space En in such a way that the round selfdual cone is given by 

Cr = {X |*i £ ( ^ 4)1'2} • 
k 2 

Vectors will always be real. By the norm ||z|| of a vector z we mean the usual 
Euclidean norm ( 2 *f ) 1 / 2 . 

We shall also use the Moore-Penrose generalized inverse A+ of a matrix A 
(see e.g. [3]). 

Let us prove first a lemma: 

Lemma. Let m ^ 1, let d±, dz, ..., dm, &i, &2, •••, bm be real numbers. Then 

m m 

min ( 2 dixf + 2 2 M*) = f(h) , 
m i-1 i-1 

x, S x\ ^ 1 
i 1 

m 

V b! 
where f(X) = X — / and X0 is the minimal real zero of the polynomial 

/ <di — X 
i 1 

6 .^0 

*>-'&£;;-'W' 
i=l 
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17(A) being the least common multiple of the polynomials d{ — X, i ^ j . . . , m. 
Proof. Let us denote M = {1, 2 , . . . , m}, Mi = {i e M\bt ^ Q\ jf2 _ 

= M\MU 

ieMi 

We have 

(1) < ? W > 0 for A->—oo, 

and also g(0) = 0 so that 

(2) A0 ^ 0 . 

Let us show that 

(3) Ao ^ min J< . 
ieM 

Suppose di < Ao for some i e M. Then di < 0 by (2) while 

(4) g{di) = dt( 2 &!)(».'(*.) )8 .SO. 

This is a contradiction to (1) and gr(A0) = 0. 
By (3), <p(A) is continuous in (— oo, Ao). Since y(K) < 1 for A-> — oo, it 

follows that 

(5) ?(/o) -S 1 • 

Since ?/(df) ^ 0, it follows also from (4) that Ao = di < 0 only if &*, = 0 
for all & for which d^ = di. 

Moreover, let us show that Ao = di = 0 also implies bk = 0 for all & for 
which dk ~ di. But this is an easy consequence of (1) and of the fact that 
then 

*'(0) = ( 2 &I)fo'(0))2. 
M*=o 

Thus, Ao = c?t always implies i e M%. 
Define now a vector x = (xi, . . . , xm) by 

£< = —biftdi — Ao) i / i e i f i , 

i i = 0 if i e JI2, 

^with the only exception that if Ao = ds < 0 for some 5, we put xt = 
= (1 —- <p(Ao))!l2 for exactly one such s. 

B y (5)> 11*11 ^ 1, and | |x| | < 1 only if A0 = 0. The equality 
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(di — ?i0)xf + 2btXi = (dt — Xo)(xt — xf)
2 — 6f/(df — A0), 

which holds for all x'{s whenever i e M.\ (and thus di — X0 -^ 0), yields: 
If x = (#$) is any vector such tha t | |x| | g 1, then 

2 *»f + 2 2 biXi = A0 2
 xi + 2 fa - *>)*?+2 2 6**< =* 

ieM ieM ieM ieM ieM\ 

-= *o 2 *f + 2 (d< - Ao)(xt - *i)2 _ 2 fcf/(d* - *») = 
ieM ieil/ iejfcfi 

* 4>- 2 W«-Ao) =/(*)). 
ieMi 

Moreover, equality is attained for the vector x. The proof is complete. 

Theorem 1. Let Abe a symmetric m X m matrix, c an m-dimensional column 
vector. Then, 

min (x^Ax + 2cTx) = X0 — cT(A — X0\)
+c, 

x , | | x | ^ l 

where Xo is the minimal real zero of the polynomial 

g(X) = A(c^(A - AI)-2 c - 1)/*2(A; X), 

where fi(A\ X) is the minimal polynomial of A. 
R e m a r k . Instead of cT(A — Xo\)+c one can take the number cTu, where 

u is any solution of the system (A — XQC)U = c. 
P roo f . If A is diagonal, A = diag {di, . . . , dm}, the theorem follows from 

the Lemma immediately. The remark is also true, since di — Xo = 0 implies 
Ci — 0. To prove the general case we use the well known fact that there exists 
an orthogonal matrix U and a diagonal matrix D = diag {di, . . . , dm} such 
that 

A = UDU r . 

Define the vector b = UTc. Then, if we put UTx = y, we have 

min (x^Ax + 2c rx) = min (x^UDU^x + 2bTUTx) = min (yTDy + 
x , | |x| ^ i * . | | x | | ^ i y . l lyl l^i 

2bTy). On the other hand, 

g(X) = X(bTUTU(D - X\)*UTUb - l)/z2(A; X) = 

= X(bT(D - X\)~2 b - 1)//2(D; X), 

c^(A - X0l)+ c = c^U(D - X0J)+ U^c = b^(D - X0\)+ b = > --
X v »< ~ ^ o 
ieMi 

and the general case follows from the Lemma as well. 
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I t is well known (cf. [1], [2]) that a quadratic form Q(x) is called copositive 
on a selfdual cone C = C* iff Q(x) ^ 0 whenever x eC. Let now C7r = {x | x\ ^ 

2 

Theorem 2. Lel B = j , ' * I be a symmetric matrix. The quadratic form 
\oi , D22/ 

(Bx, x) is copositive on the cone Cr iff 

bii + h-bT (B22 - A0-2)
+bi ^ 0 

where l2 is the identity n — 1 by n — 1 matrix and XQ is the minimal real zero 
of the polynomial 

g(l) = X(bT(B - Al)-*bi - 1)^(B; A), 

/^(B; A) bemgr l^e minimal polynomial of B. 

Proof . Clearly (Bx, x) is copositive on Cr iff it attains nonnegative values 

for all vectors x = (~ J, where ||x|| <; 1. But (Bx, x) = bn -f 2bTx -f (Bx, x) 

and this condition is equivalent to 

min ((Bx, x) + 2bTx) ^ —b n . 

From the preceding theorem the assertion follows then immediately. 
We can now find a necessary and sufficient condition for a matrix A to be 

a positive operator with respect to Cr, i. e. to have the property that Ax e Cr 

for every x e Cr. 

Theorem 3. A necessary and sufficient condition for a matrix 

A = fan aT\ 
\<-2 A„/ 

to be a positive operator with respect to the round cone Cr is that 

an ^ ||a2|| 

and 

«!i - ||o-||- + h - {anal - o^A„)(oiof - A^A„ - A0I2)
+ . (o uoi - A » ^ 0, 

where 12 is the (n — \)-rowed identity matrix and Ao is the minimal real zero of 
the polynomial 

H(auaT - aTAn)(alQ
T - A^An - AI)-2(aii<u - A^a2) - 1)/*2(A), 

where //(A) is the minimal polynomial of axaT — A^A / t. 
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Proof . Clearly A is a positive operator on Cr iff for any (n — 1)-dimensional 
vector X2 and any number x\ satisfying x± ^ ||x2|| we have 

anXi + oTx2 ^ ||A»x2 + a2xi\\. 

This is equivalent to 

anXi + o[x2 ^ 0 

and 

(aii:ri + aTx2)
2 — (xTAT + x±aT)(Anx2 -f a2x±) *> 0. 

Hence A is a positive operator iff both conditions 

(i) an ^ ||ai|| 

and 
(ii) the quadratic form (Bx, x) is copositive on Cr, 
are fulfilled, where 

D _ /«íi — ll°2ir, ana
T — a%An\ 

^ iT — ATA / 
*1 *Kn*Kn} 

2^ 

aцai — Aтa2, aľa
т 

From Theorem 2 it follows immediately that this is equivalent to the 
assertion of the theorem. 
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