## Matematický časopis

## Blanka Kolibiarová

## A Note on the Structure of Some Types of Semigroups

Matematický časopis, Vol. 17 (1967), No. 2, 131--141
Persistent URL: http://dml.cz/dmlcz/126700

## Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1967

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.


This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

# A NOTE ON THE STRUCTURE OF SOME TYPES OF SEMIGROUPS 

BLANKA KOLIBIAROVÁ, Bratislava

The purpose of the presented paper is to study the structure of semigroups of following types: l. semigroups, each subsemigroup of which possesses a left identity; 2. semigroups, each left ideal of which possesses a left identity; 3. semigroups, each left ideal of which possesses a right identity. The main part of our discussion deals with the construction and with the properties of ideals (and $F$-classes). It can be shown that types 1 and 2 are special cases of the so called ,,product of semigroups over a given semigroup" which has been introduced in [4]. The construction of semigroup of type 3 is here not given. Many of the results of the present paper are contained in the paper [1] which I have read after having prepared my results for publication. I mention them here, because they have been obtained in a different, quite simple manner (similarly as in [3], [4]).

Let $S$ be a semigroup. The set of all elements which generate the same principal ideal (left $(x)_{L}$, right $(x)_{R}$, two-sided $\left.(x)\right)$ is called the $F$-class (left $F_{L}(x)$, right $F_{R}(x)$, two-sided $F(x)$ ). An element $e \in S$ is called a left (right) identity iff $e x=x(x e=x)$ for each $x \in S$. The set of idempotents of $S$ will be denoted by $I(S)$; the elements of $I(S)$ will be denoted by $e$ (with indices, if necessary).

We shall introduce in $I(S)$ the relation $R$ and $L$ as follows:
Definition 1. $e_{i} R e_{k}$ iff $e_{i}=e_{k} e_{i}$ (i.e. $\left.\left(e_{i}\right)_{R} \subseteq\left(e_{k}\right)_{R}\right)$.
Lemma 1. The relation $R$ is a quasiordering of the set $I(S)$ (in the sense of [5]). Proof. It is evident that $e_{i} R e_{i}$; further $e_{i} R e_{k}, e_{k} R e_{n}$ imply $e_{i} R e_{n}$.
The set of all elements $t_{k}$ for which $e_{i} R e_{k}, e_{k} R e_{i}$ simultaneously hold will be denoted by $E_{R}\left(e_{i}\right)$.

Definition 2. $e_{i} L e_{k}$ iff $e_{k}=e_{i} e_{k}$ (this means $\left.\left(e_{i}\right)_{L} \subseteq\left(e_{k}\right)_{L}\right)$. We evidently have

Lemma 2. The relation $L$ is a quasiordering of the set $I(S)$.

The set of all elements $e_{k}$ for which $e_{i} L e_{k}, e_{k} L e_{i}$ simultaneously hold will be denoted by $E_{L}\left(e_{i}\right)$.

Now we shall introduce the relation $\leqq$ in the set of $F_{L^{-}}\left(F_{R^{-}}\right)$classes:
Definition 3. $F_{L}(x) \leqq F_{L}(y)\left(F_{R}(x) \leqq F_{R}(y)\right)$ iff $(x)_{L} \subseteq(y)_{L} \quad\left((x)_{R} \subseteq(y)_{R}\right)$.

## 1. SEMIGROUPS, EACH SUBSEMIGROUP OF WHICH POSSESSES A LEFT IDENTITY

Definition. The semigroup $S$ will be said to have the property $U$ iff each subsemigroup of $S$ possesses at least one left identity.

In what follows we mention some properties of these semigroups obtained in [3].

Theorem 1. The necessary and sufficient condition for a semigroup $S$ to have the property $U$ is: 1. $S$ is the union of disjoint periodic groups; 2. $I(S)$ is a subsemigroup of $S$ and has the property $U$.

Proof. (Analogously as in [3]). a) Let $S$ have the property $U$. 1. Let $s \in S$; we consider the semigroup $S_{n}=\left\{s, s^{2}, \ldots\right\}$; by the assumption $S_{n}$ possesses a left identity, which is evidently an identity of $S_{n}$. This means, $s$ has a finite order, hence according to Theorom 7 [2] $S$ is a union of disjoint periodic groups. 2. is evident since $I(S)$ is a subsemigroup of $S$ (see Theorem 4 of [3]). b) Let $S$ have the properties 1, 2. Let $H$ be a subsemigroup of $S$; let $h \in H$. Then by 1. there exists a positive integer $n$ such that $h^{n}=\iota_{h}$, where $e_{h}$ is an idempotent and $e_{h} h=h$. Hence $I(H) \neq 0$. According to $2 ., I(H)$ is a subsemigroup of $I(S)$, hence $I(H)$ possesses a left identity $e_{H}$. Then $e_{H} h=e_{H}\left(e_{h} h\right)=\left(e_{H} e_{h}\right) h=$ $=e_{h} h=h$ and so $e_{H}$ is a left identity of $H$.

In this section $S$ is always a semigroup having the property $U$. The groups in the decomposition of $S$ in the sense of Theorem 1 will be denoted by $G_{i}$; $e_{i}$ will denote the identity of $G_{i}$. The group with the identity $e_{i} e_{k}$ will be denoted by $G_{i k}$. The elements of $G_{i}$ will be denoted by $g_{i}$ (with indices if necessary).

