Matematický časopis

Robert Šulka

On the Nilpotency in Semigroups

Matematický časopis, Vol. 18 (1968), No. 2, 148--157

Persistent URL: http://dml.cz/dmlcz/126764

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1968

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

ON THE NILPOTENCY IN SEMIGROUPS

ROBERT ŠULKA, Bratislava

This paper is an extension of the results of papers [3] and [5]. The first three theorems of this paper are extensions of the first three theorems of the paper [3] and the fourth theorem of this paper is an extension of the theorem of paper [5]. We introduce three kinds of nilpotency and consider instead of ideals (which are as a rule used to define various kinds of radicals) more generally subsets or subsemigroups of a given semigroup S.

Throughout the paper the empty subset \emptyset is considered as a subsemigroup of the semigroup S. By an ideal we mean a two-sided ideal. If we consider a left ideal or a right ideal we shall indicate it explicitely. The \cap-semilattice of all left (right) [two-sided] ideals of the semigroup S contains always the empty set \emptyset.

We now introduce three kinds of nilpotency and shall study the relations among them.

Definition 1. Let S be a semigroup and M a subset of S.
a) Let x be such an element of S for which there exists a positive integer $N(x)$ such that for each positive integer $n \geqslant N(x)$ (for almost all n) $x^{n} \in M$ holds. Then x will be called strongly nilpotent with respect to M.
b) Let x be an element of S such that for infinitely many positive integers n, $x^{n} \in M$ holds. Then x will be called weakly nilpotent with respect to M.
c) Let x be an element of S such that at least one power x^{n} is in M. Then x will be called almost nilpotent with respect to M.

The set of all strongly nilpotent elements with respect to M will be denoted by $N_{1}(M)$, the set of all weakly nilpotent elements with respect to M will be denoted by $N_{2}(M)$ and the set of all almost nilpotent elements with respect to M will be denoted by $N_{3}(M)$.

Remark 1. From Definition 1 it is clear that every strongly nilpotent element with respect to M is weakly nilpotent with respect to M and every weakly nilpotent element with respect to M is almost nilpotent with respect to M. Therefore we have $N_{1}(M) \subseteq N_{2}(M) \subseteq N_{3}(M)$.

The following example shows that $N_{1}(M) \neq N_{2}(M)$ and $N_{2}(M) \neq N_{3}(M)$ can take place even if S is a commutative semigroup.

Example 1. Let $S=\langle 0,1\rangle$ with the ordinary multiplication as an operation in S. The element $x=\frac{1}{2}$ is almost nilpotent with respect to $M=\left\{\frac{1}{4}\right\}$ but it is not weakly nilpotent with respect to M.

In the same semigroup let us take $M=\left\{\left.\frac{1}{2^{2 k}} \right\rvert\, k=1,2, \ldots\right\} . M$ is a subsemigroup of S, the element $x=\frac{1}{2}$ is weakly nilpotent with respect to M, but it is not strongly nilpotent with respect to M.

The following lemmas are evident.
Lemma 1. Let S be a semigroup and M a subsemigroup of S. Then every almost nilpotent element with respect to M is weakly nilpotent with respect to M, i. e. if M is a subsemigroup then $N_{3}(M)=N_{2}(M)$.

Lemma 2. Let S be a semigroup and M a left (right) [two-sided] ideal of S. Then every weakly nilpotent element with respect to M is also strongly nilpotent with respect to M. Thus we have $N_{3}(M)=N_{2}(M)=N_{1}(M)$.

Lemma 3. Let S be a semigroup and let M_{1} and M_{2} be subsets of S. Then $N_{1}\left(M_{1} \cap M_{2}\right)=N_{1}\left(M_{1}\right) \cap N_{1}\left(M_{2}\right)$.

Proof. a) If $A \subseteq B$, then $N_{1}(A) \subseteq N_{1}(B)$. Hence $N_{1}\left(M_{1} \cap M_{2}\right) \subseteq N_{1}\left(M_{1}\right) \cap$ $\cap N_{1}\left(M_{2}\right)$.
b) Let $x \in N_{1}\left(M_{1}\right) \cap N_{1}\left(M_{2}\right)$. Then almost all powers of the element x are in M_{1} and almost all powers of the element x are in M_{2}, i. e. almost all powers of the element x are in $M_{1} \cap M_{2}$. Therefore $x \in N_{1}\left(M_{1} \cap M_{2}\right)$ and $N_{1}\left(M_{1}\right) \cap$ $\cap N_{1}\left(M_{2}\right) \subseteq N_{1}\left(M_{1} \cap M_{2}\right)$. Together with a) we have $N_{1}\left(M_{1} \cap M_{2}\right)=$ $=N_{1}\left(M_{1}\right) \cap N_{1}\left(M_{2}\right)$.

