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Matematický časopis 17 (1967), No. 2 

A NOTE ON THE STRUCTURE OF SOME TYPES 
OF SEMIGROUPS 

BLANKA KOLIBIAROVÁ, Bratislava 

The purpose of the presented paper is to study the structure of semigroups 
of following types: 1. semigroups, each subsemigroup of which possesses 
a left identity; 2. semigroups, each left ideal of which possesses a left identity; 
3. semigroups, each left ideal of which possesses a right identity. The main 
part of our discussion deals with the construction and with the properties 
of ideals (and .F-classes). I t can be shown that types 1 and 2 are special cases 
of the so called ,,product of semigroups over a given semigroup" which has 
been introduced in [4]. The construction of semigroup of type 3 is here not 
given. Many of the results of the present paper are contained in the paper 
[1] which I have read after having prepared my results for publication. I mention 
them here, because they have been obtained in a different, quite simple manner 
(similarly as in [3], [4]). 

Let S be a semigroup. The set of all elements which generate the same 
principal ideal (left (X)L, right (X)R, two-sided (x)) is called the .F-class (left 
FL(X), right FR(X), two-sided F(x)). An element e eS is called a left (right) 
identity iff ex = x (xe = x) for each x e S. The set of idempotents of S will 
be denoted by I(S); the elements of I(S) will be denoted by e (with indices, 
if necessary). 

We shall introduce in I(S) the relation R and L as follows: 

Definition 1. etRejc iff ei = ejcei (i.e. (ei)R Q (^)H.). 

Lemma 1. The relation R is a quasiordering of the set I(S) (in the sense of [5]). 
Proof . I t is evident that e^Re*; further eiRejc, ejcRen imply eiRen. 
The set of all elements b# for which eiRejc, ejcRei simultaneously hold will 

be denoted by ER(ei). 

Definition 2. eiLejc iff ejc = eiejc (this means (e{)L Q (^)L). 
We evidently have 

Lemma 2. The relation L is a quasiordering of the set I(S). 
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The set of all elements ek for which eiLek, ekLei simultaneously hold will 
be denoted by Fh(ei). 

Now we shall introduce the relation = in the set of FL~ (FV) classes: 

Definition 3. FL(x) =FL(y) (FR(x) = FR(y)) iff (x)L Q (y)L ((X)R g (y)R). 

1. SEMIGROUPS, EACH SUBSEMIGROUP OF WHICH POSSESSES 
A LEFT IDENTITY 

Definition. The semigroup S will be said to have the property U iff each sub-
semigroup of S possesses at least one left identity. 

In what follows we mention some properties of these semigroups obtained 
in [3]. 

Theorem 1. The necessary and sufficient condition for a semigroup S to have 
the property U is: 1. S is the union of disjoint periodic groups; 2. I(S) is a sub-
semigroup of S and has the property U. 

Proof . (Analogously as in [3]). a) Let S have the property U. 1. Let s e S; 
we consider the semigroup Sn = {s, s2, ...}; by the assumption Sn possesses 
a left identity, which is evidently an identity of Sn. This means, s has a finite 
order, hence according to Theorem 7 [2] S is a union of disjoint periodic groups. 
2. is evident since I(S) is a subsemigroup of S (see Theorem 4 of [3]). b) Let S 
have the properties 1, 2. Let H be a subsemigroup of S; let heH. Then by 
1. there exists a positive integer n such that hn = tn, where en is an idempotent and 
ejji = h. Hence 1(H) -^ 0. According to 2., 1(H) is a subsemigroup of I(S)9 

hence 1(H) possesses a left identity e^. Then enh = eH(ejih) = (eneji)h = 
= ejji = h and so eH is a left identity of H. 

In this section S is always a semigroup having the property U. The groups 
in the decomposition of S in the sense of Theorem 1 will be denoted by Gi; 
ei will denote the identity of Gi. The group with the identity eiek will be denoted 
by Gik. The elements of G% will be denoted by gi (with indices if necessary). 