Lemma 4. Let $e_{i} R e_{k}$. Then $G_{k} G_{i} \subseteq G_{i}$.
Proof. First we shall prove that $g_{k} e_{i} \in G_{i}$. Let $g_{k} e_{i} \in G_{n}$. this means that for any positive integer $n\left(g_{k} e_{i}\right)_{n}=e_{n}$ holds, thus $e_{n} e_{i}=e_{n}$. By Lemma 3 for the couple $e_{i}, e_{n}$ at least one of the relations $e_{i} R e_{n}, e_{n} R e_{i}$ holds. Let $e_{i} R e_{n}$, i.e. $e_{i}=e_{n} e_{i}$. By the foregoing we have $e_{i}=e_{n}$. Let $e_{n} R e_{i}$, i.e. $e_{i} e_{n}=e_{n}$. Since $g_{k} e_{i} \in G_{n}$, we have $g_{k} e_{i}=g_{k} e_{i} e_{n}=g_{k} e_{n}=e_{n} g_{k} e_{i}$. Since for some integers $m, n$ we have $\left(g_{k} e_{i}\right)^{n}=e_{i}, g_{k}^{m}=e_{k}$, we obtain $e_{n}=\left(g_{k} e_{i}\right)^{m n}=$ $=\left(g_{k} e_{i}\right)^{m n-1} g_{k} e_{i}=\left(g_{k} e_{i}\right)^{m n-2} g_{k} e_{n} g_{k} e_{i}=\left(g_{k} e_{i}\right) g_{k} g_{k} e_{i}$ and repeating this proceeding we obtain after $\mathrm{mn}-1$ steps $e_{n}=g_{k}^{m n} e_{i}=e_{k} e_{i}=e_{i}$, therefore $g_{k} e_{i} \in G_{i}$. Hence $g_{k} g_{i}=g_{k}\left(e_{i} g_{i}\right)=\left(g_{k} e_{i}\right) g_{i} \in G_{i}$, q.e.d.

Lemma 5. $\left.P_{i}=U\left\{G_{k} / e_{k} \in E_{R} / e_{i}\right)\right\}$ is a subsemigroup of $S$. Here $G_{k}$ are isomorphic groups and the partition of $P_{i}$ into the groups $G_{k}$ yields a congruence relation on $P_{i}$.

Proof. From Lemma 4 it follows $e_{i} R e_{k}$ implies $G_{k} G_{i} \subseteq G_{i}$. Similarly $G_{i} G_{k} \subseteq$ $\subseteq G_{k}$. Therefore $P_{i}$ is a subsemigroup of $S$ and the partition of $P_{i}$ into $G_{k}\left(e_{k} \in E_{R}\left(e_{i}\right)\right)$ yields a congruence relation on $P_{i}$.

Clearly the mapping $g_{i} \rightarrow g_{i} e_{k}$ is a homomorphism of $G_{i}$ into $G_{k}$. We show that each element $g_{k} \in G_{k}$ is the image of some element of $G_{i}$. Since $g_{k} e_{i} \in G_{i}$, we have $\left(g_{k} e_{i}\right) e_{k}=g_{k}\left(e_{i} e_{k}\right)=g_{k} e_{k}=g_{k}$, thus $g_{k}$ is the image of $g_{k} e_{i}$. Further let $g_{i 1} e_{k}=g_{i 2} e_{k}$, then $g_{i 1} e_{k} e_{i}=g_{i 2} e_{k} e_{i}$, whence $g_{i 1}=g_{i 2} \quad$ (since $e_{k} e_{i}=e_{i}$, $g_{i 1} e_{i}=g_{i 1}, g_{i 2} e_{i}=g_{i 2}$ ). This shows that $G_{i}$ and $G_{k}$ are isomorphic groups.

Lemma 6. Let $e_{i} R e_{k}$. Then $G_{i} g_{k} \subseteq G_{n}$, where $e_{n} \in E_{R}\left(e_{i}\right)$.
Proof. First we prove that $e_{i} g_{k} \in G_{n}$, where $e_{n} \in E_{R}\left(e_{i}\right)$. Suppose that $\left(e_{i} g_{k}\right)^{n}=e_{n}, g_{k}^{m}=e_{k}$ for some positive integers $m, n$. Therefore evidently $e_{i} e_{n}=e_{n}$, thus $e_{n} R e_{i}$. Further $e_{n} e_{i}=\left(e_{i} g_{k}\right)^{m n} e_{i}$, and by Lemma $4 g_{k} e_{i} \in G_{i}$. Hence we obtain $e_{i} g_{k} e_{i}=g_{k} e_{i}$. Similarly as in the proof of Lemma 4 we get $e_{n} e_{i}=e_{k} e_{i}=e_{i}$, hence $e_{i} R e_{n}$. Together with $e_{n} R e_{i}$ we obtain $e_{n} \in E_{R}\left(e_{i}\right)$. With respect to Lemma 5 we have $g_{i} g_{k}=g_{i}\left(e_{i} g_{k}\right) \in G_{n}$. Hence $G_{i} g_{k} \cong G_{n}$.

Lemma 7. Let $e_{i} R e_{k}$. Then the following holds:
a) Let $e_{i} g_{k}^{m} \in G_{m}, e_{i} g_{k}^{n} \in G_{n},(n<m), e_{m} R e_{n}$; then $e_{n} g_{k}^{m-n} \in G_{m}$.
b) Let $e_{i} g_{k}^{n} \in G_{m}, e_{i} g_{k}^{m} \in G_{m}(n<m)$, where if $g_{k}^{m+s}=e_{k}$, then $(m-n) / s$. We then have $e_{m}=e_{i} e_{k}$.
c) Let b) hold where at least two of the integers $m, n, s$ are relatively prime. Then $G_{i} g_{k}^{v} \subseteq G_{i k}$ for each $v=1,2,3, \ldots$