Lemma 4. Let S be a semigroup and let M_{1} and M_{2} be subsemigroups of S. Then $\quad N_{3}\left(M_{1} \cap M_{2}\right)=N_{3}\left(M_{1}\right) \cap N_{3}\left(M_{2}\right) \quad\left[\right.$ hence $\quad N_{2}\left(M_{1} \cap M_{2}\right)=N_{2}\left(M_{1}\right) \cap$ $\left.\cap N_{2}\left(M_{2}\right)\right]$.

Proof. a) The relation $N_{3}\left(M_{1} \cap M_{2}\right) \subseteq N_{3}\left(M_{1}\right) \cap N_{3}\left(M_{2}\right)$ can be proved in the same manner as in lemma 3.
b) If $x \in N_{3}\left(M_{1}\right) \cap N_{3}\left(M_{2}\right)$, then at least one power $x^{n_{1}}$ is in M_{1} and at least one power $x^{n_{2}}$ is in M_{2}. But then $x^{n_{1} n_{2}}$ is in $M_{1} \cap M_{2}$ and $x \in N_{3}\left(M_{1} \cap M_{2}\right)$. Thus $N_{3}\left(M_{1}\right) \cap N_{3}\left(M_{2}\right) \subseteq N_{3}\left(M_{1} \cap M_{2}\right)$ and this together with a) implies $N_{3}\left(M_{1} \cap M_{2}\right)=N_{3}\left(M_{1}\right) \cap N_{3}\left(M_{2}\right)$.

If M_{1}, M_{2} and $M_{1} \cap M_{2}$ are merely subsets of S (not subsemigroups), then neither $\quad N_{2}\left(M_{1} \cap M_{2}\right)=N_{2}\left(M_{1}\right) \cap N_{2}\left(M_{2}\right) \quad$ nor $\quad N_{3}\left(M_{1} \cap M_{2}\right)=N_{3}\left(M_{1}\right) \cap$ $\cap N_{3}\left(M_{2}\right)$ necessarily holds. This will be shown on the following examples.

Example 2. Let $S=\left\{\left.\frac{1}{2^{k}} \right\rvert\, k=0,1,2, \ldots\right\}$ with the ordinary multiplica-
tion as operation. Let $M_{1}=\left\{1, \frac{1}{2}\right\}$ and $M_{2}=\left\{1, \frac{1}{4}\right\}$. Then $N_{3}\left(M_{1}\right)=\left\{1, \frac{1}{2}\right\}$, $N_{3}\left(M_{2}\right)==\left\{1, \frac{1}{2}, \frac{1}{4}\right\}$ and $N_{3}\left(M_{1}\right) \cap N_{3}\left(M_{2}\right)=\left\{1, \frac{1}{2}\right\} \neq\{1\}=M_{1} \cap M_{2}=$ $=N_{3}\left(M_{1} \cap M_{2}\right)$.

Example 3. Let S be the semigroup from Example 2. Let $M_{1}=\{1\} \cup$ $\cup\left\{\left.\frac{1}{2^{2 k}} \right\rvert\, k=1,2, \ldots\right\}$ and $M_{2}=\{1\} \cup\left\{\left.\frac{1}{2^{k-1}} \right\rvert\, k=1,2, \ldots\right\}$. Then $N_{2}\left(M_{1}\right)=$ $=S, N_{2}\left(M_{2}\right)=M_{2}$, but $N_{2}\left(M_{1}\right) \cap N_{2}\left(M_{2}\right)=M_{2}=\{1\} \cup\left\{\left.\frac{1}{2^{2 k-1}} \right\rvert\, k=1,2, \ldots\right\}$, $M_{1} \cap M_{2}=\{1\}$ and $N_{2}\left(M_{1} \cap M_{2}\right)=\{1\} \neq N_{2}\left(M_{1}\right) \cap N_{2}\left(M_{2}\right)$.

Lemma 5. Let S be a semigroup and $M_{\varkappa}, \varkappa \in K$, subsets of S. Then $\bigcup_{\varkappa \in K} N_{3}\left(M_{\varkappa}\right)=$ $=N_{3}\left(\bigcup_{\chi \in K} M_{\varkappa}\right)$.