Lemma 4. Let eiRek. Then GkGi Q Gi. 
Proof . First we shall prove that gkeieGt. Let gkeieGn. this means 

tha t for any positive i n t ege r s (gkei)n = en holds, thus enet = en. By 
Lemma 3 for the couple eif en at least one of the relations eiRen, enRei 
holds. Let etRen, i.e. et = enei. By the foregoing we have et = en. Let enRe\, 
i.e. eien = en. Since gkei eGn, we have gket = gkeien = gken = engjcei. Since 
for some integers m, n we have (gkei)n = ei,g^ = ek, we obtain en = (gkei)mn = 
= (gTzei)mn-xgkei = (gkei)™n-2gkengkei = (gjcei)gkgkei and repeating this proceed
ing we obtain after mn — 1 steps en = gk

nei = ekei = et, therefore gket e Gt. 
Hence gkgt = gk(eigi) = (g&t)gi e Gi, q.e.d. 
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Lemma 5. Pi = (J {Gkjek eERJei)} is a subsemigroup of S. Here Gk are 
isomorphic groups and the partition of Pi into the groups Gk yields a congruence 
relation on Pi. 

Proof . From Lemma 4 it follows eiRek implies GkG% Q Gt. Similarly GiGk Q 
QGk. Therefore Pi is a subsemigroup of S and the partition of Pi, into 
Gk(ek e En(ei)) yields a congruence relation on Pi,. 

Clearly the mapping gi -> gtek is a homomorphism of Gi into Gk. We show 
that each element gk e Gk is the image of some element of Gi,. Since gka e Gi, 
we have (gkei)ek = gk(eiek) = gkek = gk, thus gk is the image of gket. Further 
let gnek = gi2ek, then gne^et = gi2eket, whence ga = gi2 (since eket = et, 
gaet = ga , g^i = ^ 2 ) . This shows that Gi and Gk are isomorphic groups. 

Lemma 6. Let CiRek. Then Gigk Q Gn, where en eER(d). 
P r o o f . First we prove that eigkeGn, where ene ER(ei) . Suppose tha t 

(eigk)
n = en , gm = ek for some positive integers m, n. Therefore evidently 

eien = en, thus enRei. Further enei = (eigk)
mnei, and by Lemma 4 gka e Gi. 

Hence we obtain agjtei = giceu Similarly as in the proof of Lemma 4 we get 
enei = ekei = ei, hence e%Ren. Together with enRei we obtain en eER(ei), 
With respect to Lemma 5 we have g%gk = gi(eigk) e Gn. Hence G%gk Q Gn. 

Lemma 7. Let ei,Rek. Then the following holds: 

a) Let e$f eGm, e{gleGn, (n < m), emRen; then eng
m~n e Gm. 

b) Let e{g\ e Gm, e{g^ e Gm (n < m), where if gm+s = ek, then (m — n)js. 
We then have em = Ciek. 

c) Let b) hold where at least two of the integers m, n, s are relatively prime. 
Then % J Q Gik for each v = 1, 2, 3, . . . 

Proof, a) (eig1)z = en for some z. Hence en = (eigl)
z~1(eigl) and therefore 

engTn = {^ir\^Tm-n) = {^ir\e^)eGm, 
b) Let m — njs, this means s = k(m — n) for some k. According to a) 

we have «e* = ei9
m+s = e&g*"-* = e ^ e ^ ^ g t 1 ^ = eig

memgm- eJt1**-**. 
Repeating this proceeding we obtain after k - - 1 steps eiek = eig

m(emg(
k
n m))k e 

e Gm. Thus em = eiek. 
c) First we shall prove tha t gm+s = ek implies e{g\ e Gik. Suppose etg

m e Gt > 

which means eieket = et, hence etReiek. Then according to Lemma 4 and with 
respect to the fact that by the assumption and b) e$m e Gik holds, we obtain 
ei9Tei9l e Gi- N o w ei9Tei9l = (ei9TeieM = ei9T+8'= eiek. Thus et = etek. 
Suppose that at least two of the integers m, n, s be relatively prime. We denote 
them by x, y. We then have 1 = kx + ty for some integers k, t. Since e{g

m
% 

ei9n
k, e&eGtt, we obtain e ^ e r f e f f t t , whence eigfeig

t
k
y = eigf+ty = 

= eigk e Gik. Hence evidently e^l e Gik for each v = 1, 2, 3, . . . 
Lemma 4 and 6 lead immediately to 
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Theorem 2. The partition of S into semigroups Pi (see Lemma 5) yields 
a congruence relation on S. 