Proof. a) $\left(e_{i} g_{k}^{n}\right)^{z}=e_{n}$ for some $z$. Hence $e_{n}=\left(e_{i} g_{k}^{n}\right)^{z-1}\left(e_{i} g_{k}^{n}\right)$ and therefore $e_{n} g_{k}^{m-n}=\left(e_{i} g_{k}^{n}\right)^{z-1}\left(e_{i} g_{k}^{n+m-n}\right)=\left(e_{i} g_{k}^{n}\right)^{z-1}\left(e_{i} g_{k}^{m}\right) \in G_{m}$,
b) Let $m-n / s$, this means $s=k(m-n)$ for some $k$. According to a) we have $e_{i} e_{k}=e_{i} g_{k}^{m+s}=e_{i} g_{k}^{m} g_{k}^{k(m-n)}=e_{i} g_{k}^{m} e_{m} g_{k}^{m-n} g_{k}^{(k-1)(m-n)}=e_{i} g_{k}^{m} e_{m} g_{k}^{m-n} e_{m} g_{k}^{(k-1)(m-n)}$. Repeating this proceeding we obtain after $k-1$ steps $e_{i} e_{k}=e_{i} g_{k}^{m}\left(e_{m} g_{k}^{(n-m)}\right)^{k} \in$ $\in G_{m}$. Thus $e_{m}=e_{i} e_{k}$.
c) First we shall prove that $g_{k}^{m+s}=e_{k}$ implies $e_{i} g_{k}^{s} \in G_{i k}$. Suppose $e_{i} g_{k}^{m} \in G_{t}$, which means $e_{i} e_{k} e_{t}=e_{t}$, hence $e_{t} R e_{i} e_{k}$. Then according to Lemma 4 and with respect to the fact that by the assumption and b) $e_{i} g_{k}^{m} \in G_{i k}$ holds, we obtain $e_{i} g_{k}^{m} e_{i} g_{k}^{s} \in G_{i}$. Now $e_{i} g_{k}^{m} e_{i} g_{k}^{s}=\left(e_{i} g_{k}^{m} e_{i} e_{k}\right) g_{k}^{s}=e_{i} g_{k}^{m+s}=e_{i} e_{k}$. Thus $e_{t}=e_{i} e_{k}$. Suppose that at least two of the integers $m, n, s$ be relatively prime. We denote them by $x, y$. We then have $1=k x+t y$ for some integers $k$, $t$. Since $e_{i} g_{k}^{m}$, $e_{i} g_{k}^{n}, \quad e_{i} g_{k}^{s} \in G_{i k}$, we obtain $e_{i} g_{n}^{k x} e_{i} g_{k}^{t y} \in G_{i k}$, whence $e_{i} g_{k}^{k x} e_{i} g_{k}^{t y}=e_{i} g_{k}^{k x+t y}=$ $=e_{i} g_{k} \in G_{i k}$. Hence evidently $e_{i} g_{k}^{v} \in G_{i k}$ for each $v=1,2,3, \ldots$

Lemma 4 and 6 lead immediately to

Theorem 2. The partition of $S$ into semigroups $P_{i}$ (see Lemma 5) yields a congruence relation on $S$.

The following two Theorems can be easily proved:
Theorem 3. The set, $E$ consisting of all $E_{R}\left(e_{i}\right)\left(\right.$ for $\left.e_{i} \in I(S)\right)$ is a dually wellordered chain with respect to the relation $\bar{R}$ given as follows: $E_{R}\left(e_{n}\right) \bar{R} E_{R}\left(e_{i}\right)$ iff $e_{n} R e_{i}$.

Theorem 4. Let $I$ be an idempotent semigroup having the property $U$. Then: $I=\cup E_{R}\left(e_{i}\right)$ where the elements $E_{R}\left(e_{i}\right)$ form a dually well-ordered chain with respect to the relation $\bar{R}$. At the same time $E_{R}\left(e_{i}\right) \bar{R} E_{R}\left(e_{k}\right)$ implies $E_{R}\left(e_{i}\right) E_{R}\left(e_{k}\right) \leqq$ $\leqq E_{R}\left(e_{i}\right) ; E_{R}\left(e_{k}\right) E_{R}\left(e_{i}\right) \leqq E_{R}\left(e_{i}\right)$. Further $e_{k} e_{t}=e_{t}$ for $e_{t} \in E_{R}\left(e_{i}\right), e_{k} \in E_{R}\left(e_{k}\right)\left(e_{k}\right.$ are left identities for $\left.E_{R}\left(e_{i}\right)\right)$.

Lemma 8. Let $e_{i} R e_{k}$. Then the mapping $g_{k} \rightarrow g_{k} e_{i}$ is a homomorphism of $G_{k}$ into $G_{i}$.

The proof follows from Lemmas 4,5 and 6.
As a consequence of the foregoing results we obtain the construction of any semigroup having the property $U$ :

Theorem 5. Let I be an idempotent semigroup having the property $U$. To every $e_{n} \in E_{R}\left(e_{i}\right)$ we associate a group $G_{n}$ all isomorphic to $G_{i}$. Denote $P_{i}=\cup\left\{G_{n} / e_{n} \in\right.$ $\left.\in E_{R}\left(e_{i}\right)\right\}$ and define a multiplication in $P_{i}$ by the following rule: $g_{i} g_{n}=\left(\psi_{n}^{i} g_{i}\right) g_{n}$, where $\psi_{n}^{i}$ is a homomorphism of $G_{i}$ into $G_{n}$.

Let $\mathfrak{G}$ be a set of homomorphisms such that for each $E_{R}\left(e_{i}\right) R E_{R}\left(e_{k}\right)$ there exists in $\mathfrak{H}$, a homomorphism of $P_{k}$ into $P_{i}$ (denoted by $\varphi_{i}^{k}$ ), where $\varphi_{i}^{i}$ is the identical mapping and $\varphi_{k}^{n} \varphi_{n}^{i}=\varphi_{k}^{i}$. Denote $P=\cup\left\{P_{i} / E_{R}\left(e_{i}\right) \subseteq I\right\}$ and define in $P$ a multiplication as follows: let $E_{R}\left(e_{i}\right) \bar{R} E_{R}\left(e_{k}\right)$ in $I$ and let $g_{i} \in P_{i}, g_{k} \in P_{k}$, then $g_{i} g_{k}=g_{i}\left(\varphi_{i}^{k} g_{k}\right), g_{k} g_{i}=\left(\varphi_{i}^{k} g_{k}\right) g_{i}$.

The semigroup $P$ has the property $U$ and any semigroup having the property $U$ can be constructed in this manner by choosing suitably $I$ and $\mathfrak{H}$.

Remark l. In [4] the semigroup $P$ constructed in the manner described in Theorem 5 is called a product of semigroups $P_{i}$ over the semigroup $I$. [4] deals with the structure of such semigroups.