Proof. a) For every $\varkappa \in K$ we have $M_{\varkappa} \subseteq \bigcup_{\varkappa \in K} M_{\varkappa}$ and therefore $\bigcup_{\chi \in K} N_{3}\left(M_{\varkappa}\right) \subseteq$ $\subseteq N_{3}\left(\bigcup_{\chi \in K} M_{x}\right)$.
b) Let $\left.x \in \underset{\sim}{N_{3}\left(\bigcup_{\varkappa \in K}\right.} M_{\chi}\right)$. Then at least one power x^{n} is $\operatorname{in}_{x \in K} M_{\chi}$. Thus there exists a $x_{0} \in K$ such that $x^{n} \in M_{x_{0}}$, i. e. $x \in N_{3}\left(M_{x_{0}}\right) \subseteq \bigcup_{x \in K} N_{3}\left(M_{x}\right)$. Therefore we have $N_{3}\left(\bigcup_{x \in K} M_{\chi}\right) \subseteq \bigcup_{x \in K} N_{3}\left(M_{\chi}\right)$ and this together with a) implies $\bigcup_{x \in K} N_{3}\left(M_{\varkappa}\right)=$ $=N_{3}\left(\bigcup_{x \in K} M_{\chi}\right)$.

Lemma 6. Let S be a semigroup and M_{1} and M_{2} subsets of S. Then $N_{2}\left(M_{1}\right) \cup$ $\cup N_{2}\left(M_{2}\right)=N_{2}\left(M_{1} \cup M_{2}\right)$.

Proof. a) The relation $N_{2}\left(M_{1}\right) \cup N_{2}\left(M_{2}\right) \subseteq N_{2}\left(M_{1} \cup M_{2}\right)$ is evident.
b) Let $x \in N_{2}\left(M_{1} \cup M_{2}\right)$. Then infinitely many powers x^{n} are in $M_{1} \cup M_{2}$. Thus infinitely many powers x^{n} are either in M_{1} or in M_{2}. Therefore \mathbf{x} is either in $N_{2}\left(M_{1}\right)$ or in $N_{2}\left(M_{2}\right)$ and $N_{2}\left(M_{1} \cup M_{2}\right) \subseteq N_{2}\left(M_{1}\right) \cup N_{2}\left(M_{2}\right)$. This together with a) implies $N_{2}\left(M_{1}\right) \cup N_{2}\left(M_{2}\right)=N_{2}\left(M_{1} \cup M_{2}\right)$.

Lemma 6 cannot be extended to the case of infinitely many subsets $M_{\varkappa}, \varkappa \in$ $\in K$. This is clear from the following example.

Example 4. Let S be the set of all positive integers with ordinary addition as operation. Let $M_{n}=\{2 n+1\}$, where $n=1,2,3, \ldots$. Then $\bigcup_{n=1}^{\infty} M_{n}=$ $=\{2 n+1 \mid n=1,2,3, \ldots\}$ and $1 \in N_{2}\left(\bigcup_{n=1}^{\infty} M_{n}\right)$. On the other hand $N_{2}\left(M_{n}\right)=$ $=\emptyset$ for $\mathrm{n}=1,2,3, \ldots$ and therefore also $\bigcup_{n=1}^{\infty} N_{2}\left(M_{n}\right)=\emptyset$. This implies that $N_{2}\left(\bigcup_{n=1}^{\infty} M_{n}\right) \neq \bigcup_{n=1}^{\infty} N_{2}\left(M_{n}\right)$.

The next example shows that $N_{1}\left(M_{1} \cup M_{2}\right)=N_{1}\left(M_{1}\right) \cup N_{1}\left(M_{2}\right)$ need not hold.

Example 5. Let S be the set of all positive integers with the ordinary addition as operation. Let $M_{1}=\{2 k \mid k=1,2, \ldots\}$ and $M_{2}=\{2 k+1 \mid k=$ $=1,2, \ldots\}$. Then $1 \in N_{1}\left(M_{1} \cup M_{2}\right)$ but $1 \notin N_{1}\left(M_{1}\right) \cup N_{1}\left(M_{2}\right)$.

Lemma 7. Let S be a semigroup and M_{1} and M_{2} subsemigroups of S. Then $N_{1}\left(M_{1} \cup M_{2}\right)=N_{1}\left(M_{1}\right) \cup N_{1}\left(M_{2}\right)$.

Proof. a) It follows from $M_{1} \subseteq M_{1} \cup M_{2}$ and $M_{2} \subseteq M_{1} \cup M_{2}$ that $N_{1}\left(M_{1}\right) \cup N_{1}\left(M_{2}\right) \subseteq N_{1}\left(M_{1} \cup M_{2}\right)$.
b) Let $x \in N_{1}\left(M_{1} \cup M_{2}\right)$. Then there exists a positive integer N such that for every integer $n \geqslant N$ we have $x^{n} \in M_{1} \cup M_{2}$. Let $X=\left\{x^{n} \mid n \geqslant N\right\}$. Note that $X \cap M_{1}, X \cap M_{2}$ are semigroups and $\left(X \cap M_{1}\right) \cup\left(X \cap M_{2}\right)=X$.

