Matematický časopis

Štefan Černák
The Cantor Extension of a Lexicographic Product of l-Groups

Matematický časopis, Vol. 23 (1973), No. 2, 97--102

Persistent URL: http://dml.cz/dmlcz/126823

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1973

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

THE CANTOR EXTENSION OF A LEXICOGRAPHIC PRODUCT OF l-GROUPS

Štefan ČERNÁK, Košice

Lexicographic products of linearly ordered groups and l-groups were considered by Malcev [3] and Fuchs [2]. Let G be an Abelian lattice ordered group. The Cantor extension of G will be denoted by G_{c}. Assume that G is isomorphic with the lexicographic product

$$
{ }^{l} \Pi A_{i}(i \in I)
$$

where I is a linearly ordered set. In this Note we prove that if I has no greatest clement, then G_{c} is isomorphic with G. Further we show that if i_{0} is the greatest element of I, then G_{c} is isomorphic with the lexicographic product ${ }^{l} \Pi B_{i}(i \in I)$ such that $B_{i}=A_{i}$ for each $i \in I, i \neq i_{0}$ and $B_{i_{0}}=\left(A_{i_{0}}\right)_{c}$.

1. Let us recall the definition and some properties of the lexicographic product of partially ordered groups (cf. Fuchs [2], p. 40).

Let $I \neq \emptyset$ be a linearly ordered set and let $A_{i}(i \in I)$ be a set of partially ordered groups. Denote by $l \Pi A_{i}(i \in I)$ the set of all functions $f: I \rightarrow \cup A_{i}$ $(i \in I)$ satisfying the following two conditions:
(a) $f(i) \in A_{i}$ for each $i \in I$,
(b) $\sigma(f)=\{i \in I \mid f(i) \neq 0\}$ is a well ordered set (in the order of I) for each $f \in{ }^{l} \Pi A_{i}(i \in I)$.

If we put for each $f, g \in l \Pi A_{i}(i \in I)$
$\left(\mathrm{a}_{1}\right)(f+g)(i)=f(i)+g(i)$ for each $i \in I$,
($\left.\mathrm{b}_{1}\right) f>0$ if and only if $f\left(i^{*}\right)>0$, where i^{*} is the least element of $\sigma(f)$. then ${ }^{l} \Pi A_{i}(i \in I)$ is a partially ordered group which will be called the lexicographic product of the partially ordered groups $A_{i}(i \in I)$.

If $I=\{1,2\}$ (with the natural order), then the lexicographic product of partially ordered groups $A_{i}(i \in I)$ is denoted by $A_{1} \circ A_{2}$. The following assertions are easy to verify:
(i) ${ }^{l} \Pi A_{i}(i \in I)$ is a linearly ordered group if and only if $A_{i}(i \in I)$ are linearly ordered groups.
(ii) If I has no greatest element, then ${ }^{l} \Pi A_{i}(i \in I)$ is an l-group if and only if $A_{i}(i \in I)$ are linearly ordered groups.
(iii) If there exists the greatest element i_{0} in I, then
(a) ${ }^{l} \Pi A_{i}(i \in I)$ is an l-group if and only if $A_{i}\left(i \in I \backslash\left\{i_{0}\right\}\right)$ are linearly ordered groups and $A_{i_{0}}$ is an l-group.
(b) The set $\bar{A}_{i_{0}}=\left\{f \in l \Pi A_{i}(i \in I) \mid f(i)=0\right.$ for each $\left.i \in I, i \neq i_{0}\right\}$ is convex in $l \Pi A_{i}(i \in I)$.

In the whole paper we assume that G is an Abelian l-group. By the symbol \simeq we denote an isomorphism of l-groups.
2. Now we describe the method for constructing the Cantor completion of an Abelian l-group G (the proofs are omitted, cf. Everett [1] and Fuchs [2] p. 149). We may use (see [1]) ordinary sequences $\left(x_{n}\right)(n=1,2, \ldots)$. Denote by N the set of all positive integers.