We have the following special case:
Theorem 6. Let $I$ be an idempotent semigroup each subsemigroup of which possesses a unique left identıty ( $I$ is a chain). To each $e_{i} \in I$ we assign a periodic group $G_{i}$. Let $\mathfrak{G}$ be a set of homomorphisms such that if $e_{i} e_{k}=e_{i}$, then there exists a homomorphism of $G_{k}$ into $G_{i}$ (denoted by $\varphi_{i}^{k}$ ) with $\varphi_{i}^{i}$ as the identical mapping and $\varphi_{k}^{n} \varphi_{n}^{i}=\varphi_{k}^{i}$. Let $P=\cup\left\{G_{i} / e_{i} \in I\right\}$. Define a muttiplication in $P$ as follows: Let $e_{i} e_{k}=e_{i}$, then $g_{i} g_{k}=g_{i}\left(\varphi_{i}^{k} g_{k}\right), g_{k} g_{i}=\left(\varphi_{i}^{k} g_{k}\right) g_{i}$. Then each subsemigroup of $P$ possesses a unique left identity. Conversely every semigroup $P$
each subsemigroup of which possesses a unique left identity can be constructed in this manner.

Remark 2a. The statement that $I$ is a chain follows from Theorem 3 and Theorem 4 by which each $E_{R}\left(e_{k}\right)$ possesses a unique element.

Remark 2b. In [4] the semigroup constructed by the construction given in Theorem 6 is called a product of groups $G_{i}$ over the semigroup I. [4] deals with the structure of such semigroups.

Evidently the subsemigroup $I(S)$ is isomorphic to $I$ (see Theorem 5). Accordingly we use the same symbols in $J$ as in $I(S)$.

From the foregoing we evidently have:
Theorem 7. Let the semigroup $S$ have the property $U$. Then:
a) In $J$ we have $\left(e_{i}\right)_{R}=\cup E_{R}\left(e_{n}\right)$ for $E_{R}\left(e_{n}\right) \bar{R} E_{R}\left(e_{i}\right)$; further $F_{R}\left(e_{i}\right)=$ $=E_{R}\left(e_{i}\right)$.
b) In $S$ we have $\left(e_{i}\right)_{R}=\cup G_{k}$ for $e_{k} \in\left(e_{i}\right)_{R}$ in $J$; further $F_{R}\left(e_{i}\right)=\cup G_{k}$ for $e_{k} \in E_{R}\left(e_{i}\right)$.

In both cases the elements of $E_{R}\left(e_{i}\right)$ are left identities of the ideals $\left(e_{i}\right)_{R}$ in $J$ as well as in $S$.

Theorem 8. Let the semigroup $S$ have the property $U$. Then:
a) In $J$ we have $F_{L}\left(e_{i}\right)=\left\{e_{i}\right\} ;\left(e_{i}\right)_{L} \cap E_{R}\left(e_{i}\right)=\left\{e_{i}\right\}$;
b) In $S$ we have $F_{L}\left(e_{i}\right)=G_{i},\left(e_{i}\right)_{L}=\cup G_{k}$ for $e_{k} \in\left(e_{i}\right)_{L}$ in $J$.
c) $\left(e_{i}\right)_{L}$ in $J$ and in $S$ possesses an identity $e_{i}$.
d) Let $e_{k} \in E_{k}\left(e_{i}\right), e_{k} \neq e_{i}$. Then $\left(e_{i}\right)_{L} \subseteq\left(e_{k}\right)_{L}$ does not hold.

Remark 3. $\left(e_{i}\right)_{L} \cap E_{R}\left(e_{n}\right)$ in $J$ for $E_{R}\left(e_{n}\right) \bar{R} E_{R}\left(e_{i}\right), n \neq i$ can contain more than one element of $E_{R}\left(e_{n}\right)$.

Example. Let $S$ be a semigroup given by the following multiplication table:

|  | $a_{1}$ | $a_{2}$ | $a_{3}$ | $a_{21}$ | $a_{32}$ | $a_{321}$ | $a_{31}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $a_{1}$ | $a_{1}$ | $a_{2}$ | $a_{3}$ | $a_{21}$ | $a_{32}$ | $a_{321}$ | $a_{31}$ |
| $a_{2}$ | $a_{21}$ | $a_{2}$ | $a_{3}$ | $a_{21}$ | $a_{32}$ | $a_{321}$ | $a_{31}$ |
| $a_{3}$ | $a_{31}$ | $a_{32}$ | $a_{3}$ | $a_{321}$ | $a_{32}$ | $a_{321}$ | $a_{31}$ |
| $a_{21}$ | $a_{21}$ | $a_{2}$ | $a_{3}$ | $a_{21}$ | $a_{32}$ | $a_{321}$ | $a_{31}$ |
| $a_{32}$ | $a_{321}$ | $a_{32}$ | $a_{3}$ | $a_{321}$ | $a_{32}$ | $a_{321}$ | $a_{31}$ |
| $a_{321}$ | $a_{321}$ | $a_{32}$ | $a_{3}$ | $a_{321}$ | $a_{32}$ | $a_{321}$ | $a_{31}$ |
| $a_{31}$ | $a_{31}$ | $a_{32}$ | $a_{3}$ | $a_{321}$ | $a_{32}$ | $a_{321}$ | $a_{31}$ |

Each subsemigroup of $S$ possesses at least one left identity. $S$ is an idempotent semigroup. We can obtain a graphical representation of $S$ as follows: Small circles are drawn to represent the elements of $S$. An oriented segment is then drawn from $a_{i}$ to $a_{k}$ whenever $a_{i} R a_{k}$. (Fig. 1.) We have $\left(a_{1}\right)_{L}=\left\{a_{1}, a_{21}, a_{321}, a_{31}\right\}$, $E_{R}\left(a_{3}\right)=\left\{a_{3}, a_{32}, a_{321}, a_{31}\right\}$. Hence $E_{R}\left(e_{3}\right) \cap\left(a_{1}\right)_{L}=\left\{a_{321}, a_{31}\right\}$.

Remark 4. Considering a left ideal $L$ in $J$ (not necessarily principal), it is evident that there exists such an $E_{R}\left(e_{i}\right)$ that $L \cap E_{R}\left(e_{i}\right) \neq \emptyset$ and we have $\boldsymbol{E}_{R}\left(e_{n}\right) \bar{R} E_{R}\left(e_{i}\right)$ for all $E_{R}\left(e_{n}\right)$ with $L \cap E_{R}\left(e_{n}\right) \neq \emptyset$. Then all elements of $E_{R}\left(e_{i}\right)$ are left identities in $L$.