We now show that at least one of the semigroups M_{1} and M_{2} contains two consecutive powers of the element x. If it were not so, then one of the semigroups M_{1} and M_{2} would contain all even and the other all odd powers x^{n} of the element x for $n \geqslant N$. If for example $X \cap M_{1}$ were the set of all even powers $x^{n}, n \geqslant N$, then $X \cap M_{2}$ would be the set of all odd powers $x^{n}, n \geqslant N$. This contradicts the fact that $X \cap M_{2}$ is a semigroup.

Suppose that M_{1} contains two consecutive powers of the element x. Then it can be easily verified that M_{1} contains all powers x^{n} for $n \geqslant N_{0} \geqslant N$. Therefore $x \in N_{1}\left(M_{1}\right)$ and hence $x \in N_{1}\left(M_{1}\right) \cup N_{1}\left(M_{2}\right)$.

We proved that $N_{1}\left(M_{1} \cup M_{2}\right) \subseteq N_{1}\left(M_{1}\right) \cup N_{1}\left(M_{2}\right)$. This together with a) implies $N_{1}\left(M_{1} \cup M_{2}\right)=N_{1}\left(M_{1}\right) \cup N_{1}\left(M_{2}\right)$.

The results we obtained can be arranged into two tables (see Table 1 and 2)
Table 1

	M_{1} and M_{2} are:		
	subsets	subsemigroups	left (right) [two-sided] ideals
$N_{1}\left(M_{1} \cap M_{2}\right)=N_{1}\left(M_{1}\right) \cap N_{1}\left(M_{2}\right)$	$+(\mathrm{L} 3)$	+	+
$N_{2}\left(M_{1} \cap M_{2}\right)=N_{2}\left(M_{1}\right) \cap N_{2}\left(M_{2}\right)$	$-(\mathrm{E} 3)$	$+(\mathrm{L} 4)$	
$N_{3}\left(M_{1} \cap M_{2}\right)=N_{3}\left(M_{1}\right) \cap N_{3}\left(M_{2}\right)$	$-(\mathrm{E} 2)$		

Table 2

\cup	M_{1} and M_{2} are:		
	subsets	subsemigroups	left (right) [two-sided] ideals
$N_{1}\left(M_{1} \cup M_{2}\right)=N_{1}\left(M_{1}\right) \cup N_{1}\left(M_{2}\right)$	-(E4)	+ (L7)	+
$N_{2}\left(M_{1} \cup M_{2}\right)=N_{2}\left(M_{1}\right) \cup N_{2}\left(M_{2}\right)$	+ (L6)	+	
$N_{3}\left(M_{1} \cup M_{2}\right)=N_{3}\left(M_{1}\right) \cup N_{3}\left(M_{2}\right)$	+ (L5)		

in which the signs + and - have an apparent meaning. In parentheses a reference to the corresponding Lemma or Example is given.

The above results imply:
Theorem 1. Let S be a semigroup. Then the mapping $M \rightarrow N_{1}(M)$ is:
a) a homomorphism of the lattice of all left (right) [two-sided] ideals of S into the lattice of all subsets of S,
b) a homomorphism of the \cap-semilattice of all subsemigroups of S into the \cap-semilattice of all subsets of S,
c) an endomorphism of the \cap-semilattice of all subsets of S.

The mapping $M \rightarrow N_{2}(M)$ is:
a) a homomorphism of the \cap-semilattice of all subsemigroups of S into the \cap-semilattice of all subsets of S,
b) an endomorphism of the \cup-semilattice of all subsets of S.

The mapping $M \rightarrow N_{3}(M)$ is an endomorphism of the \cup-semilattice of all subsets of S.

We now introduce some further notions which are generalizations of the notions of Clifford's, Schwarz's and Ševrin's radicals from the papers [3] and [5].

Definition 2. Let S be a semigroup and M a subset of S. An ideal I, each element of which is strongly nilpotent with respect to M, is called a strong nilideal with respect to M.

An ideal I, each element of whicn is weakly nilpotent with respect to M, is called a weak nilideal with respect to M.

The union of all strong nilideals with respect to M will be denoted by $R_{1}^{*}(M)$. The union of all weak nilideals with respect to M will be denoted by $R_{2}^{*}(M)$.

Definition 3. Let S be a semigroup and M a subset of S. An ideal (a subsemigroup) I, for which there exists a positive integer N such that for all integers $n \geqslant N$ (for almost all n) $I^{n} \subseteq M$ holds, will be called a nilpotent ideal (a nilpotent subsemigroup) with respect to M.