If $\left(t_{n}\right)\left(\left(t_{n}^{\prime}\right)\right)$ is a descending (increasing) ${ }^{(1)}$ sequence of elements of G and if there is $t=\wedge t_{n}(n \in N)\left(t^{\prime}=\vee t_{n}^{\prime}(n \in N)\right)$ in G, then we write $t_{n} \downarrow t\left(t_{n}^{\prime} \uparrow t^{\prime}\right)$. We write $x_{n} \rightarrow x$ ($x_{n} o$-converges to x or x is o-limit of x_{n}) if there exist monotone sequences $\left(t_{n}\right)$ and $\left(t_{n}^{\prime}\right)$ such that $t_{n} \downarrow x, t_{n}^{\prime} \uparrow x$ and $t_{n}^{\prime} \leq x_{n} \leq t_{n}$ for each $n \in N$. A sequence (x_{n}) such that $x_{n}=x$ for each $n \in N$ will be denoted by (x). If $x_{n} \rightarrow 0$, then $\left(x_{n}\right)$ is said to be a zero sequence. It is easy to verify that $x_{n} \rightarrow 0$ exactly if $\left|x_{n}\right| \leq t_{n}(n \in N)$ for some $\left(t_{n}\right)$ such that $t_{n} \downarrow 0$. The sequence $\left(x_{n}\right)$ is fundamental if there exists a sequence $\left(t_{n}\right)$ such that $t_{n} \downarrow 0$ and $\mid x_{n}$ -$-x_{m} \mid \leq t_{n}$ for each n and each $m \geq n$.

Denote by H the set of all fundamental sequences of G. If we define the operation + in H in a natural way, i.e., if we put $\left(x_{n}\right)+\left(y_{n}\right)=\left(x_{n}+y_{n}\right)$ for each $\left(x_{n}\right),\left(y_{n}\right) \in H$, then H is a group. The set E of all zero sequences is an invariant subgroup of H. Put $H / E=G_{c}$. If $\left(x_{n}\right),\left(y_{n}\right) \in H$ then $\left(x_{n} \vee y_{n}\right) \in$ $\in H$ holds. A coset of G_{c} containing a fundamental sequence (x_{n}) will be denoted by $\overline{\left(x_{n}\right)}$. For $\overline{\left(x_{n}\right)}, \overline{\left(y_{n}\right)}$ we put $\overline{\left(x_{n}\right)} \leq \overline{\left(y_{n}\right)}$ if $\overline{\left(x_{n} \vee y_{n}\right)}=\overline{\left(y_{n}\right)}$. Then G_{c} becomes an l-group. It is said to be the Cantor extension of G.
3. Let $A_{1} \neq\{0\}, A_{2} \neq\{0\}$ be partially ordered groups. Assume that there exists a mapping φ of an Abelian l-group G into $A_{1} \circ A_{2}$ such that

$$
\begin{equation*}
G \simeq A_{1} \circ A_{2} \tag{1}
\end{equation*}
$$

is true under the mapping φ. By (iii) (a), A_{1} is a linearly ordered group and A_{2} is an l-group. For a component of an element $x \in G$ in $A_{1}\left(A_{2}\right)$ we shall use the symbol $\varphi(x)(1)(\varphi(x)(2))$. Form the sets

$$
\begin{aligned}
& \bar{A}_{1}=\{x \in G \mid \varphi(x)(2)=0\} \\
& \bar{A}_{2}=\{x \in G \mid \varphi(x)(1)=0\}
\end{aligned}
$$

[^0]It is clear that \bar{A}_{1}, \bar{A}_{2} are subgroups of G and

$$
\begin{equation*}
\bar{A}_{1} \simeq A_{1}, \bar{A}_{2} \simeq A_{2} \tag{2}
\end{equation*}
$$

hold. Let ψ be a mapping of G into $\bar{A}_{1} \circ \bar{A}_{2}$ such that $\psi(x)=\left(\varphi^{-1}(\varphi(x)(1), 0)\right.$, $\left.\varphi^{-1}(0, \varphi(x)(2))\right)$ for all x in G. Then

$$
\begin{equation*}
G \simeq \bar{A}_{1} \circ \bar{A}_{2} \tag{3}
\end{equation*}
$$

under the mapping ψ. For any element $x \in G$ we put $x(1)(x(2))$ instead of $\psi(x)(1)(\psi(x)(2))$. It is easily seen that

$$
\begin{aligned}
& x \in \bar{A}_{1} \text { if, and only if, } x(2)=0 \\
& x \in \bar{A}_{2} \text { if, and only if, } x(1)=0
\end{aligned}
$$

4. If $t_{n} \downarrow 0(\uparrow 0)$ in G, then there exists $n_{0} \in N$ such that $t_{n} \in \bar{A}_{2}$ for each $n \in N$, $n \geq n_{0}$.