Fig. 1.

## 2. SEMIGROUPS EACH LEFT IDEAL OF WHICH POSSESSES A LEFT IDENTITY

Definition. The semigroup $S$ is said to have the property $L$ iff each left ideal of $S$ possesses at least one left identity.

In this section we shall consider the semigroup $S$ having the property $L$.
Lemma 9. $e$ is an identity of $(e)_{L}$.
Proof. Evidently $e$ is a right identity of $(e)_{L}$. Further, let $e$ ' be a left identity of $(e)_{L}$, hence $e^{\prime} e=e$. Since $e^{\prime} \in(e)_{L}$, we have $e^{\prime} e=e^{\prime}$. Thus $e=e^{\prime}$, hence $e$ is a left identity. This implies that $e$ is an identity of $(e)_{L}$.

Lemma 10. For each $e_{i}, e_{k} \in I(S)$ at least one of the relations $e_{i} R e_{k}, e_{k} R e_{i}$ holds.
Proof. Consider the left ideal of $S: N=\left(e_{1}\right)_{L} \cup\left(e_{2}\right)_{L}$. Let $e$ be the left identity of $N$. Then either $e \in\left(e_{1}\right)_{L}$, or $e \in\left(e_{2}\right)_{L}$. Let $e \in\left(e_{1}\right)_{L}$, then by Lemma 9 . we have $e=e_{1}$. Thus $e_{1} e_{2}=e_{2}$, whence $e_{2} R e_{1}$. In the case that $e \in\left(e_{2}\right)_{L}$ we prove analogously that $e_{1} R e_{2}$ holds.

With respect to the property $L$ we evidently have:
Lemma 11. The set $E$ consisting of the subsets $E_{R}\left(e_{i}\right)$ is a dually well-ordered chain with respect to the relation $\bar{R}$ defined in Theorem 3.

Lemma 12. Let $e_{1} R e_{2}$, then $e_{1} e_{2} \in E_{R}\left(e_{1}\right)$.
Proof. $\quad\left(e_{1} e_{2}\right) e_{1}=e_{1}\left(e_{2} e_{1}\right)=e_{1}$, hence $e_{1} R\left(e_{1} e_{2}\right)$. Further $e_{1}\left(e_{1} e_{2}\right)=\epsilon_{1} e_{2}$, hence $\left(e_{1} e_{2}\right) R e_{1}$. Together we have $e_{1} e_{2} \in E_{R}\left(e_{1}\right)$.

- Theorem 9. $I(S)$ is a subsemigroup of $S$.

Proof. Let for $e_{1}, e_{2} \in I(S) e_{1} R e_{2}$ holds. Then $e_{2} e_{1}=e_{1} \in I(S)$, further $\left(e_{1} e_{2}\right)\left(e_{1} e_{2}\right)=e_{1}\left(e_{2} e_{1}\right) e_{2}=e_{1} e_{2} \in I(S)$, q.e.d.

Theorem 10. Each element $x \in S$ belongs to some $F_{L}(e)$-class.
Proof. We have to prove that $(x)_{L}=(e)_{L}$ for some $e \in I(S)$. Let $e$ be a left identity of $(x)_{L}$. Then $e=s x$ for some $s \in S$. Let $e^{\prime}$ be a left identity of $(s)_{L}$. Then $e=e^{\prime} s x$, hence $e^{\prime} e=e$. For some $z \in S$ we have $e^{\prime}=z s$, whence $e e^{\prime}=$ $=s x e^{\prime}=s x z s$. But $e e^{\prime} x=x$ (since $e x=x, e=e^{\prime} s$ ), whence $e e^{\prime}(e x)=e x=x$, hence $e e^{\prime} x=x$. Since $e e^{\prime}=s x z s$, we obtain $x=e e^{\prime} x=s x z s x=e z e$, thus $x \in(e)_{L}$. This means that $(x)_{L} \subseteq(e)_{L}$. Since $e \in(x)_{L}$, we have $(e)_{L} \subseteq(x)_{L}$; this, together with $(x)_{L} \subseteq(e)_{L}$ proves that $(x)_{L}=(e)_{L}$ as required.

Theorem 11. $S$ is a union of groups $F_{L}(e)(e \in I(S))$.
Proof. The following holds: Let $(x)_{L}=(y)_{L}=(e)_{L}$, then $(x y)_{L}=(e y)_{L}=$ $=(y)_{L}=(e)_{L}$; further $(y x)_{L}=(e x)_{L}=(x)_{L}=(e)_{L}$. Hence $F_{L}(e)$ is a semigroup. We have to prove that $F_{L}(e)$ is a group. It follows from Lemma 9 that $e$ is an identity of $F_{L}(e)$. We shall show that for any $x \in F_{L}(e)$ there exists an $y \in F_{L}(\epsilon)$ such that $y x=e$. We have already seen that $e=s x=$ $=s(e x)=(s e) x$ for some $s \in S$. We shall show that $s e \in F_{L}(e)$. Evidently $s e \in(e)_{L}$, hence $(s e)_{L} \subseteq(e)_{L}$. Let $e^{\prime}$ be a left identity of $(s)_{L}$, hence $e^{\prime}=z s$ for some $z \in S$. From $e=s x$ we obtain $e=e^{\prime} s x$, hence $e^{\prime} e=e$. Therefore $e=e^{\prime} e=(z s) e=z(s e)$, thus $e \in(s e)_{L}$ or $(e)_{L} \subseteq(s e)_{L}$. This, together with $(s e)_{L} \subseteq(e)_{L}$ proves $(e)_{L}=(s e)_{L}$. To accomplish our proof it is sufficient to put $y=$ se According to Lemma 9, each $F_{L}(e)$-class of $S$ consists of a unique group, thus the $F_{L}(e)$-class is a group. According to Theorem 10 S is a union of groups.