The following two Theorems can be easily proved: 

Theorem 3. The set,E consisting of all ER(ei) (for e% e I(S)) is a dually well-
ordered chain with respect to the relation R given as follows: ER(en)RER(ei) 
iff enRei. 

Theorem 4. Let I be an idempotent semigroup having the property U. Then: 
I = u ER(ei) where the elements ER(ei) form a dually well-ordered chain with 
respect to the relation R. At the same time ER(ei)RER(ek) implies ER(ei)ER(ek) 5^ 
^ER(ei); ER(ek)ER(e4) ^ER(et). Fmther eket. = et for eteER(ex), ekeER(ek)(ek 

are left identities for ER(ei)). 

Lemma 8. Let eiRek. Then the mapping gk -> gkei is a homomorphism of Gk 

into Gi. 
The proof follows from Lemmas 4,5 and 6. 
As a consequence of the foregoing results we obtain the construction of any 

semigroup having the property U: 

Theorem 5. Let I be an idempotent semigroup having the property U. To every 
>en eER(ei) we associate a group Gn all isomorphic to Gi. Denote Pi = U \Gn\en e 
<eER(ei)} and define a multiplication in Pi by the following rule: g%gn = (ipl

ngi)gn, 
where ipl

n is a homomorphism of Gi into Gn. 
L/et <r> be a set of homomorphisms such that for each ER(ei)RER(ek) there 

•exists in $$, a homomorphism of Pk into Pi (denoted by q^), where <p) is the 
identical mapping and <pl<pn = <pl

k. Denote P = U {PijER(ei) QI] and define 
in P a multiplication as follows: let ER(ei)RER(ek) in I and let gi e Pi, gke Pk, 
then gtgk = g^g^, gm = {<figk)gi. 

The semigroup P has the property U and any semigroup having the property 
U can be constructed in this manner by choosing suitably I and § . 

R e m a r k 1. In [4] the semigroup P constructed in the manner described 
in Theorem 5 is called a product of semigroups Pi over the semigroup I. 
[4] deals with the structure of such semigroups. 

We have the following special case: 

Theorem 6. Let L be an idempotent semigroup each subsemigroup of which 
^possesses a unique left identity (I is a chain). To each CiS L we assign a periodic 
group Gi. Let § be a set of homomorphisms such that if Ciek = ei, then there 
exists a homomorphism of Gk into Gi (denoted by <p*) with <p\ as the identical 
mapping and <p^<pl

n = <p\. Let P = U {Gi\ei e I}. Define a multiplication in P 
as follows: Let eiek = d, then gtgk = gi(<p\gk), gkgi = (yfyklQi- Then each sub-
semigroup of P possesses a unique left identity. Conversely every semigroup P 
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each subsemigroup of which possesses a unique left identity can be constructed 
in this manner. 

R e m a r k 2a. The statement that I is a chain follows from Theorem 3 and 
Theorem 4 by which each ER(ek) possesses a unique element. 

R e m a r k 2b. In [4] the semigroup constructed by the construction given 
i n Theorem 6 is called a product of groups G\ over the semigroup I. [4] deals 
with the structure of such semigroups. 

Evidently the subsemigroup I(S) is isomorphic to I (see Theorem 5). 
Accordingly we use the same symbols in J as in I(S). 

From the foregoing we evidently have: 

Theorem 7. Let the semigroup S have the property U. Then: 
a) In J we have (et)R = U ER(en) for ER(en)RER(ei); further FR(et) = 

= ER(et). 
b) In S we have (ei)R = U Gk for eke (ei)R in J; further FR(ei) = U Gk 

Jor ekeER(ei). 
In both cases the elements of ER(ei) are left identities of the ideals (e,i)R in J 

as well as in S. 