Proof. Assume that $t_{n} \downarrow 0$. First let us prove that there exists $n_{0} \in N$ such that $t_{n_{0}}(1)=0$. Suppose (by way of contradiction) that $t_{n}(1)>0$ for each n. Because of $\bar{A}_{2} \neq\{0\}$, we can find an element $g \in G$ such that $g>0, g(1)=$ $=0$. Then $g<t_{n}$ for each n contrary to $\wedge t_{n}=0$ and thus with respect to (*) $t_{n_{0}} \in \bar{A}_{2}$ for some $n_{0} \in N$. Since by (iii) (b) \bar{A}_{2} is convex in G and $t_{n} \leq t_{n_{0}}$ whenever $n \geq n_{0}$, we have $t_{n} \in \bar{A}_{2}$ for each $n \geq n_{0}$. If $t_{n} \uparrow 0$, the proof is similar.
5. If $x_{n} \rightarrow 0$ in G, then there exists $n_{0} \in N$ such that $x_{n} \in \bar{A}_{2}$ for each $n \in N$, $n \geq n_{0}$.

Proof. There exists $t_{n} \downarrow 0$ such that $\left|x_{n}\right| \leq t_{n}$ for each n. By 4 there exists $n_{0} \in N$ such that $t_{n} \in \bar{A}_{2}$ for each $n \geq n_{0}$. The convexity of \bar{A}_{2} in G implies $x_{n} \in \bar{A}_{2}$ for each $n \geq n_{0}$.

Let $E^{\prime}\left(H^{\prime}\right)$ be the set of all zero (fundamental) sequences in \bar{A}_{2}. A coset of $\left(\bar{A}_{2}\right)_{c}$ containing a sequence $\left(a_{n}\right) \in H^{\prime}$ will be denoted by $\overline{\overline{\left(a_{n}\right)}}$.
6. If $\left(x_{n}\right) \in E$, then $\left(x_{n}(2)\right) \in E^{\prime}$.

Proof. If $\left(x_{n}\right) \in E$, then there exist $t_{n} \downarrow 0, t_{n}^{\prime} \uparrow 0$ in G such that $t_{n}^{\prime} \leq x_{n} \leq t_{n}$ for each n. By 4 there exist $n_{1}, n_{2} \in N$ such that $t_{n} \in \bar{A}_{2}$ for each $n \geq n_{1}$ and $t_{n}^{\prime} \in \bar{A}_{2}$ for each $n \geq n_{2}$. We have to show that there are $z_{n} \downarrow 0, z_{n}^{\prime} \uparrow 0$ in \bar{A}_{2} such that $z_{n}^{\prime} \leq x_{n}(2) \leq z_{n}$ for each n. Put $z_{n}=x_{n}(2) \vee x_{n+1}(2) \vee \ldots$ $\vee x_{n_{1}-1}(2) \vee t_{n_{1}}$ for $n=1,2, \ldots, n_{1}-1, z_{n}=t_{n}$ for each $n \geq n_{1}, z_{n}^{\prime}=x_{n}(2) \wedge$ $\wedge x_{n+1}(2) \wedge \ldots \wedge x_{n_{2}-1}(2) \wedge t_{n_{2}}^{\prime}$ for $n=1,2, \ldots, n_{2}-1 . z_{n}^{\prime}=t_{n}^{\prime}$ for each $n \geq n_{2}$. The sequences $\left(z_{n}\right)$ and (z_{n}^{\prime}) satisfy the montioned conditions.
7. If $\left(x_{n}\right)$ is a fundamental sequence in G, then there exists $n_{0} \in N$ such that $x_{n}(1)=x_{n_{0}}(1)$ for each $n^{\prime} \in N, n \geq n_{0}$.

Proof. Using the definition of the fundamental sequence we get $\mid x_{n}-$ $-x_{m} \mid \leq t_{n}$ for some $t_{n} \downarrow 0$, each n and each $m \geq n$. Because of 4 there exists
$n_{0} \in N$ such that $t_{n} \in \bar{A}_{2}$ for each $n \geq n_{0}$. The convexity of \bar{A}_{2} in G implies $x_{n}-x_{m} \in \bar{A}_{2}$, thus $x_{n}(1)=x_{n_{0}}(1)$ for each $n \geq n_{0}$.
8. If $\left(x_{n}\right) \in H$, then $\left(x_{n}(2)\right) \in H^{\prime}$.

