Matematicko-fyzikálny časopis

Anton Kotzig

On Even Regular Graphs of the Third Degree

Matematicko-fyzikálny časopis, Vol. 16 (1966), No. 1, 72--75
Persistent URL: http://dml.cz/dmlcz/126715

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1966
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

ON EVEN REGULAR GRAPHS OF THE THIRD DEGREE

ANTON KOTKI(: Bratislava

In the present paper we mean by .graph" a finite. non-eriented graph with out loops.

Let G be any even regular graph of the third degree without multiple edse It is known that the number of vertices of a regular graph of the third degree is always even (see, e. g. König, [3|, p. 21, theorem 3). Let $2 m$ be the number of vertices of C^{\prime}. As G_{i} is an even graph and without multiple edgex, it necessaril. follows that $2 m \geqq 6$. Let $G^{\prime \prime}$ or $G^{\prime \prime}$ respectively be the graph arising from A^{\prime} by the splitting of its edge h that joins the vertices u, v (sec Fig. I the con cept of the splitting of edges was originated by Frink $[\because \| \mid$).

Fig. 1.

Note l. An even graph is also called bichromatic graph (sce Berge. [1]. p. 30). The name was adopted because of the fact that the rertices of such a graph can always be coloured by two colours in such a way that any edge joins two vertices of different colours. In the figures we shall make use of this possibility so that the vertices of one colour will be marked by full circles. the others by void circles.

The following is evident: Any edge of an even graph without multiple edges may be split in two ways; by both ways we always get an even regular graph of the third degree. We shall say that the edge h of the graph G is X-reducible, if at least one of the graphs arising from the splitting of h does not contain multiple edges (in the reverse case we shall say that the edge h is X-irreducible). Such a splitting of the edge h, where there arises from the graph $\underset{r}{ } \boldsymbol{r}$ a graph without multiple edges, will be called the X-reduction of the graph G on the edge h.

Lemma 1. Let G be an even regular graph of the third degree without multiple, edges. Any edge h of it is X-irreducible if and only if it belongs to at least tuo different quadrangles of G that have -- apart from h-.. at least another edge in com:mon. This common edge is always adjacent to h.
l'roof. Let h be any edge of the grajh $(x$ and let h join the vertices u, v. The vertices joined in G by an edge of the rertex u, or v respectively, will be denoted as seen in Fig. 1. It is evident that a, b, c, d are four different vertices. There may exist such quadrangles in G that by proceeding along them we pass through the vertices of the graph in the following order (see Fig. 1): quadrangle $Q_{1}: u . r . c . u:$ quadrangle $Q_{2}: u, v, c, b$; quandrangle $Q_{3}: u, v, d, u ;$ quadrangle $Q_{4}: u . r . d, b$. If there existed in G from among the four considered quadrangles only the quadrangles Q_{1}, Q_{4} that -- apart from h have no other edge in com. mon \cdots (or if only one of them existed) - then the graph $G^{\prime \prime}$ would not contain a multiple edge and the edge h wotild be X-reducible. Similarly, if in G there existed only the quadrangles Q_{2}, Q_{3} (from among the four considered quadran gles). then the graph G^{\prime} would not contain multiple edges and the edge h would be X-reducible. If both the graph G^{\prime} and the graph $G^{\prime \prime}$ are to contain multiple edges, there must exist in G at least one of the following four pairs of quadran gles: $\left\{Q_{1}, Q_{2}\right\},\left\{Q_{1}, Q_{3}\right\},\left\{Q_{2}, Q_{4}\right\},\left\{Q_{3}, Q_{4}\right\}$. Fach of the mentioned four pairs of quadrangles has the following property: the quandrangles of the pair have - apart from $h \quad$ another edge in common and this edge is adjacent to h. The lemma is proved.

We shall say that en even regular graph of the third degree is X-irreducible if each of its edges is X-irreducible. The graph in Fig. \because is an example of such a graph. It will be denoted further by the symbol G^{*}.

Theorem 1. Each component of an X-irreducible graph is isomorphic with the graph (\mathbf{T}^{*}. Proof. It is evident that the component of an X-irreducible graph is an X-irredu-

Fir. 2.
-ible graph. It sufferes therefore to prove that each romenected X irredu rible graph is isomorphic to (i*.

