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Matematický časopis 18 (1968). No. 2 

ON THE NILPOTENCY IN SEMIGROUPS 

ROBERT SULKA, Bratislava 

This paper is an extension of the results of papers [3] and [5]. The first three 
theorems of this paper are extensions of the first three theorems of the paper 
[3] and the fourth theorem of this paper is an extension of the theorem of 
paper [5]. We introduce three kinds of nilpotency and consider instead of 
ideals (which are as a rule used to define various kinds of radicals) more gene­
rally subsets or subsemigroups of a given semigroup S. 

Throughout the paper the empty subset 0 is considered as a subsemigroup 
of the semigroup S. By an ideal we mean a two-sided ideal. If we consider 
a left ideal or a right ideal we shall indicate it explicitely. The n-semilattice 
of all left (right) [two-sided] ideals of the semigroup S contains always the 
empty set 0. 

We now introduce three kinds of nilpotency and shall study the relations 
among them. 

Definition 1. Let S be a semigroup and Ma subset of S. 
a) Let x be such an element of S for which there exists a positive integer N(x) 
such that for each positive integer n > N(x) (for almost all n) xn e M holds. 
Then x will be called strongly nilpotent with respect to M. 
b) Let x be an element of S such that for infinitely many positive integers n, 
xn G M holds. Then x will be called weakly nilpotent with respect to M. 
c) Let x be an element of S such that at least one power xn is in M. Then x will 
be called almost nilpotent with respect to M. 

The set of all strongly nilpotent elements with respect to M will be denoted 
by Ni(M), the set of all weakly nilpotent elements with respect to M will be 
denoted by N2(M) and the set of all almost nilpotent elements with respect 
to M will be denoted by N%(M). 

R e m a r k 1. From Definition 1 it is clear that every strongly nilpotent 
element with respect to M is weakly nilpotent with respect to M and every 
weakly nilpotent element with respect to M is almost nilpotent with respect 
to M. Therefore we have N±(M) c N2(M) c N3(M). 

The following example shows that N±(M) 4= N2(M) and N2(M) * NS(M) 
can take place even if S is a commutative semigroup. 
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E x a m p l e 1. Let S = <0, 1> with the ordinary multiplication as an opera­
tion in S. The element x = \ is almost nilpotent with respect to M = {\} 
but it is not weakly nilpotent with respect to M. 

In the same semigroup let us take M = I 1 k = 1, 2, . . . J. M is a sub-
[2™ J 

semigroup of S, the element x = \ is weakly nilpotent with respect to M, 
but it is not strongly nilpotent with respect to M. 

The following lemmas are evident. 

Lemma 1. Let Sbea semigroup and M a subsemigroup of S. Then every almost 
nilpotent element with respect to M is weakly nilpotent with respect to M, i. e. 
if M is a subsemigroup then Nz(M) = N2(M). 

Lemma 2. Let S be a semigroup and M a left (right) [two-sided] ideal of S. 
Then every weakly nilpotent element with respect to M is also strongly nilpotent 
with respect to M. Thus we have N$(M) = N2(M) = N\(M). 

Lemma 3. Let S be a semigroup and let Mi and M2 be subsets of S. Then 
N±(Mi n M2) = Ni(Jfi) n Nx(M2). 

Proof, a) If A c B, then NX(A) c Ni(B). Hence Ni(M± n M2) c Nx(Mi) n 
n Ni(M2). 

b) Let xeNi(Mi) n N±(M2). Then almost all powers of the element x are 
in Mi and almost all powers of the element x are in M2, i. e. almost all powers 
of the element x are in Mi n M2. Therefore x e Ni(Mi n M2) and Ni(Mi) n 
n Ni(M2) c Ni(Mi n M2). Together with a) we have Ni(ifi n M2) = 
= Ni(Mi) n Ni(M2). 

Lemma 4. Let S be a semigroup and let Mi and M2 be subsemigroups of S. 
Then N3(Mi n M2) = NZ(M±) n N*(M2) [hence N2(Mi n M2) = N2(M±) n 
n N2(M2)]. 