The union of all nilpotent ideals with respect to M will be denoted by $R(M)$.
Definition 4. Let S be a semigroup and M a subset of S. An ideal I, every subsemigroup of which generated by a finite number of elements is nilpotent with respect to M, will be called a locally nilpotent ideal with respect to M.

The union of all locally nilpotent ideals with respect to M will be denoted by $L(M)$.

Lemma 8. An ideal I is a weak nilideal with respect to M if and only if every element $x \in I$ is almost nilpotent with respect to M.

Proof. a) If the ideal I is a weak nilideal with respect to M, then clearly
each element $x \in I$ is an almost nilpotent element with respect to M.
b) Let every element x of the ideal I be an almost nilpotent element with respect to M. Then $x \in I$ implies that $\left\{x, x^{2}, x^{3}, \ldots, x^{n}, \ldots\right\} \subseteq I$. In addition to this for some power $x^{n_{1}}$ we have $x^{n_{1}} \in M$. But since $x^{n_{1}} \in I$, there exists again a positive integer $n_{2}>n_{1}$ for which $x^{n_{2}} \in M$. Thus there exists a sequence $x^{n_{1}}, x^{n_{2}}, \ldots, x^{n_{k}}, \ldots, n_{1}<n_{2}<n_{3}<\ldots<n_{k}<\ldots$ of powers of the element, x, the members of which are in M. This means that x is a weakly nilpotent element with respect to M. Since x is any element of I, I is a weak nilideal with respect to M.

The following example shows that $R_{1}^{*}(M)$ and $R_{2}^{*}(M)$ may be distinct even if M is a subsemigroup of S.

Example 6. Let S be the set of all positive integers with the ordinary addition as operation. Let M be the subsemigroup of all even integers. Every odd positive integer is weakly nilpotent with respect to M but it is notstrongly nilpotent with respect to M. Every even positive integer is strongly nilpotent with respect to M. Note that every ideal contains together with each integer $a>0$ all integers $\geqslant a$. Hence $R_{1}^{*}(M)=\emptyset \neq S=R_{2}^{*}(M)$.

Lemma 9. Let S be a semigroup, M a subset and A a subsemigroup of S. Then the following there statements are equivalent:
a) The subsemigroup A is nilpotent with respect to M.
b) There exist infinitely many positive integers n such that $A^{n} \subseteq M$.
c) There exists a positive integer n such that $A^{n} \subseteq M$.

Proof. It is clear from definition 3 that a) implies b) and b) implies c). It remains only to prove that c) implies a). Let n be a positive integer such that $A^{n} \subseteq M$. Since A is a subsemigroup we have $A^{n+1} \subseteq A^{n} \subseteq M, A^{n+2} \subseteq$ $\subseteq A^{n} \subseteq M, \ldots$ and therefore A is a nilpotent subsemigroup with respect to M.

Remark 2. Lemma 9 evidently holds also in the case where A is a left (right) [two-sided] ideal.

Lemma 10. Let S be a semigroup and let M_{1} and M_{2} be subsets of S. Then $R_{1}^{*}\left(M_{1} \cap M_{2}\right)=R_{1}^{*}\left(M_{1}\right) \cap R_{1}^{*}\left(M_{2}\right)$.

Proof. a) Evidently $R_{1}^{*}\left(M_{1} \cap M_{2}\right) \subseteq R_{1}^{*}\left(M_{1}\right) \cap R_{1}^{*}\left(M_{2}\right)$.
b) Let $x \in R_{1}^{*}\left(M_{1}\right) \cap R_{1}^{*}\left(M_{2}\right)$. Then $x \in R_{1}^{*}\left(M_{1}\right)$ and $x \in R_{1}^{*}\left(M_{2}\right)$, i. e. $x \in I_{1}$ and $x \in I_{2}$, where I_{1} is a strong nilideal with respect to M_{1} and I_{2} is a strong nilideal with respect to M_{2}. We show that $I_{1} \cap I_{2}$ is a strong nilideal with respect to $M_{1} \cap M_{2}$. Let $y \in I_{1} \cap I_{2}$. Then $y \in I_{1}, y \in I_{2}$, i. e. there exists a positive integer N such that for every integer $n \geqslant N$ we have $y^{n} \in M_{1}$ and $y^{n} \in M_{2}$. Hence for all integers $n \geqslant N$ we have $y^{n} \in M_{1} \cap M_{2}$. This means that $I_{1} \cap I_{2}$ is a strong nilideal with respect to $M_{1} \cap M_{2}$.