Proof. There exists $t_{n} \downarrow 0$ such that $\left|x_{n}-x_{m}\right| \leq t_{n}$ for each n and each $m_{v} \geq n$. Using 4 and 7 we obtain that there exists $n_{0} \in N$ such that $t_{n}=t_{n}(2)$ and $x_{n}-x_{m}=x_{n}(2)-x_{m}(2)$ for each $n \geq n_{0}$ and each $m \geq n$. We have to show that there exists $z_{n} \downarrow 0$ in \bar{A}_{2} such that $\left|x_{n}(2)-x_{m}(2)\right| \leq z_{n}$ for each n and each $m \geq n$. In view of [2], p. 112, the property J we obtain

$$
\begin{gathered}
\left|x_{n_{0}-1}(2)-x_{m}(2)\right|=\mid\left(x_{n_{0}-1}(2)-x_{n_{0}}(2)\right)+\left(x_{n_{0}}(2)-x_{m}(2)\right) \leq \\
\leq\left|x_{n_{0}-1}(2)-x_{n_{0}}(2)\right|+\left|x_{n_{0}}(2)-x_{m}(2)\right| \leq \mid x_{n_{0}-1}(2)-x_{n_{0}}(2)+t_{n_{0}}
\end{gathered}
$$

for each $m \geq n_{0}-1$. Thus we may put

$$
\begin{gathered}
z_{n}=\left|x_{n}(2)-x_{n+1}(2)\right|+\ldots+\left|x_{n_{0}-1}(2)-x_{n_{0}}(2)\right| \perp \\
+ \\
t_{n_{0}} \text { for } n=1,2, \ldots, n_{0}-1 \\
z_{n}=t_{n} \text { for each } n \geq n_{0}
\end{gathered}
$$

Let $\left(x_{n}\right),\left(y_{n}\right)$ be fundamental sequences in G.
9. $\overline{\left(x_{n}\right)}=\overline{\left(y_{n}\right)}$ if and only if there exists $n_{0} \in N$ such that $x_{n}(1)=y_{n}(1)$ for each $n \geq n_{0}$ and $\overline{\overline{\left(x_{n}(2)\right)}}=\overline{\overline{\left(y_{n}(2)\right)}}$.

Proof. If $\overline{\left(x_{n}\right)}=\overline{\left(y_{n}\right)}$ or equivalently $\left(x_{n}-y_{n}\right) \in E$, then by 5 there exists $n_{(r} \in N^{\prime}$ such that $x_{n}(1)=y_{n}(1)$ for each $n \geq n_{0}$ and by $6\left(x_{n}(2)-y_{n}(2)\right) \in E^{\prime}$. i. e., $\overline{\overline{\left(x_{n}(2)\right)}}=\overline{\overline{\left(y_{n}(2)\right)}}$. Conversely, let $\overline{\overline{\left(x_{n}(2)\right)}}=\overline{\overline{\left(y_{n}(2)\right)}}$ and $x_{n}(1)=y_{n}(1)$ for each $n \geq n_{0}$. Then $\left(x_{n}(2)-y_{n}(2)\right)=\left(\left(x_{n}-y_{n}\right)(2)\right) \in E^{\prime}$. Since $\left(x_{n}-\right.$ $\left.-y_{n}\right)(1)=0$, by $(*)$ we get $\left(x_{n}-y_{n}\right)(2)=x_{n}-y_{n}$ for each $n \geq n_{0}$. Then in a similar way as in the proof of 6 we can find sequences $\left(t_{n}\right)$ and $\left(t_{n}^{\prime}\right)$ such that $t_{n} \downarrow 0, t_{n}^{\prime} \uparrow 0$ in G and $\dot{t}_{n}^{\prime} \leq x_{n}-y_{n} \leq t_{n}^{\prime}$, for each n. Thus $\left(x_{n}-y_{n}\right) \in E$. i. e., $\overline{\left(x_{n}\right)}=\overline{\left(y_{n}\right)}$.
10. $G_{c} \simeq A_{1} \circ\left(A_{2}\right)_{c}$.