Proof, a) The relation N3(-^i n M2) c N2(Mi) n N$(M2) can be proved 
in the same manner as in lemma 3. 

b) If x e N^(Mi) n Ns(M2), then at least one power xni is in Mi and at least 
one power xn* is in M2. But then xw-%2 is in Mi n M2 and x e Ns(Mi n M2). 
Thus .ty3(Jfi) n N$(M2) c N3(Mi n M2) and this together with a) implies 
N3(il^i n M2) = N3(Mi) n .^3(^2). 

If Mi, M2 and Mi n M2 are merely subsets of S (not subsemigroups), then 
neither N2(Mi n M2) = N2(Mi) n N2(M2) nor N3(Mi n M2) = Nz(Mi) n 
n Nz(M2) necessarily holds. This will be shown on the following examples. 

E x a m p l e 2. Let S = — | k = 0, 1, 2, . . . with the ordinary multiplica-
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tion as operation. Let l i i = {1, f} and Jf2 = {L £}.Then N3(Mi) = {L i}, 
N3(M2) = = {1, i, i} and N3(M\) n tfsfifr) = {1, J} + {1} = MiC\Mi = 
= JV8(-lfi n Jf2). 

E x a m p l e 3. Let s be the semigroup from Example 2. Let Jtfi = {1} U 

•U j — | * = 1, 2, . . . and Jf2 = {1} U I — | Jb = 1, 2, . . . . Then ^ ( J f i ) = 

= S,N2(M2) = M2, but N2(M1)nN2(M2) = M2 = {l}v\—i\k = 1,2, . . . , 

J f i r\M2 = {1} and 2Vt2(Jfi n lf2) = {1} * N2(M{) n N2(M2). 

Lemma 5. Let Sbea semigroup and Mx ,xe K, subsets ofS. Then U N3(MX) = 
xeK 

-= N»{ U Mx). 
xeK 

Proof, a) For every x G K we have itf^ c u -ifcT̂  and therefore U Ns{Mx) <= 
xeK xeK 

<= iV3( U Jf*). 
xeK 

b) Let a; G N3( U Mx). Then at least one power xn is in U Mx. Thus there 
xeK xeK 

•exists a ^o G K such that xn e MXo, i. e. x e N3(MXo) c u N3(MX). Therefore 
xeK 

we have N3( U Mx) c U N3(MX) and this together with a) implies U N3(MX) = 
xeK xeK xeK 

= N3( U Mx). 
xeK 

Lemma 6. Let S be a semigroup and M± and M2 subsets of S. Then N2(Mi) U 
U N2(M2) = N2(Mx U M2). 

Proof , a) The relation N2(M±) U N2(M2) c N2(M± U M2) is evident. 
b) Let x G N2(Mi U .M2). Then infinitely many powers xn are in Mi U .M2. 

Thus infinitely many powers xn are either in Mi or in Jf2. Therefore x is either 
in N2(Mi) or in N2(M2) and N2(ifi U M2) .= N2(Mi) U N2(M2). This together 
with a) implies N2(Mi) U N2(M2) = N2(Jfi u i f 2) . 

Lemma 6 cannot be extended to the case of infinitely many subsets Mx, x e 
G K. This is clear from the following example. 

E x a m p l e 4. Let S be the set of all positive integers with ordinary addition 
oo 

-as operation. Let Mn = {2n + 1}, where n = 1, 2, 3, . . . . Then U Mn = 

= {2n + 1| n = 1, 2, 3, . . . } and l £ j 2 ( U J-fn). On the other hand N2(Mn) = 
w = l 

oo 

= 0 for n = 1, 2, 3, . . . and therefore also U N2(Mn) = 0. This implies that 

^ 2 ( J ^ » ) * U ^ 2 ( i f M ) . 
n~l n=l 
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The next example shows that Ni(Mi U M2) = Ni(Mi) U Ni(M2) need not 
hold. 

E x a m p l e 5. Let S be the set of all positive integers with the ordinary 
addition as operation. Let Mi = {2k\k = 1, 2, ...} and M2 = {2k + 1| k = 
= 1 , 2 , . . . } . Then 1 e Ni(Mi U M2) but 1 <£ Ni(Mi) u Ni(M2). 