Theorem 8. Let the semigroup S have the property U. Then: 
a) In J we have FL(ei) = {ei}; ( ^ ) L n ER(ei) = {a}; 
b) In S we have FL(^) = Gi, (e )̂L = U Gk for ek e (e )̂L in J. 
c) (-H)L in J and in S possesses an identity et. 
d) Let ek eEk(ei), ek # et. Then (ej)L Q (ek)L does not hold. 
R e m a r k 3. ( ^ ) L n ER(en) in J for ER(en)RER(ei), n -?-= i can contain more 

than one element of ER(en). 
E x a m p l e . Let S be a semigroup given by the following multiplication 

table : 

ai «2 aз a2i aз2 aз2i aзi 

aľ ai C*2 aз a2i aз2 aз2i aзi 

«2 «21 Я2 aз a2i aз2 aз2i aзi 

a3 aзi a32 aз aзii aз2 aз2i aзi 

a2i a2i a2 aз a2i aз2 aз2i aзi 

aз2 aз2i aз2 aз aз2i aз2 aз2i aзi 

aз2i aз2i aз2 aз aз2i aз2 aз2i aзi 

aзi aзi aз2 a3 aз2i aз2 aз2i aзi 

F.,ach subsemigroup of S possesses at least one left identity. S is an idempotent 
semigroup. We can obtain a graphical representation of S as follows: Small 
circles are drawn to represent the elements of S. An oriented segment is then 
drawn from ai to ak whenever aiRak. (Fig. 1.) We have (a±)L = {ai, a2\, a32i, &3i}, 
ER(a3) = {a3, a32, a32i, a3i}. Hence ^(63) n (ai)L = {̂ 321, a3{}. 
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R e m a r k 4. Considering a left ideal I in J (not necessarily principal)... 
it is evident that there exists such an ER(ei) that L n ER(ei) -^ 0 and we have. 
ER(en)RER(ei) for all ER(en) with L n ER(en) z£ 0. Then all elements of ER(et\ 
are left identities in L. 

flfî 

« . * 

as 

->-o (7 2f 

- 32 ff32ł ł « Гig. 1. 

2. SEMIGROUPS EACH LEFT IDEAL OF WHICH POSSESSES 
A LEFT IDENTITY 

Definition. The semigroup S is said to have the property L iff each left ideal 
of S possesses at least one left identity. 

I n this section we shall consider the semigroup S having the property L. 

Lemma 9. e is an identity of (C)L . 
Proof . Evidently e is a right identity of (e)z,. Further, let e' be a left identity 

of (e)L, hence e'e = e. Since e' e (e)z,, we have e'e = e\ Thus e = e', hence e 
is a left identity. This implies that e is an identity of (e)L. 

Lemma 10. For each ei,ejc€ I(S) at least one of the relations eiRejc, e^Rei holds. 
Proof . Consider the left ideal of S: N = (ei)L U (e2)z,. Let e be the left 

identity of N. Then either e e (ei)L, or e e (e2)i,. Let e e (ei)L, then by Lemma 9' 
we have e = ei. Thus eie2 = e2, whence e2I?ei. In the case that e e (e2)z, 
we prove analogously that e±Re2 holds. 

With respect to the property L we evidently have: 

Lemma 11. The set E consisting of the subsets ER(ei) is a dually well-ordered 
chain with respect to the relation R defined in Theorem 3. 

Lemma 12. Let e±Re2, then eie2eER(ei). 
Proof . (e\C2)e\ = ei(e2ei) = e±, hence eii2(eie2). 

hence (eie2)J2ei. Together we have eie2 eER(e\). 
FшtҺeГ Єl(ЄiЄ2) -= eie2> 

Theorem 9. I(S) is a subsemigroup of S. 
Proof . Let for e±, e2eI(S) eiRe2 holds. 