Since $I_{1} \cap I_{2}$ is a strong nilideal with respect to $M_{1} \cap M_{2}$ and $x \in I_{1} \cap I_{2}$,
we have $x \in R_{1}^{*}\left(M_{1} \cap M_{2}\right)$. Thus $R_{1}^{*}\left(M_{1}\right) \cap R_{1}^{*}\left(M_{2}\right) \subseteq R_{1}^{*}\left(M_{1} \cap M_{2}\right) \quad$ and this together with a) proves $R_{1}^{*}\left(M_{1} \cap M_{2}\right)=R_{1}^{*}\left(M_{1}\right) \cap R_{1}^{*}\left(M_{2}\right)$.

Lemma 11. Let S be a semigroup and let M_{1} and M_{2} be subsets of S. Then $R\left(M_{1} \cap M_{2}\right)=R\left(M_{1}\right) \cap R\left(M_{2}\right)$.

Proof. a) Evidently $R\left(M_{1} \cap M_{2}\right) \subseteq R\left(M_{1}\right) \cap R\left(M_{2}\right)$.
b) Let $x \in R\left(M_{1}\right) \cap R\left(M_{2}\right)$. Then $x \in R\left(M_{1}\right)$ and $x \in R\left(M_{2}\right)$, i. e. $x \in I_{1}$ and $x \in I_{2}$, where I_{1} is a nilpotent ideal with respect to M_{1} and I_{2} is a nilpotent ideal with respect to M_{2}. We shov that $I_{1} \cap I_{2}$ is a nilpotent ideal with respect to $M_{1} \cap M_{2}$. As a matter of fact for almost all n we have $I_{1}^{n} \subseteq M_{1}$ and $I_{2}^{n} \subseteq M_{2}$, thus $\left(I_{1} \cap I_{2}\right)^{n} \subseteq M_{1} \cap M_{2}$. Since $x \in I_{1} \cap I_{2}$, we obtain $R\left(M_{1}\right) \cap R\left(M_{2}\right) \subseteq$ $\subseteq R\left(M_{1} \cap M_{2}\right)$ and this together with a) proves $R\left(M_{1}\right) \cap R\left(M_{2}\right)=R\left(M_{1} \cap\right.$ $\cap M_{2}$.

Lemma 12. Let S be a semigroup and let M_{1} and M_{2} be subsets of S. Then $L\left(M_{1} \cap M_{2}\right)=L\left(M_{1}\right) \cap L\left(M_{2}\right)$.

Proof. a) Evidently $L\left(M_{1} \cap M_{2}\right) \subseteq L\left(M_{1}\right) \cap L\left(M_{2}\right)$.
b) Let $x \in L\left(M_{1}\right) \cap L\left(M_{2}\right)$. Then $x \in L\left(M_{1}\right)$ and $x \in L\left(M_{2}\right)$, i. e. $x \in I_{1}$, where I_{1} is a locally nilpotent ideal with respect to M_{1} and $x \in I_{2}$, where I_{2} is a locally nilpotent ideal with respect to M_{2}. We show that $I_{1} \cap I_{2}$ is a locally nilpotent ideal with respect to $M_{1} \cap M_{2}$.

Let A be a subsemigroup generated by a finite number of elements of $I_{1} \cap I_{2}$. Since $A \subseteq I_{1}$ and $A \subseteq I_{2}$ for almost all positive integers $n, A^{n} \subseteq M_{1}$ and $A^{n} \subseteq M_{2}$ holds. Thus $A^{n} \subseteq M_{1} \cap M_{2}$ and $I_{1} \cap I_{2}$ is a locally nilpotent ideal with respect to $M_{1} \cap M_{2}$.

As $x \in I_{1} \cap I_{2}$, we obtain $x \in L\left(M_{1} \cap M_{2}\right)$. Hence $L\left(M_{1}\right) \cap L\left(M_{2}\right) \subseteq$ $\subseteq L\left(M_{1} \cap M_{2}\right)$ and this together with a) gives $L\left(M_{1}\right) \cap L\left(M_{2}\right)=L\left(M_{1} \cap\right.$ $\cap M_{2}$).

Lemma 13. Let S be a semigroup and M_{1} and M_{2} subsemigroups of S. Then $R_{2}^{*}\left(M_{1} \cap M_{2}\right)=R_{2}^{*}\left(M_{1}\right) \cap R_{2}^{*}\left(M_{2}\right)$.