Proof. Let $\overline{\left(x_{n}\right)}$ be an arbitrary element of G_{c}. By 7 there exists $n_{0} \in N$ such that $x_{n}(1)=x_{n_{0}}(1)$ for each $n \geq n_{0}$. Define a mapping α of G_{c} into \bar{A}_{1}
$\left(\bar{A}_{2}\right)_{c}$ by the rule $\alpha\left(\overline{\left.x_{n}\right)}\right)=\left(x_{n_{0}}(1), \overline{\overline{\left(x_{n}(2)\right)}}\right)$. In view of 8 and 9α is a one-toone mapping of G_{c} into $\bar{A}_{1} \circ\left(\bar{A}_{2}\right)_{c}$. If $\left(a, \overline{\left.\overline{\left(b_{n}\right)}\right)} \in \bar{A}_{1} \circ\left(\bar{A}_{2}\right)_{c}\right.$, then $\left(\left(a, b_{n}\right)\right)$ is a fundamental sequence in $\bar{A}_{1} \circ \bar{A}_{2}$ and thus because of (3) it is clear that α is a mapping of G_{c} onto $\bar{A}_{1} \circ\left(\bar{A}_{2}\right)_{c}$. It can be easily verified that α preserves the group operation and the lattice operations. Then (2) completes the proof.
11. Theorem 1. Assume that a linearly ordered set (finite or infinite) has the grcatest element i_{0} and $A_{i}(i \in I)$ are partially ordered groups such that $A_{i} \neq\{0\}$ for each $i \in I$. If G is an Abelian l-group such that $G \simeq{ }^{l} \Pi A_{i}(i \in I)$. then $G_{i_{c}} \simeq{ }^{l} \Pi B_{i}(i \in I)$. where $B_{i}=A_{i}$ for each $i \in I, i \neq i_{0}$ and $B_{i_{0}}=\left(A_{i_{0}}\right)_{c}$.

Proof. From the assumption we get $G \simeq A \circ A_{i_{0}}$, where $A=l_{\Pi} A_{i}$ $\left(i \in I \backslash\left\{i_{0}\right\}\right)$ with respect to (i) is a linearly ordered group. By 10 we conclude $G_{c} \simeq A \circ\left(A_{i_{0}}\right)_{c}$, which completes the proof.
12. Now assume that a linearly ordered set $I \neq \emptyset$ has no greatest element and $A_{i}(i \in I)$ are partially ordered groups such that $A_{i} \neq\{0\}$ for any $i \in I$. Let there exist a mapping φ of an Abelian l-group G into ${ }^{l} \Pi A_{i}(i \in I)$ such that

$$
\begin{equation*}
G \simeq l \Pi A_{i}(i \in I) \tag{4}
\end{equation*}
$$

under the mapping φ. Let $i \in I$ be fixed and let us put

$$
\bar{A}_{i}=\{x \in G \mid \varphi(x)(j)=0 \quad \text { for each } \quad j \in I, j \neq i\}
$$

\bar{A}_{i} is a subgroup of G and $\bar{A}_{i} \simeq A_{i}$ for each $i \in I$. Then

$$
\begin{equation*}
G \simeq i \Pi \bar{A}_{i}(i \in I) \tag{5}
\end{equation*}
$$

If $x \in G$ and if under the isomorphism (5) $x \rightarrow f$, then we denote $x(i)=f(i)$.
Since I has no greatest element, for a fixed element $i \in I$ there exists $j \in I$, $j>i$. If we denote

$$
A^{i}=l \Pi \bar{A}_{j}(j \in I, j \leq i), \quad A^{\prime i}=l \Pi \bar{A}_{j}(j \in I, j>i)
$$

then

$$
\begin{equation*}
G \simeq A^{i} \circ A^{\prime i} \tag{6}
\end{equation*}
$$

Let $t_{n}{ }^{j} 0$ in G and let i_{n} denote the least element of $\sigma\left(t_{n}\right)$. Then $t_{n}\left(i_{n}\right)>0$ holds. The sequence (i_{n}) is increasing, since the sequence $\left(t_{n}\right)$ is descending.

With respect to (6) and 4,5, 7 we get the following assertions:
13. For each $i \in I$ there exists $n_{i} \in N$ such that $i_{n}>i$ for each $n \in N, n \geq \Omega_{i}$.
14. If $\left(x_{n}\right) \in E$, then for each $i \in I$ there exists $n_{i} \in N$ such that $x_{n}(i)=0$ for each $n \in N, n \geq n_{i}$.
15. If $\left(x_{n}\right) \in H$, then for each $i \in I$ there exists $n_{i} \in N$ such that $x_{n}(i)=x_{y_{i}}(i)$ for each $n \in N, n \geq n_{i}$.

