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A THEOREM ON THE EXTENSION OF MEASURES 
IN UNIFORM SPACES 

BELOSLAV RIECAN, Bratislava 

There are well-known methods of extension of measures from a ring R 
to the smallest cr-ring S containing R. But there are some unsolved problems 
in the case when R is not a ring. 

We use the terminology of measure theory according to [1] and the ter
minology of general topology according to [2]. Recall only t h a t a set E is Baire 
iff it belongs to the smallest cr-ring over the family of all compact GQ sets. 

Theorem. Let X be a uniform space, 88 a base for the uniformity of X, K 
a family of subsets ofX containing 0. Let vbea set-function defined on K, v(0) = 0, 
non-negative, a-subadditive and fulfilling the following condition: 

(\) v(E) = inf Qy(Ei) :E a ( j Eu E% e K, Et x Et <= V}, 

for any V e SS and EsK. 
Then the function 

(2) v*(F) = inf {fv(Ei) :F cz\JEi,EiGK} 

is a measure on the family of all Baire subsets of X. v*(E) = v(E) for any Baire 
set of K. 

P r o o f . Clearly v* is an outer measure and v*(E) = v(E) for any Baire 
set E of K. We have to prove that all compact G$ sets (and hence all Baire 
sets too) are measurable. According to a theorem of [3] (Theorem 5; also [4], 
Theorem 3) it suffices to prove that v* satisfies the following property: 

(3) v*(A U B) = v*(A) + v*(B), whenever AxB^XxX— V 

for some V e £8. 

'LetA,B<=X,AxB^XxX—V,Ve&.(2) holds if either v*(A) = oo 
or v*(B) = oo. Let v*(A U B) < oo. Then by definition (2) there exists for 
any 6 > 0 a sequence {Ei} of sets of K such that 
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(4) AuB cz\J Et, v*(A uB) + d> ^v(Et). 
i=l i=l 

By the condition (1) it follows that for any positive integer i there exists 
a sequence {E\}%=1 of sets of K such that 

(5) Et c (J E\, E\xE\ c V, v(Ei) > f v(E\) - — . 
£1 2* 

Let E c: X be any set for which E X E cz V. Then either .ff n A = 0 or 
« n B = 0. Really, if E n -4 * 0 and# n B # 0, then (# X -E) n (.4 X .B) * 
4= 0, which is a contradiction, since i x f i c I x I - F , but E X E <-= V. 
Hence for any i and k either F7* n -4 = 0 or i?J n B = 0. Therefore 

(6) | v(E\) ^ ]>>(K*) : Ei n ^ * 0} + 2W^*) -E\nB*0}. 
k,i 1 

By (4) and (5) we have U {E\ : E\ n A + 0} => A, U {#? : ^ n . B + 0 } 3 B , 
hence 

(7) ]>>(£*): tf* n A * 0} ^ r*U), ^{v(E\) :E\nB + 0} = v*(B). 

From (4) —(7) it follows that 

v*(A U B) + d> v*(A) + v*(B) — d 

for any 6 > 0. Now (3) follows from the subadditivity of v* and the preceding 
relation. 

Corollary 1. Let X be a metric space, K be the system of all closed spheres in X, 
v be a set-function on K, non-negative, r(0) = 0, a-subadditive and satisfying 
the following condition: 

(V) V(E) = inf Qv(Et) : E <= (J Eu FH e K, diam Et < r} 

for any r > 0 and E e K. 
Then the function v* defined by (2) is a measure on the a-ring 8 of all Baire 
subsets of X. (!) 

Corollary 2. Let X be a topological group, K be a system of subsets of X, 
0 6 K, v be a set function defined on K, non negative, v(0) = 0, a-subadditive 
and fulfilling the following condition: 

(i) Cf. [5], Theorem 1. 
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(1") v(E) = miQv(Et) :E c: \JEi,EiEK, XiEt <= U for some xt e X}, 
*=i t=i 

for any E e K and any neighbourhood U of zero element. 
Then the function v* defined by (2) is a measure on the system of all Baire sets. 

E x a m p l e . Let X be a o-compact and locally compact topological group, 
v be the Haar measure, K be any regular Vitali covering of X (see [6]) by 
Baire sets, satisfying the following condition: If v(E) = 0, then for any d > 0 
and any neighbourhood V of zero element there are Ei e K (i = 1, 2, ...) 

CO 

such t h a t ^v(Et) < 6 and x%E% <-- V for some x%. In this example all assump-
i = l 

tions of Corollary 2 are satisfied. 
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