(eie2) (eie2) = ei(e2ei)e2 = eie2 61(S), q.e.d. 
Then e2ei = ei e I(S), further 
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Theorem 10. Each element xe S belongs to some FL(e)-class. 
Proof . We have to prove tha t (X)L = (e)^ for some e e I(S). Let e be a left 

identity of (X)L . Then e = sx for some seS. Let e' be a left identity of (S)L -
Then e = e'sx, hence e'e = e. For some zeS we have e' = zs, whence ee' = 
= sxe' = sxzs. But ee'x = x (since ex = x, e = e's), whence ee'(ex) = ex = xy 

hence ee'x = x. Since ee' = sxzs, we obtain x = ee'x = sxzsx = eze, thus 
xe(e)L. This means that (X)L £ (^)L. Since ee(x)L, we have (e)LC(#)L; 
this, together with (X)L £ (e)z, proves that (X)L = (e)L as required. 

Theorem 11. S is a union of groups Fz,(e) (e e I(S)). 
Proof . The following holds: Let (X)L = (y)L = (e)L, then (xy)L = (ey)L = 

= (y)L = (e)L\ further (yx)L = (CX)L = (X)L = (e)L. Hence FL(e) is a semi
group. We have to prove that Ft(e) is a group. I t follows from Lemma 9 
that e is an identity of FL(e). We shall show that for any xeFL(e) there 
exists an y e FL(e) such that yx = e. We have already seen tha t e = sx = 
= s(ex) = (se)x for some seS. We shall show that seeKz.(e). Evidently 
se e (e)L, hence (se)L £ (C)L- Let e' be a left identity of (S)L, hence e' = zs 
for some ze S. From e = sx we obtain e = e'sx, hence e'e = e. Therefore 
e = e'e = (zs)e = z(se), thus e 6 (se)z, or (e)L £ («se)L. This, together with 
(SC)L £ (e)L proves (e)z, = (se)L. To accomplish our proof it is sufficient 
to put y = se According to Lemma 9, each ^(e)-class of S consists of a unique 
group, thus the KL(e)-class is a group. According to Theorem 10 S is a union 
of groups. 

Lemma 13. Let etRejc, then F}L(^JC)FL(e^) £FL(ei). 
Proof, e^e* implies e ^ = a. Let xeFL(ei), yeFL(ejc). There exists 

an element z eFL(ejc) such tha t zy = ejc, hence zyei = ejcei = ei and e* = (ye^Ll 
this, together with the evident statement ye% e (ei)L proves that (e*)L = 
= (yet)L. This means tha t yeieFL(ei). Now yx = y(eix) = (yet)x eF7L(eO 
as required. 

Theorem 12. Pi = U {FL(ew)/e% GF7ij(e )̂} is a subsemigroup of S. Here 
FL(^U) are isomorphic groups. The partition of Pi into the union of FL(en) 
yields a congruence relation on Pi. 

Proof. According to Lemma 13 for FL(en), FL(ejc)£Pi we have 
FL(en)FL(ejc)£FL(ejc). Hence Pi is a subsemigroup of S and the partition 
of Pi into FL(en) yields a congruence relation on Pi. The assertion stating 
that FL(en) are isomorphic groups can be proved similarly as the same assertion 
in Lemma 5. 

From Lemma 13 it is evident: 

R e m a r k 5. Let e* be a left identity of the left ideal N. Then all e# e ER(C4) 

are exactly all left identities of N. 
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Theorem 13. FR(ek) = U {FL(ei)let eER(ek)}. 
Proof . The definitions of the relation R and of the set ER(ek) implies 

(ei)R = (ek)R. Evidently U {FL(ei)/ei e ER(ek)} Q FR(ek), since all elements 
of a group generate the same right principal ideal. We show that U FL(ei) 
is equal to the whole class FL(ek). Let (em)R = (ek)R\ this means emRek,-
<ekRem, hence emeER(ek). 

Lemma 14. Let aRek. Then: a) FL(et)ek QFL(eiek); h) FL(et)FL(ek) Q FL(en), 
where en eER(ei). 