Led t: he a comered X-irreducible graph and let h be any of its edges: let 1. Whe vertion inderit at h. The edge h is X-irreducible. Areording to lemmal. the edge h betongs to two different quadrangles Q. Q^{\prime}. which. apart from h. have another edge in common (let us denote it by g) and g. h are adjacent. W'e can asemme withont loss of generality that the edges g joins the vertex e
 three dgee in eommon (as the fouth edge from () and the fourth edge from (ℓ^{\prime} would be multiple edyes. which is impossible in a X-imedncible epaph). It follow: that the graph fi contains as a partial subtaph the graph F. wiven in Fig. :5, where i. sare two different vertiers.

Let as denote by the symbol f_{r} (or f_{r}, or f_{s}. respectively) that edge incident at the vertex r (or r. or \because, resperdively) that does not belong to F and let \ddot{i} (or \ddot{i}, or $\stackrel{B}{s}$, respectively) be the second vertex, at which the edge f_{r} (ow f_{i}. or f_{s}, respectively) is incident. The edge f_{r} is X-irredurible. Therefore f_{r} must belong to a certain quadrangle $Q^{\prime \prime}$. This quadrangle contains r and must therefore contain further either the edge joining r with u. or the edge joining, with u. Hence: either $\ddot{r}=\ddot{z}$, or $\ddot{z} \quad \ddot{s}$. By a similar consideration with respert to the edge f_{r} and f_{s} we find that $\ddot{r} \quad \ddot{z}=\ddot{z}$ holds. But then the graph F with the edges f_{r}, f_{r}. $f_{\text {s }}$ and with the vertex $\ddot{r}=\ddot{z}$ sforms a graph that represents the whole graph A^{\prime} and $\left(i\right.$ is isomorphic to d^{*}. This proves the theorem.

Let G_{i} be any even regular graph of the third degree without multiple edges and let $R=\left\{V_{0}, V_{1}\right\}$ be such a decomposition of the set of vertices of the graph (it that the following holds: any edge from C_{i} joins vertices from different classes of the decomposition R.

Note ${ }^{2}$. It is known that if μ is the number of components of the even graph ${ }^{\prime}$ and m is the number of decompositions with the above property, then m
$2^{\prime \prime}{ }^{1}$. hence in an even graph there exists at least one such decomposition.
Let u_{0} : i_{0} be vertices from V_{0} and $u_{1} ; r_{1}$ vertices from V_{1} such that
in the graph ${ }^{\prime}$ there exists an edge g joining the vertices u_{0}, u_{1} and there exists the edge h joining the vertiees $r_{0} . c_{1}$. If the graph $A^{\prime \prime}$ arises from G in the way shown in Fig. 4. we shall say that f^{\prime} arose from C_{1} by an X-extension on the alges g. h. Hence λ^{2}-extension is the inverse process of X-reduction.

Lemma 2. Let Ge beny even regulai graph of the third degree without mattiphe wedess and let g. ha be two of its edges that are not adjacent. At the edges g. hextecll! ont X-extomsion is possible and the graph (:" which arises in this way is rlmely. at" we"l regular giouph of the third degree without multiple edges.

The proof is evident.
Note 3. The X-extension is defined only on pairs of edges that are not adjacent. If we extended the graph (i in a similar way on two adjarent edges. then the graph (i' would contain multiple edges. (see Fig. 4).

Theorem 2. Any, even regular graph of the third degree with $2 n$ wertices without multiple edges is sither X-irreducible, or it may be constructed by repeated X-e.xtrmsions. from "certain X-irredacible graph with m components. which are all

Proof. Theorem \because is a direct consequence of theorem 1 , of the definition of the X-irreducible graph and of the relation between X-reduction and X-extension.

REFEREN(TES

[^0]
[^0]: 11|Breqe ('.. Théarie des graphes et ses applications. Paris 1958.

 13! König 1).. Theorie der endlichen und nenedlichen (iraphem, Leipzig 1936.
 Rewimed Matra 6. 196.).
 Katedra mumerickej mestematiky a matematickej štatistik!! Prirodocedeckej fakulty I'niverzity Komenského. Bratislara