Lemma 7. Let S be a semigroup and Mi and M2 subsemigroups of S. Then 
Ni(Mi U M2) = Ni(Mi) U Ni(Jf2). 

Proof, a) I t follows from Mi c Mi U M2 and M2 c Mi U M2 tha t 
Ni(Mi) U Ni(M2) c Ni(Mi U M2). 

b) Let x e Ni(Mi U ikf2). Then there exists a positive integer N such tha t 
for every integer n ^ N we have xn e Mi U M2. Let X = {xn\n ^ N}. Note 
that X n J f i , X n M2 are semigroups and (X n Jfi) U (X n ilf2) = X. 

We now show that at least one of the semigroups Mi and M2 contains two 
consecutive powers of the element x. If it were not so, then one of the semi­
groups Mi and M2 would contain all even and the other all odd powers xn 

of the element x for n ^ N. If for example X n Mi were the set of all even 
powers xn,n ^ N, then X n M2 would be the set of all odd powers xn, n ^ N. 
This contradicts the fact that X n M2 is a semigroup. 

Suppose tha t Mi contains two consecutive powers of the element x. Then it 
can be easily verified that Mi contains all powers xn for n ^ No > N. There­
fore x e Ni(-Mi) and hence x e Ni(-Mi) U Ni(M2). 

We proved that Ni(ilfi U M2) ^ Ni(-Mi) U Ni(.M2). This together with a) 
implies Ni(Mi U M2) = Ni(Mi) U Ni(-l¥2). 

The results we obtained can be arranged into two tables (see Table 1 and 2) 

Tab le 1 

n 
Mг and M2 are: 

n 
subsets subsemigroups 

left (right) 
[two-sided] 

ideals 

Җ(Mг П M2) = N^MJ П Җ(M2) + (LЗ) + + 
N2(M^ П M2) = N2(MJ П Җ(M2) — (EЗ) + (L4) 

Ì V 8 ( Қ П M2) = Җ(Mг) П Җ(M2) — (E2) 

T a b l e 2 

U 

Җ(Mг U M 2 ) = -VЛMx) U ІV^M,) 

M^ and M2 are: 

subsets subsemigroups 
left (right) 
[two-sided] 

ideals 

jy1[m1 \J m2) = ^xKlvl\) u iVx̂ iWj.) 

N2(MX U M2) = iV2(Mx) U JV"2(M2) 

Nz(Mt U M2) = 1V,(M J U N8(^2) 

— (E4) 

+ (L6) 

+ (L5) 

+ (L7) + 
+ 
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in which the signs + and — have an apparent meaning. In parentheses 
a reference to the corresponding Lemma or Example is given. 

The above results imply: 

Theorem 1. Let Sbea semigroup. Then the mapping M -> Ni(M) is: 
a) a homomorphism of the lattice of all left (right) [two-sided] ideals of S into 

the lattice of all subsets of S, 
b) a homomorphism of the C\-semilattice of all subsemigroups of S into the 

C\-semilattice of all subsets of S, 
c) an endomorphism of the n-semilattice of all subsets of S. 
The mapping M -> N2(M) is: 
a) a homomorphism of the n-semilattice of all subsemigroups of S into the 

n-semilattice of all subsets of S, 
b) an endomorphism of the \J-semilattice of all subsets of S. 

The mapping M -> N$(M) is an endomorphism of the \J-semilattice of all 
subsets of S. 

We now introduce some further notions which are generalizations of the 
notions of Clifford's. Schwarz's and Sevrin's radicals from the papers [3] 
and [5]. 

Definition 2. Let Sbea semigroup and M a subset of S.An ideal I, each element 
of which is strongly nilpotent with respect to M, is called a strong nilideal with 
respect to M. 

An ideal I, each element of which is weakly nilpotent with respect to M, is called 
a weak nilideal with respect to M. 

The union of all strong nilideals with respect to M will be denoted by B*(M). 
The union of all weak nilideals with respect to M will be denoted by B*(M). 

Definition 3. Let S be a semigroup and M a subset of S. An ideal (a subsemi-
group) I, for which there exists a positive integer N such that for all integers 
n ^ N (for almost all n) In ^ M holds, will be called a nilpotent ideal (a nil-
potent subsemigroup) with respect to M. 