Let $\left(x_{n}\right) \in H$ and for any $i \in I$ let $n_{i} \in N$ be as in 15. Put $x_{i}^{*}=x_{n_{t}}(i)$ for each $i \in I$. With this denotation we have:
16. There exists an element $x \in G$ such that $x(i)=x_{i}^{*}$ for each $i \in I$.

Proof. Since $x_{i}^{*} \in \bar{A}_{i}$ for each $i \in I$, we have only to prove that the set $A=\left\{i \in I \quad x_{i}^{*} \neq 0\right\}$ is well ordered. To show this pick out any set $I_{1} \neq 0$, $I_{1} \subseteq A$ and any element $i_{0} \in I_{1}$. If i_{0} is not the least element of I_{1}, then $I_{2}=$ $\left\{i \in I_{1} \mid i<i_{0}\right\} \neq \emptyset$ holds. According to 13 for i_{0} there exists $n_{0} \in N$ such that $i_{n_{0}}>i_{0}$. Then we have $t_{n_{0}}(i)=0$ for each $i \in I, i \leq i_{0}$. This implies $x_{n}(i)-x_{n_{0}}(i)$ for each $n \geq n_{0}$ and each $i \in I, i \leq i_{0}$. Thus $x_{n_{0}}(i)=x_{i}^{*}$ for
each $i \in I, i \leq i_{0}$. We infer $x_{n_{0}}(i) \neq 0$ for each $i \in I_{2}$, and so $I_{2} \subseteq \sigma\left(x_{n_{0}}\right)$. Since the set $\sigma\left(x_{n_{0}}\right)$ is well ordered, the set I_{2} is well ordered, too, and so I_{2} has the least element i^{*}. Then i^{*} is the least element in I_{1}, too.
17. Suppose that $\left(x_{n}\right),\left(y_{n}\right) \in H$ and $x, y \in G$ such that $x(i)=x_{i}^{*}, y(i)=y_{i}^{*}$ for each $i \in I$. Then $\overline{\left(x_{n}\right)}=\overline{\left(y_{n}\right)}$ if and only if $x=y$.

Proof. Let $\overline{\left(x_{n}\right)}=\overline{\left(y_{n}\right)}$, that is, $\left(x_{n}-y_{n}\right) \in E$. By 14 and 15 for each $i \in I$ there exists $n_{i} \in N$ such that $\left(x_{n}-y_{n}\right)(i)=0$ and $x_{n}(i)=x_{i}^{*}, y_{n}(i)=y_{i}^{*}$ for each $n \in N, n \geq n_{i}$. Thus $x=y$. The converse is obvious.
18. Corollary. $\overline{\left(x_{n}\right)}=\overline{(x)}$ where $x \in G$ such that $x(i)=x_{i}^{*}$ for each $i \in I$.
19. $G \simeq G_{c}$.

Proof. Define a mapping α of G into G_{c} by the rule $\alpha(g)=\overline{(g)}$ for any $g \in G$. By 17 and 18α is a one-to-one mapping of G onto G_{c}. We can easil! verify that α preserves the group operation and the lattice operations. thus $G \simeq G_{c}$.

We have arrived at
Theorem 2. Let a linearly ordered set $I \neq \varnothing$ have no greatest element and let $A_{i}(i \in I)$ be partially ordered groups such that $A_{i} \neq\{0\}$ for each $i \in I$. If G_{r} is an Abelian l-group such that $G \simeq{ }^{l} \Pi A_{i}(i \in I)$, then $G_{c} \simeq G$.

REFERENCES

[1] EVERETT, C. J.: Sequence completion of lattice modules. Duke Math. J. 11, 1944. 109-119.
[2] FUCHS, L.: Частично упорядоченные алгебраические системы. Москва 1965.
[3] МАЛЬЦЕВ, А. ІІ.: Об упорядоченных группах. Ізв. АН СССР, серия матем. 1.3 1949, 473-482.
Received March 31, 1971
Latedra matematiky
Strojnickej fakulty
Tysokej školy technickej Košice

[^0]: (1) If $x_{n}(n \in N)$ are elements of a partially ordered set and $x_{1} \leq x_{2} \leq \ldots$, then $\left(x_{n}\right)$ is said to be an increasing sequence. Analogously we define a descending sequence.