Proof. a) Evidently $R_{2}^{*}\left(M_{1} \cap M_{2}\right) \subseteq R_{2}^{*}\left(M_{1}\right) \cap R_{2}^{*}\left(M_{2}\right)$.
b) Let $x \in R_{2}^{*}\left(M_{1}\right) \cap R_{2}^{*}\left(M_{2}\right)$. Then $x \in R_{2}^{*}\left(M_{1}\right)$ and $x \in R_{2}^{*}\left(M_{2}\right)$, i. e. $x \in I_{1}$, where I_{1} is a weak nilideal with respect to M_{1} and $x \in I_{2}$ where I_{2} is a weak nilideal with respect to M_{2}. Therefore $x \in I_{1} \cap I_{2}$.

We now show that every element $y \in I_{1} \cap I_{2}$ is weakly nilpotent with respect to $M_{1} \cap M_{2}$, i. e. that $I_{1} \cap I_{2}$ is a weak nilideal with respect to $M_{1} \cap M_{2}$. Since $y \in I_{1} \cap I_{2}$, there exist positive integers n_{1} and n_{2} such that $y^{n_{1} \in M_{1}}$ and $y^{n_{2}} \in M_{2}$. As M_{1} and M_{2} are subsemigroups of S we have for the cyclic semigroups generated by the elements $y^{n_{1}}$ and $y^{n_{2}}:\left\{y^{n_{1}}, y^{2 n_{1}}, \ldots\right\} \subseteq M_{1}$ and $\left\{y^{n_{2}}, y^{2 n_{2}}, \ldots\right\} \subseteq M_{2}$. But then for the cyclic semigroup generated by the element $y^{n_{1} n_{2}}$ we have $\left\{y^{n_{1} n_{2}}, y^{2 n_{1} n_{2}}, \ldots\right\} \subseteq M_{1} \cap M_{2}$. Hence y is a weakly
nilpotent element with respect to $M_{1} \cap M_{2}$, thus $I_{1} \cap I_{2}$ is a weak nilideal with respect to $M_{1} \cap M_{2}$.

Since $x \in I_{1} \cap I_{2}$ we have $x \in R_{2}^{*}\left(M_{1} \cap M_{2}\right)$. We proved that $R_{2}^{*}\left(M_{1}\right) \cap$ $\cap R_{2}^{*}\left(M_{2}\right) \subseteq R_{2}^{*}\left(M_{1} \cap M_{2}\right)$ and this together with a) gives $R_{2}^{*}\left(M_{1} \cap M_{2}\right)=$ $=R_{2}^{*}\left(M_{1}\right) \cap R_{2}^{*}\left(M_{2}\right)$.

The following example shows that $R_{2}^{*}\left(M_{1}\right) \cap R_{2}^{*}\left(M_{2}\right)=R_{2}^{*}\left(M_{1} \cap M_{2}\right)$ need not hold.

Example 7. Let S be the set of all positive integers with the ordinary addition as operation. Let M_{1} contain the number 1 and those integers $n>1$ whose factorization into primes has either an even number of factors equal to the number 2 or it has no factor equal to 2 . Let M_{2} contain the number 1 and those integers $n>1$ whose factorization into primes has an odd number of factors equal to 2 . Clearly $M_{1} \cap M_{2}=\{1\}$ and $R_{2}^{*}\left(M_{1} \cap M_{2}\right)=\emptyset$. Further $R_{2}^{*}\left(M_{1}\right)=S$ and $R_{2}^{*}\left(M_{2}\right)=S$ and therefore $R_{2}^{*}\left(M_{1}\right) \cap R_{2}^{*}\left(M_{2}\right)=S \neq \emptyset=$ $=R_{2}^{*}\left(M_{1} \cap M_{2}\right)$.

The results we obtained are arranged into tables. (See Tables 3, 4 and 5.
Table 3

\cap	M_{1} and M_{2} are:		
	subsets	subsemigroups	left (right) [two-sided] ideals
$\mathrm{R}_{1}^{*}\left(M_{1} \cap M_{2}\right)=R_{1}^{*}\left(M_{1}\right) \cap R_{1}^{*}\left(M_{2}\right)$	$+(\mathrm{L} 10)$	+	+
$R_{2}^{*}\left(M_{1} \cap M_{2}\right)=R_{2}^{*}\left(M_{1}\right) \cap R_{2}^{*}\left(M_{2}\right)$	$-(\mathrm{E} 6)$	$+(\mathrm{L} 13)$	

Table 4

\cap	M_{1} and M_{2} are:		
	subsets	subsemigroups	left (right) [two-sided ideals
$R\left(M_{1} \cap M_{2}\right)=R\left(M_{1}\right) \cap R\left(M_{2}\right)$	$+($ L11 $)$	+	+

Table 5

\cap	M_{1} and M_{2} are:		
	subsets	subsemigroups	left (right) [two-sided] ideals
	$+(\mathrm{L} 12)$	+	+