The union of all nilpotent ideals with respect to M will be denoted by B(M). 

Definition 4. Let S be a semigroup and M a subset of S. An ideal I, every 
subsemigroup of which generated by a finite number of elements is nilpotent 
with respect to M, will be called a locally nilpotent ideal with respect to M. 

The union of all locally nilpotent ideals with respect to M will be denoted 
by L(M). 

Lemma 8. An ideal I is a weak nilideal with respect to M if and only if every 
element x e I is almost nilpotent with respect to M. 

Proof, a) If the ideal I is a weak nilideal with respect to M, then clearly 
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each element x e I is an almost nilpotent element with respect to M. 
b) Let every element x of the ideal I be an almost nilpotent element with 

respect to M. Then x e I implies that {x, x2, xd, ..., xn, ...} <= I. In addition 
to this for some power xni we have xni e M. But since xni e I, there exists 
again a positive integer n2 > n± for which xn* e M. Thus there exists a sequence 
xni, xn*, ..., xnk, ..., n\ < n2 < nz < ... <n^ < . . . of powers of the element 
x, the members of which are in M. This means tha t x is a weakly nilpotent 
element with respect to M. Since x is any element of i", J is a weak nilideal 
with respect to M. 

The following example shows tha t B*(M) and B*(M) may be distinct even 
if M is a subsemigroup of S. 

E x a m p l e 6. Let S be the set of all positive integers with the ordinary 
addition as operation. Let M be the subsemigroup of all even integers. Every 
odd positive integer is weakly nilpotent with respect to M but it is notstrongly 
nilpotent with respect to M. Every even positive integer is strongly nilpotent 
with respect to M. Note tha t every ideal contains together with each integer 
a > 0 all integers ^ a. Hence B*(M) = 0 + S = B*(M). 

Lemma 9. Let S be a semigroup, M a subset and A a subsemigroup of S. 
Then the following there statements are equivalent: 

a) The subsemigroup A is nilpotent with respect to M. 
b) There exist infinitely many positive integers n such that An ^ M. 
c) There exists a positive integer n such that An c M. 
Proof . I t is clear from definition 3 tha t a) implies b) and b) implies c). 

I t remains only to prove that c) implies a). Let n be a positive integer such 
that An c M. Since -A is a subsemigroup we have-4w + 1 c An c M, An+2 c 
<= An s= M, ... and therefore A is a nilpotent subsemigroup with respect to M. 

R e m a r k 2. Lemma 9 evidently holds also in the case where A is a left 
(right) [two-sided] ideal. 

Lemma 10. Let S be a semigroup and let M± and M2 be subsets of S. Then 
B*(M± n M2) = B*(MJ n B*(M2). 

Proof , a) Evidently B*(MX n M2) c R*(Mi) n B*(M2). 
b) Let x e B*(Mi) n B*(M2). Then x e B*(M±) and x e B*(M2), i. e. x e Ix 

and xel2, where I± is a strong nilideal with respect to M± and I2 is a strong 
nilideal with respect to M2. We show tha t I± n I2 is a strong nilideal with 
respect to M±nM2. Let y e I\ n F2. Then yeli, yel2, i. e. there exists 
a positive integer N such that for every integer n ^ N we have yn e M\ and 
yn e M2. Hence for all integers n ^ N we have yn e M\ n M2. This means 
that I\ n I2 is a strong nilideal with respect to M\ n M2. 

Since I± n I2 is a strong nilideal with respect to M± n M2 and x e I± n I2> 

153 



we have x G R*(M\ n M2). Thus -Bf(Jfi) n R*(M2) c f?*(ifi n ilf2) and 
this together with a) proves R*(M\ n ilf2) = f?*(ifi) n ^*(ilkf2). 

Lemma 11. Let S be a semigroup and let M± and M2 be subsets of S. Then 
R (Jfi nM2) = R (M\) n R (M2). 