Proof, a) Let x eFL(ei). Clearly xek = xeiek, hence xek e (eiek)h. Let ei = sx 
for seFL(ei); then aek = sxek, consequently eieke (xek)L. This, together 
with xek G (eiek)L implies (eiek)L = (xek)L; in other words xek eFL(eiek). 

b) Let xeFL(ei), yeFL(ek). Hence (ek)R = (y)R (since FL(ek) is a group), 
whence (eiek)R = (eiy)R. By Theorem 14 we obtain e%y e U {FL(en)len e 
^ER(ei)}. Further xy = (xei)y = x(eiy), whence, by Theorem 12 xy e 
>ev{FL(en)leneER(ei)}. 

Clearly we have 

Lemma 15. Let CiRek, ysFL(ek). Then the mapping y-^yei is a homo
morphism of FL(ek) into FL(ei). 

Lemma 11 implies: 

Theorem 15. Let J be an idempotent semigroup having the property L. Then: 
J = U ER(a), where the set {ER(a)} is a dually well-ordered chain with respect 
to the relation R given as follows: ER(ei)RER(en) iff eiRek. 

Theorem 16. Let J be an idempotent semigroup having the property L. To every 
en G ER(ei) we associate a group Gn all isomorphic to Gi. Denote Pi = U {Gnjen e 
^ER(d)} and define a multiplication in Pi by the following rule: gign = (yngi)gn, 
where \j)l

n is a homomorphism of Gi to Gn. 
Let $ be a set of homomorphisms, where for each ER(ei)RER(ek) in J there 

exists in 9) a homomorphism of Pk into Pi (denoted by (p\), where cp\ is the 
identical mapping and (p%(pn = y\. Denote P = U {PijER(ei) QJ} and define 
in P a multiplication as follows: Let ER(ei)RER(ek) in J and let gi e Pi, gk e Pk, 
then gigk = gi{<rfgk), gkgi = ( ^ ) W -

The semigroup P has the property L and any semigroup having the pro
perty L can be constructed in this manner by choosing suitably J and § . 

I t is easy to prove, that the foregoing construction gives a semigroup 
of required properties. In consequence of Lemmas 12 — 15 and Theorems 11 
^,nd 12 every semigroup having the property L can be constructed in this 
manner. 

R e m a r k 6. In case that each left ideal of S possesses a unique left identity, 
•each ER(et) contains a unique element, hence Pi are groups. We can obtain 
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a similar construction of S as in Theorem 6 (with the exception that Gi need 
not be periodic). 

R e m a r k 7. For a semigroup having the property L it is possible to give 
a construction of S as a product of groups Gi over an idempotent semigroup J 
having the property L, with the multiplication defined by homomorphisms 
(similarly as in Theorem 16): for etRek let gkgt = (q$gk)gt, gtgjc = (?£&) (qfyk), 
with similar conditions for n as in Lemma 14. 

R e m a r k 8. A semigroup having the property U has also the property L. 
Therefore all results proved for the semigroups having the property L hold 
for semigroups having the property U. 

3. SEMIGROUPS, EACH LEFT IDEAL OF WHICH POSSESSES 
A RIGHT IDENTITY 

Definition. The semigroup S is said to have the property R iff each left idea 
of S possesses a right identity. 

In this section we suppose that the semigroup S has the property R. 

Lemma 16. For each a, ek e I(S) at least one of the relations CiLek, ek Ijei 
holds. 

Proof . Let a ^ ek. Clearly e« is a right identity of (efii, ek is a right identity 
of (ek)L. Let en be a right identity of (efa U (e*)z,. Then either ene(ei)L, 
or en e (e^)L. Let en e (e^L, this means that enei = en. Since ek = eken, we have 
ek = ekenei = ekei, hence ekLd. In the case tha t en e (ek)L, we show similarly 
t ha t eiLek. 

Theorem 17. I(S) is a subsemigroup of S. 
Proof . Let eiLek, this means that e ^ = e*. Further e^e* = ekei, whence 

ekeiekei = ekeiei = eke%\ hence eket e T(S). 

Theorem 18. S is a regular semigroup. 
Proof . Let x e S, let e be a right identity of (X)L. Then e = sx for some 

s e S, thus xe = xsx. Since xe = x hence x = xsx, which proves our assertion. 