Remark 3. For the unions the relations $R_{1}^{*}\left(M_{1} \cup M_{2}\right)=R_{1}^{*}\left(M_{1}\right) \cup$ $\cup R_{1}^{*}\left(M_{2}\right), R_{2}^{*}\left(M_{1} \cup M_{2}\right)=R_{2}^{*}\left(M_{1}\right) \cup R_{2}^{*}\left(M_{2}\right), R\left(M_{1} \cup M_{2}\right)=R\left(M_{1}\right) \cup R\left(M_{2}\right)$ and $L\left(M_{1} \cup M_{2}\right)=L\left(M_{1}\right) \cup L\left(M_{2}\right)$ need not hold. This follows from an example in paper [3], p. 213, even if M_{1} and M_{2} are two-sided ideals. (See also [5].)

Remark 4. Lemmas $3,4,6,7,10,11,12$ and 13 can be extended by induction from two subsets M_{1} and M_{2} to any finite number of subsets M_{\varkappa}, $x \in K$. But the following example shows that Lemmas 3, 4, 10, 11, 12 and 13 cannot be extended to an infinite number of subsets.

Example 8. The closed interval $S=\left\langle 0, \frac{2}{3}\right\rangle$ with the ordinary multiplication as operation is a semigroup. The closed intervals $J_{n}=\left\langle 0, \frac{1}{n}\right\rangle, n=$ $=2,3, \ldots$ are ideals of $S . N_{1}\left(J_{n}\right)=S$ for $n=2,3, \ldots$ and therefore $\bigcap_{n=2}^{\infty} N_{1}\left(J_{n}\right)=S$. But $\bigcap_{n=2}^{\infty} J_{n}=\{0\}$ and $N_{1}\left(\bigcap_{n=2}^{\infty} J_{n}\right)=\{0\} \neq S$.

Since S is a commutative semigroup and $J_{n}, n=2,3, \ldots$ are ideals of S, the foregoing sets of strongly nilpotent elements are at the same time sets of weakly nilpotent elements and also sets of almost nilpotent elements. By [3] and [1] they are clearly radicals with respect to these ideals.

The above lemmas imply the following theorems:
Theorem 2. Let S be a semigroup. Then the mapping $M \rightarrow R_{1}^{*}(M)$ is:
a) a homomorphism of the \cap-semilattice of all subsets of S into the \cap-semilattice of all (two-sided) ideals of S,
b) a homomorphism of the \cap-semilattice of all subsemigroups of S into the \cap-semilattice of all (two-sided) ideals of S,
c) a homomorphism of the \cap-semilattice of all left (right) [two-sided] ideals of S into the \cap-semilattice of all (two-sided) ideals of S.

The mapping $M \rightarrow R_{2}^{*}(M)$ is a homomorphism of the \cap-semilattice of all subsemigroups of S into the \cap-semilattice of all (two-sided) ideals of S.

Theorem 3. Let S be a semigroup. Then the mapping $M \rightarrow R(M)$ is:
a) a homomorphism of the \cap-semilattice of all subsets of S into the \cap-semilattice of all (two-sided) ideals of S,
b) a homomorphism of the \cap-semilattice of all subsemigroups of S into the \cap-semilattice of all (two-sided) ideals of S,
c) a homomorphism of the \cap-semilattice of all left (right) [two-sided] ideals of S into the \cap-semilattice of all (two-sided) ideals of S.

Theorem 4. Let S be a semigroup. Then the mapping $M \rightarrow L(M)$ is:
a) a homomorphism of the \cap-semilattice of all subsets of S into the \cap-semilattice of all (two-sided) ideals of S,
b) a homomorphism of the \cap-semilattice of all subsemigroups of S into the \cap-semilattice of all (two-sided) ideals of S,
c) a homomorphism of the \cap-semilattice of all left (right) [two-sided] ideals of S into the \cap-semilattice of all (two-sided) ideals of S.

REFERENCES

[1] Bosák J., On radicals of semigroups, Mat. časop. 18 (1968), to appear.
[2] Шеврин Л. Н., К общей теории полугруnn, Матем. сб. 59 (95), (1961), 367-386.
[3] Шулка Р., О нильпотентных элементах, идеалах и радикалах полугруппь, Mat.fyz. casop. 13 (1963), 209-222.
[4] Ш̈ улка Р., Радикаль и топология в полугруnnax, Mat.-fyz. časop. 15 (1965), 3-15. [5] Sulka R., Note on the Ševrin radical in semigroups, Mat. časop. 18 (1968), 57-58.

Received August 1, 1966.
Katedra matematiky a deskriptionej geometrie Elektrotechnickej fakulty
Slovenskej vysokej školy technickej, Bratislava