Proof , a) Evidently R(M\ n M2) ^ R(M\) n R(M2). 
b) Let x e R(M\) n R(M2). Then x e R(M±) and x e f?(lf2), i. e. x e h 

and x e f 2 , where f i is a nilpotent ideal with respect to M± and 12 is a nilpotent 
ideal with respect to M2. We shov tha t 11 n f 2 is a nilpotent ideal with respect 
to ilkfi n M2. As a matter of fact for almost all n we have In c J f i and f£ c JIf2, 
thus (fi n f2)w c Mi n M2. Since a; e f i n 7 2 , we obtain R(M\) n R(M2) c 
c 2J( J f i n ilf2) and this together with a) proves R(M\) n R(M2) = R(M\ n 
n l f 2 ) . 

Lemma 12. Le£ S be a semigroup and let M± and M2 be subsets of S. Then 
L(MA n M2) = L(M\) n L(M2). 

Proof , a) Evidently L(M± n ilf2) c L(M\) n L(M2). 
b) Let xeL(M\) n L(M2). Then # G £ ( . / ¥ I ) and xeL(M2), i. e. a e f i , 

where I± is a locally nilpotent ideal with respect to M\ and x e f 2 , where f 2 

is a locally nilpotent ideal with respect to M2. We show tha t 11 n f2 is a lo­
cally nilpotent ideal with respect to M\ n M2. 

Let A be a subsemigroup generated by a finite number of elements of 
f i n f2. Since A ^ I± and -4 ^ F2 for almost all positive integers n, An ^ J f i 
and .4* c Jf2 holds. Thus An ^ M\ n M2 and fi n f2 is a locally nilpotent 
ideal with respect to Mi n If2. 

As a; G f i n f2, we obtain x e L(M± n M2). Hence L(Mi) n _L(ilf2) c 
c L(M\ n M2) and this together with a) gives L(Mi) n L(ilf2) == i ( i l f i n 
n M 2 ) . 

Lemma 13. f>e£ S be a semigroup and M± and M2 subsemigroups of S. Then 
R*(M± n M2) = Rt(M{) n fi*(Jf2). 

P roo f , a) Evidently R*(M± n M2) c f?*(ilfi) n f?*(Jf2). 
b) Let x e f?*(ilfi) n R*(M2). Then # G f?*(Mi) and x G R*(M2), i. e. a; e f i , 

where f i is a weak nilideal with respect to ilf i and xe I2 where 12 is a weak 
nilideal with respect to M2. Therefore x G 11 n 12. 

We now show tha t every element y e 11 n f 2 is weakly nilpotent with res­
pect to ilfi n itf2, i- e. that I\ n I2 is a weak nilideal with respect to J[fi n M2. 
Since yel\ nl2, there exist positive integers wi and n2 such that yni e Mi 
and 2/%- G Jf2. As Mi and M2 are subsemigroups of S we have for the cyclic 
semigroups generated by the elements yni and ynK {yni, y2ni, . . . } c: il!fi 
and {yn*, y2n2, ...} c M2. But then for the cyclic semigroup generated by 
the element yn^ we have {yn&*, y2nin2} ...} ^ M±n M2. Hence y is a weakly 
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nilpotent element with respect to ilf i n ilf 2 , thus Li n 12 is a weak nilideal 
with respect to ilf i n ilf 2 . 

Since a; E Li n f2 we have x e R*(Mi n ilf2). We proved t h a t i?*(ilfij n 
n R*(M2) g i?*(ilfi n ilf2) and this together with a) gives i?*(ilfi n ilf2) = 
= R*(M!) n R*(M2). 

The following example shows that i?*(ilfi) n R*(M2) = JS*(ifi n ilf2) 
need not hold. 

E x a m p l e 7. Let S be the set o( all positive integers with the ordinary 
addition as operation. Let 31 ± contain the number 1 and those integers n > 1 
whose factorization into primes has either an even number of factors equal 
to the number 2 or it has no factor equal to 2. Let ikf2 contain the number 1 
and those integers n > 1 whose factorization into primes has an odd number 
of factors equal to 2. Clearly ilf i n ilf 2 = {1} and i?*(ilf i n M2) = 0. Further 
iJ*(Jfi) = 8 and i?*(ilf2) = S and therefore R*(Mx) n R*(M2) = S * 0 = 
= E*(ilfi n ilf 2 ) . 