Lemma 13. Let $e_{i} R e_{k}$, then $F_{L}\left(e_{k}\right) F_{L}\left(e_{i}\right) \subseteq F_{L}\left(e_{i}\right)$.
Proof. $e_{i} R e_{k}$ implies $e_{k} e_{i}=e_{i}$. Let $x \in F_{L}\left(e_{i}\right), y \in F_{L}\left(e_{k}\right)$. There exists an element $z \in F_{L}\left(e_{k}\right)$ such that $z y=e_{k}$, hence $z y e_{i}=e_{k} e_{i}=e_{i}$ and $e_{i}=\left(y e_{i}\right)_{L}$; this, together with the evident statement $y e_{i} \in\left(e_{i}\right)_{L}$ proves that $\left(e_{i}\right)_{L}=$ $=\left(y e_{i}\right)_{L}$. This means that $y e_{i} \in F_{L}\left(e_{i}\right)$. Now $y x=y\left(e_{i} x\right)=\left(y e_{i}\right) x \in F_{L}\left(e_{i}\right)$ as required.

Theorem 12. $P_{i}=\cup\left\{F_{L}\left(e_{n}\right) / e_{n} \in E_{R}\left(e_{i}\right)\right\}$ is a subsemigroup of $S$. Here $F_{L}\left(e_{n}\right)$ are isomorphic groups. The partition of $P_{i}$ into the union of $F_{L}\left(e_{n}\right)$ yields a congruence relation on $P_{i}$.

Proof. According to Lemma 13 for $F_{L}\left(e_{n}\right), F_{L}\left(e_{k}\right) \subseteq P_{i}$ we have $F_{L}\left(e_{n}\right) F_{L}\left(e_{k}\right) \subseteq F_{L}\left(e_{k}\right)$. Hence $P_{i}$ is a subsemigroup of $S$ and the partition of $P_{i}$ into $F_{L}\left(e_{n}\right)$ yields a congruence relation on $P_{i}$. The assertion stating that $F_{L}\left(e_{n}\right)$ are isomorphic groups can be proved similarly as the same assertion in Lemma 5.

From Lemma 13 it is evident:
Remark 5. Let $e_{i}$ be a left identity of the left ideal $N$. Then all $e_{k} \in E_{R}\left(e_{i}\right)$ are exactly all left identities of $N$.

Theorem 13. $F_{R}\left(e_{k}\right)=\cup\left\{F_{L}\left(e_{i}\right) / e_{i} \in E_{R}\left(e_{k}\right)\right\}$.
Proof. The definitions of the relation $R$ and of the set $E_{R}\left(e_{k}\right)$ implies $\left(e_{i}\right)_{R}=\left(e_{k}\right)_{R}$. Evidently $\cup\left\{F_{L}\left(e_{i}\right) / e_{i} \in E_{R}\left(e_{k}\right)\right\} \subseteq F_{R}\left(e_{k}\right)$, since all elements of a group generate the same right principal ideal. We show that $\cup F_{L}\left(e_{i}\right)$ is equal to the whole class $F_{L}\left(e_{k}\right)$. Let $\left(e_{m}\right)_{R}=\left(e_{k}\right)_{R}$; this means $e_{m} R e_{k}$, $e_{k} R e_{e_{n}}$, hence $e_{m} \in E_{R}\left(e_{k}\right)$.

Lemma 14. Let $e_{i} R e_{k}$. Then: a) $F_{L}\left(e_{i}\right) e_{k} \subseteq F_{L}\left(e_{i} e_{k}\right)$; b) $F_{L}\left(e_{i}\right) F_{L}\left(e_{k}\right) \cong F_{L}\left(e_{n}\right)$, where $e_{n} \in E_{R}\left(e_{i}\right)$.

Proof. a) Let $x \in F_{L}\left(e_{i}\right)$. Clearly $x e_{k}=x e_{i} e_{k}$, hence $x e_{k} \in\left(e_{i} e_{k}\right)_{L}$. Let $e_{i}=s x$ for $s \in F_{L}\left(e_{i}\right)$; then $e_{i} e_{k}=s x e_{k}$, consequently $e_{i} e_{k} \in\left(x e_{k}\right)_{L}$. This, together with $x e_{k} \in\left(e_{i} e_{k}\right)_{L}$ implies $\left(e_{i} e_{k}\right)_{L}=\left(x e_{k}\right)_{L}$; in other words $x e_{k} \in F_{L}\left(e_{i} e_{k}\right)$.
b) Let $x \in F_{L}\left(e_{i}\right), y \in F_{L}\left(e_{k}\right)$. Hence $\left(e_{k}\right)_{R}=(y)_{R}$ (since $F_{L}\left(e_{k}\right)$ is a group), whence $\left(e_{i} e_{k}\right)_{R}=\left(e_{i} y\right)_{R}$. By Theorem 14 we obtain $e_{i} y \in \cup\left\{F_{L}\left(e_{n}\right) / e_{n} \in\right.$ $\left.\in E_{R}\left(e_{i}\right)\right\}$. Further $x y=\left(x e_{i}\right) y=x\left(e_{i} y\right)$, whence, by Theorem $12 x y \in$ $\in \cup\left\{F_{L}\left(e_{n}\right) / e_{n} \in E_{R}\left(e_{i}\right)\right\}$.

Clearly we have
Lemma 15. Let $e_{i} R e_{k}, y \in F_{L}\left(e_{k}\right)$. Then the mapping $y \rightarrow y e_{i}$ is a homomorphism of $F_{L}\left(e_{k}\right)$ into $F_{L}\left(e_{i}\right)$.

Lemma 11 implies:
Theorem 15. Let $J$ be an idempotent semigroup having the property L. Then: $J=\cup E_{R}\left(e_{i}\right)$, where the set $\left\{E_{R}\left(e_{i}\right)\right\}$ is a dually well-ordered chain with respect to the relation $\bar{R}$ given as follows: $E_{R}\left(e_{i}\right) \bar{R} E_{R}\left(e_{n}\right)$ iff $e_{i} R e_{k}$.