Theorem 19. Each element x e S belongs to some FL(e)-class. 
Proof . Let e be a right identity of (X)L. Then xe = x, this means that 

xe(e)L, consequently (X)LQ(C)L- Since ee(x)L, we have (C)LQ(X)L, 

hence (X)L = (e)L. 

Theorem 20. Each element x e S belongs to some Fii(e)-class. 
Proof . According to Theorem 18 & is regular, hence there is an s such that 
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x = xsx. Therefore xs = xsxs; thus xs is an idempotent, this means t h a t 
xs e I(S). Evidently x e (xs)R, xs e (x)R, this implies (x)R = (xs)R. 

Evidently we have: 

Lemma 17. Let eiLejc. Then either eiRejc, or ei, ejc are incomparable. 

Theorem 21. FL(e) n FR(e) is a maximal group of S. 
Proof . DenoteFL(e) n FR(e) = T. Let x,y eT. Then we have xe = ex = x~ 

This means that e is an identity of T. We have (x)L = (y)L = (e)L, (x)R = 
= (V)R = (e)tf- Hence (x2)L = (yx)L = (ex)L = (#)/, = (e)L, (x2)R = ( ^ ) A = 
= (xe)R = (x)i? = (e)R. This says x2 e T. Similarly we obtain y2 e T. At the 
same time we have (xy)R = (e)R, (xy)L = (e)L, hence xy eT. In a similar 
way we obtain yx e T, which says that T is a semigroup. We shall show that T 
is a group. We have e = sx for some s e S. Now e = es(ex) = (ese)#, hence 
ese is a left inverse for x. We shall show that ese e T. Since e = sx, we obtain 
e = es(ex) = (ese)£, hence e e (ese)H,; but clearly ese e (e)R. Summarily we 
have (ese)R = (e)R. Further we assert that e = xese. Namely e = xz for 
some z e S (by the assumption (e)R = (x)R). Then x(ese) = #es(;rz) = #e(&r)2: = 
= xeez = #ez = xz = e, hence e e (ese)z,. Evidently also ese e (e)L, hence 
(ese)L = (e)L. Consequently eseeT. We proved that J7 is a group. I t is 
evidently a maximal group, since all elements of a group generate the same 
left (right) principal ideal. 

Theorem 22. FR(ei) n FL(ejc) can possess at most one idempotent. 
Proof . Let en,em eFR(a) C\FL(ejc). Then (en)L = (em)L, whence enem = en* 

At the same time (en)R = (em)R, thus enem = em. Hence en = em. 

Lemma 18. Let xeFL(ei), yeFR(ejc) and let eiLejc. Then xyeFR(ei)y 
xyeFL(ety) ^FL(y). 

Proof . Since xe (ei)L Q (ejc)L, we have xejc = x. Since (y)R = (ejc)R, 
we have ejc = yz for some z e S. Hence x = xejc = xyz, whence x e (xy)R; 
evidently xy e (x)R, thus (x)R = (xy)R. Further (x)L = (e^L implies (xy)L = 
= (eiy)L Q (y)L; this proves the second part of our assertion. 

Theorem 23. Let each left ideal of S possess a unique right identity. Then I(S) 
is a commutative semigroup, which is a chain with respect to the relation L (R). 

Proof . Let eie(e.jc)L; then ei = sejc for some seS, whence e4- = se^ei; 
thus eie(ejcei)L. This implies ( ^ ) L C ( ^ ) L . Evidently ejceie(ei)L, and 
(ejcei)L Q (ei)L, hence (ei)L = (ejcCi)L. Further: ê  is a right identity of (ei)L, ejcei 
a right identity of (e#^)L. With respect to the uniqueness of the identity 
we have ê  = e ^ . Further ê  = sejc implies ê e*. = e^, hence ê  = e ^ = e ^ . 
By Lemma 16 I(S) is a chain with respect to the relation L(R). 

Corollary. In such semigroups eiLejc implies tiRejc. 
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Theorem 24. Let each left ideal of 8 possess a unique right identity. Then 

each FR- (FL-) class possesses a unique idempotent. 

Proof . Let (ei)R = (ejc)R. According to Theorem 22 we have et = ejc. 

Analogously for the FVclasses. 
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