The results we obtained are arranged into tables. (See Tables 3, 4 and 5. 

Table 3 

n 
M! and M2

 a г e : 

n 
subsets subsemigгoups 

left (right) 
[two-sided] 

ideals 

RÏÍMx П M2) = RÎ(Mi) П RÎ(M2) + (LIO) + + 
RUM^ П M2) = RÎ(Mi) n R£(M2) — (E6) + (LIЗ) 

Table 4 

n 
Mг and M2

 a г e : 

n 
subsets subsemigгoups 

left (гight) 
[two-sided] 

ideals 

R(MX П M2) = R(Mг) П R(M2) + (LП) + + 

T a b l 5 

n 
Mг and І 2

 a г e : 

n 
subsets 1 subsemigroups 

1 

left (right) 
[two-sided] 

ideals 

L(MX П M2) = ^ ( M ! ) П L(M2) + (L12) + + 

R e m a r k 3. For the unions the relations R*(Mi U ilf2) = i2*(ilfi) U 

U R*(M2), R*(Mi u M2) = i?2(ilfi) u R*(M2), R(MX u M2) = i?(ilfi) u R(M2) 

and i( i l f i U ilf2) = L(Mi) U L(ilf 2) need not hold. This follows from an 

example in paper [3], p. 213, even if ilfi and ilf2 are two-sided ideals. (See 

also [5].) 
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R e m a r k 4. Lemmas 3, 4, 6, 7, 10, 11, 12 and 13 can be extended by in­
duction from two subsets Mi and M2 to any finite number of subsets Mx, 
x G K. But the following example shows that Lemmas 3, 4, 10, 11, 12 and 13 
cannot be extended to an infinite number of subsets. 

E x a m p l e 8. The closed interval S = <0, -§-> with the ordinary multipli­

cation as operation is a semigroup. The closed intervals Jn = ( 0 , — ) , n = n 
= 2, 3, . . . are ideals of S. Ni(Jn) = S for n = 2, 3, . . . and therefore 

00 00 00 

n -Vi(J») = 8. But n Jn = {0} and Nx( f\ Jn) = {0} # 8. 
n=2 n=2 n=2 

Since S is a commutative semigroup and Jn, n = 2, 3, . . . are ideals of S, 
the foregoing sets of strongly nilpotent elements are at the same time sets 
of weakly nilpotent elements and also sets of almost nilpotent elements. 
By [3] and [1] they are clearly radicals with respect to these ideals. 

The above lemmas imply the following theorems: 

Theorem 2. Let S be a semigroup. Then the mapping M-> R*(M) is: 
a) a homomorphism of the C\-semilattice of all subsets of S into the n-semi-

lattice of all (two-sided) ideals of S, 
b) a homomorphism of the n-semilattice of all subsemigroups of S into the 

n-semilattice of all (two-sided) ideals of S, 
c) a homomorphism of the n-semilattice of all left (right) [two-sided] ideals 

of S into the n-semilattice of all (two-sided) ideals of S. 
The mapping M -> R*(M) is a homomorphism of the C\-semilattice of all 

subsemigroups of S into the n-semilattice of all (two-sided) ideals of S. 

Theorem 3. Let S be a semigroup. Then the mapping M-> R(M) is: 
a) a homomorphism of the n-semilattice of all subsets of S into the n-semi­

lattice of all (two-sided) ideals of S, 
b) a homomorphism of the n-semilattice of all subsemigroups of S into the 

n-semilattice of all (two-sided) ideals of S, 
c) a homomorphism of the n-semilattice of all left (right) [two-sided] ideals 

of S into the n-semilattice of all (two-sided) ideals of S. 

Theorem 4. Let S be a semigroup. Then the mapping M -> L(M) is: 
a) a homomorphism of the n-semilattice of all subsets of S into the n-semi­

lattice of all (two-sided) ideals of S, 
b) a homomorphism of the n-semilattice of all subsemigroups of S into the 

n-semilattice of all (two-sided) ideals of S, 
c) a homomorphism of the n-semilattice of all left (right) [two-sided] ideals 

of S into the n-semilattice of all (two-sided) ideals of S. 
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