Theorem 16. Let $J$ be an idempotent semigroup having the property L. To every $e_{n} \in E_{R}\left(e_{i}\right)$ we associate a group $G_{n}$ all isomorphic to $G_{i}$. Denote $P_{i}=\cup\left\{G_{n} / e_{n} \in\right.$ $\left.\in E_{R}\left(e_{i}\right)\right\}$ and define a multiplication in $P_{i}$ by the following rule: $g_{i} g_{n}=\left(\psi_{n} g_{i}\right) g_{n}$, where $\psi_{n}^{i}$ is a homomorphism of $G_{i}$ to $G_{n}$.

Let $\mathfrak{G}$ be a set of homomorphisms, where for each $E_{R}\left(e_{i}\right) \bar{R} E_{R}\left(e_{k}\right)$ in $J$ there exists in $\mathfrak{G}$ a homomorphism of $P_{k}$ into $P_{i}$ (denoted by $\varphi_{i}^{k}$ ), where $\varphi_{i}^{i}$ is the identical mapping and $\varphi_{k}^{n} \varphi_{n}^{i}=\varphi_{k}^{i}$. Denote $P=\cup\left\{P_{i} / E_{R}\left(e_{i}\right) \cong J\right\}$ and define in $P$ a multiplication as follows: Let $E_{R}\left(e_{i}\right) \bar{R} E_{R}\left(e_{k}\right)$ in $J$ and let $g_{i} \in P_{i}, g_{k} \in P_{k}$, then $g_{i} g_{k}=g_{i}\left(\varphi_{i}^{k} g_{k}\right), g_{k} g_{i}=\left(\varphi_{i}^{k} g_{k}\right) g_{i}$.

The semigroup $P$ has the property $L$ and any semigroup having the property $L$ can be constructed in this manner by choosing suitably $J$ and $\mathfrak{F}$.

It is easy to prove, that the foregoing construction gives a semigroup of required properties. In consequence of Lemmas 12-15 and Theorems 11 and 12 every semigroup having the property $L$ can be constructed in this manner.

Remark 6. In case that each left ideal of $S$ possesses a unique left identity, each $E_{R}\left(e_{i}\right)$ contains a unique element, hence $P_{i}$ are groups. We can obtain
a similar construction of $S$ as in Theorem 6 (with the exception that $G_{i}$ need not be periodic).

Remark 7. For a semigroup having the property $L$ it is possible to give a construction of $S$ as a product of groups $G_{i}$ over an idempotent semigroup $J$ having the property $L$, with the multiplication defined by homomorphisms (similarly as in Theorem 16): for $e_{i} R e_{k}$ let $g_{k} g_{i}=\left(\varphi_{i}^{k} g_{k}\right) g_{i}, g_{i} g_{k}=\left(\varphi_{n}^{i} g_{i}\right)\left(q_{n}^{k} g_{k}\right)$, with similar conditions for $n$ as in Lemma 14.

Remark 8. A semigroup having the property $U$ has also the property $L$. Therefore all results proved for the semigroups having the property $L$ hold for semigroups having the property $U$.

## 3. SEMIGROUPS, EACH LEFT IDEAL OF WHICH POSSESSES A RIGHT IDENTITY

Definition. The semigroup $S$ is said to have the property $R$ iff each left idea of $S$ possesses a right identity.

In this section we suppose that the semigroup $S$ has the property $R$.
Lemma 16. For each $e_{i}, e_{k} \in I(S)$ at least one of the relations $e_{i} L e_{k}, e_{k} L e_{i}$ holds.

Proof. Let $e_{i} \neq e_{k}$. Clearly $e_{i}$ is a right identity of $\left(e_{i}\right)_{L}, e_{k}$ is a right identity of $\left(e_{k}\right)_{L}$. Let $e_{n}$ be a right identity of $\left(e_{i}\right)_{L} \cup\left(e_{k}\right)_{L}$. Then either $e_{n} \in\left(e_{i}\right)_{L}$, or $e_{n} \in\left(e_{k}\right)_{L}$. Let $e_{n} \in\left(e_{i}\right)_{L}$, this means that $e_{n} e_{i}=e_{n}$. Since $e_{k}=e_{k} e_{n}$, we have $e_{k}=e_{k} e_{n} e_{i}=e_{k} e_{i}$, hence $e_{k} L e_{i}$. In the case that $e_{n} \in\left(e_{k}\right)_{L}$, we show similarly that $e_{i} L e_{k}$.

Theorem 17. $I(S)$ is a subsemigroup of $S$.
Proof. Let $e_{i} L e_{k}$, this means that $e_{i} e_{k}=e_{i}$. Further $e_{k} e_{i} e_{k}=e_{k} e_{i}$, whence $e_{k} e_{i} e_{k} e_{i}=e_{k} e_{i} e_{i}=e_{k} e_{i}$; hence $e_{k} e_{i} \in I(S)$.

Theorem 18. $S$ is a regular semigroup.
Proof. Let $x \in S$, let $e$ be a right identity of $(x)_{L}$. Then $e=s x$ for some $s \in S$, thus $x e=x s x$. Since $x e=x$ hence $x=x s x$, which proves our assertion.

Theorem 19. Each element $x \in S$ belongs to some $F_{L}(e)$-class.
Proof. Let $e$ be a right identity of $(x)_{L}$. Then $x e=x$, this means that $x \in(e)_{L}$, consequently $(x)_{L} \subseteq(e)_{L}$. Since $e \in(x)_{L}$, we have $(e)_{L} \subseteq(x)_{L}$, hence $(x)_{L}=(e)_{L}$.

Theorem 20. Each element $x \in S$ belorgs to some $F_{R}(e)$-class.
Proof. According to Theorem $18 S$ is regular, hence there is an $s$ such that
$x=x s x$. Therefore $x s=x s x s$; thus $x s$ is an idempotent, this means that $x s \in I(S)$. Evidently $x \in(x s)_{R}, x s \in(x)_{R}$, this implies $(x)_{R}=(x s)_{R}$.

Evidently we have:
Lemma 17. Let $e_{i} L e_{k}$. Then either $e_{i} R e_{k}$, or $e_{i}, e_{k}$ are incomparable.
Theorem 21. $F_{L}(e) \cap F_{R}(e)$ is a maximal group of $S$.
Proof. Denote $F_{L}(e) \cap F_{R}(e)=T$. Let $x, y \in T$. Then we have $x e=e x=x$. This means that $e$ is an identity of $T$. We have $(x)_{L}=(y)_{L}=(e)_{L},(x)_{R}=$ $=(y)_{R}=(e)_{R}$. Hence $\left(x^{2}\right)_{L}=(y x)_{L}=(e x)_{L}=(x)_{L}=(e)_{L},\left(x^{2}\right)_{R}=(x y)_{R}=$ $=(x e)_{R}=(x)_{R}=(e)_{R}$. This says $x^{2} \in T$. Similarly we obtain $y^{2} \in T$. At the same time we have $(x y)_{R}=(e)_{R},(x y)_{L}=(e)_{L}$, hence $x y \in T$. In a similar way we obtain $y x \in T$, which says that $T$ is a semigroup. We shall show that $T$ is a group. We have $e=s x$ for some $s \in S$. Now $e=e s(e x)=(e s e) x$, hence ese is a left inverse for $x$. We shall show that ese $\in T$. Since $e=s x$, we obtain $e=e s(e x)=(e s e) x$, hence $e \in(e s e)_{R}$; but clearly ese $\in(e)_{R}$. Summarily we have $(e s e)_{R}=(e)_{R}$. Further we assert that $e=$ xese. Namely $e=x z$ for some $z \in S$ (by the assumption $\left.(e)_{R}=(x)_{R}\right)$. Then $x(e s e)=x e s(x z)=x e(s x) z=$ $=x e e z=x e z=x z=e$, hence $e \in(e s e)_{L}$. Evidently also ese $\in(e)_{L}$, hence $(e s e)_{L}=(e)_{L}$. Consequently ese $\in T$. We proved that $T$ is a group. It is evidently a maximal group, since all elements of a group generate the same left (right) principal ideal.

Theorem 22. $F_{R}\left(e_{i}\right) \cap F_{L}\left(e_{k}\right)$ can possess at most one idempotent.
Proof. Let $e_{n}, e_{m} \in F_{R}\left(e_{i}\right) \cap F_{L}\left(e_{k}\right)$. Then $\left(e_{n}\right)_{L}=\left(e_{m}\right)_{L}$, whence $e_{n} e_{m}=e_{n}$. At the same time $\left(e_{n}\right)_{R}=\left(e_{m}\right)_{R}$, thus $e_{n} e_{m}=e_{m}$. Hence $e_{n}=e_{m}$.

Lemma 18. Let $x \in F_{L}\left(e_{i}\right), y \in F_{R}\left(e_{k}\right)$ and let $e_{i} L e_{k}$. Then $x y \in F_{R}\left(e_{i}\right)$, $x y \in F_{L}\left(e_{i} y\right) \leqq F_{L}(y)$.

Proof. Since $x \in\left(e_{i}\right)_{L} \subseteq\left(e_{k}\right)_{L}$, we have $x e_{k}=x$. Since $(y)_{R}=\left(e_{k}\right)_{R}$, we have $e_{k}=y z$ for some $z \in S$. Hence $x=x e_{k}=x y z$, whence $x \in(x y)_{R}$; evidently $x y \in(x)_{R}$, thus $(x)_{R}=(x y)_{R}$. Further $(x)_{L}=\left(e_{i}\right)_{L}$ implies $(x y)_{L}=$ $=\left(e_{i} y\right)_{L} \subseteq(y)_{L}$; this proves the second part of our assertion.

Theorem 23. Let each left ideal of $S$ possess a unique right identity. Then $I(S)$ is a commutative semigroup, which is a chain with respect to the relation $L(R)$.

Proof. Let $e_{i} \in\left(e_{k}\right)_{L}$; then $e_{i}=s e_{k}$ for some $s \in S$, whence $e_{i}=s e_{k} e_{i}$; thus $e_{i} \in\left(e_{k} e_{i}\right)_{L}$. This implies $\left(e_{i}\right)_{L} \subseteq\left(e_{k} e_{i}\right)_{L}$. Evidently $e_{k} e_{i} \in\left(e_{i}\right)_{L}$, and $\left(e_{k} e_{i}\right)_{L} \subseteq\left(e_{i}\right)_{L}$, hence $\left(e_{i}\right)_{L}=\left(e_{k} e_{i}\right)_{L}$. Further: $e_{i}$ is a right identity of $\left(e_{i}\right)_{L}, e_{k} e_{i}$ a right identity of $\left(e_{k} e_{i}\right)_{L}$. With respect to the uniqueness of the identity we have $e_{i}=e_{k} e_{i}$. Further $e_{i}=s e_{k}$ implies $e_{i} e_{k}=e_{i}$, hence $e_{i}=e_{k} e_{i}=e_{i} e_{k}$. By Lemma $16 I(S)$ is a chain with respect to the relation $L(R)$.

Corollary. In such semigroups $e_{i} L e_{k}$ implies $\epsilon_{i} R e_{k}$.

Theorem 24. Let each left ideal of $S$ possess a unique right identity. Then each $F_{R^{-}}\left(F_{L^{-}}\right)$class possesses a unique idempotent.

Proof. Let $\left(e_{i}\right)_{R}=\left(e_{k}\right)_{R}$. According to Theorem 22 we have $e_{i}=e_{k}$. Analogously for the $F_{L}$-classes.

## REFERENCES

[1] Petrich M., Semigroups certain of whose subsemigroups have identities, Czechosl. Math. J. 16 (91) (1966), 186-198.
[2] Schwarz Š., Teória pologrúp, Sborník prác Prír. fak. Slov. univ. v Bratislave 6 (1943), 1-64.
[3] Kolibiarová B., O pologrupách, ktorých každá ciastočná pologrupa má lavú jednotku, Mat.-fyz. časop. 7 (1957), 177-182.
[4] Kolibiarová B., On a product of semigroups, Mat.-fyz. časop. 15 (1965), 304-312.
[5] Birkhoff G., Lattice theory, New York 1948.
Received January 29, 1966.
Katedra matematiky a deskriptívnej geometrie Stavebnej fakulty
Slovenskej vysokej školy technickej,
Bratislava

