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Matematicky €asopis 23 (1973), No. 3

EXTENSIONS OF POLYLINEAR MAPPINGS

RUDOLF FIBY, Bratislava
PREFACE

The classical Leibnitz rule for higher derivations of a product of mappings
is not valid in the case of Banach spaces. The general Leibnitz rule can be
expressed by using certain extensions of polylinear mappings. These extensions
and their fundamental algebraic properties are described in this paper. The
general Leibnitz rule will be described in another paper (the rule in [1] is not
valid).

Polylinear mappings are objects of some category. The extensions
are functors from the category into itself and they generate a sequence
To, 11, ..., T* where T° is the identical functor. There is a canonical epi-
morphism from 7»+L into T2, p = 0, 1, .... The functors 79, 71, ..., T™ are
coherent and preserve identities of polylinear mappings. For example, if X
is a commutative associative algebra then 79(X), T4X), ..., T%(X) are
commutative associative algebras. Analogical results can be obtained for
other classes of algebras.

Two sequences of functors 70, 71, ..., T are studied in this paper. The
first sequence Lex’, Lex), ..., Lex? is based upon some R-module A. The
second sequence Lex9, Lexl, . .., Lex® is isomorphic to Lexy,, Lexy, ..., Lex.
The functors Lex!; preserve symmetry and antisymmetry, r = 0, 1, ..., oo,

Homological and other aspects of the extensions are not considered (see
[21, [3] and [5]).

The terminology is taken from [4].

NOT ATIONS

is a commutative associative ring with a unit;

is the unit of R;

is the additive category of right B-modules and R-linear mappings;
1g is the identical .2Z-morphism of an .»7-object £;

A is an o7-object;

R -
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No =R

is a non-negative integer;

is a non-negative integer or oo;

is the symbol of the composition of mappings, morphisms and functors;
is the additive functor from 7 into .o/ defined as follows:

1. LY is the identical functor,
2. L™ (E) = Hom (A4,L%(E)) for every o/-object E, and ELA T (¢) —
= &l (@) for every &/-morphism ¢: E — F and & € L5™Y(R);

SLY(K) is the right R-submodule of all symmetrical elements of L% (%) i. e.

1. °L3(E) = Ly(B), *Ly(E) = Ly(#),
2. & € *LYM(R) iff v& € *LYTY(E) and vw& = woé for each v, w € 4;

LA (E) is the right R-submodule of all antisymmetric elements of L% (K), i. e.
A g Y 4

PI,

P

Pi»

P

I

I»

1. “Ly(E) = Ly(E), “Ly(E) = Ly(E),

2. & € "LY™(E) iff v& € “LYY(E) and vvé = 0 for each v € 4;
is the symbol of the direct product;
is the additive functor from .27 into .o/ defined as follows:

1. PB(E) = LY(E) ® ... @ LY(E) for every s/-object H,
2. Pl(¢) = L%(¢) ® ... @ LY(p) for every o/-morphism ¢;
is the additive functor from o7 into o/ defined as follows:

1. PI3(E) = LY(E) @ LY(E) @ ... for every o&/-object E,
2. Pl5(p) = L%(p) ® Li(p) @ ... for every .o/-morphism g;
is the epimorphism from P into PI% defined by the relation
(&0, ..., et JI5(B) = (&9, ..., &P) for every o/-object F and
(&, ..., &pHl) e PIEYY(ER);
is the additive functor from 4 into 4 defined as follows:
1. PP(E)=FE @ ... ® E for every so/-object K,
W
2. Plr(p) = ¢ @ ... ® ¢ for every o&/-morphism g;

P+l
is the additive functor from A into A defined as follows:

1. PI°(B)=E ® E @ ... for every «/-object &,
2. PI°(p) =9 ® ¢ @ ... for every &/-morphism ¢;
is the epimorphism from PI»+1 into PI? defined by the relation
(&0, ..., Ep)[Ip(F) = (&9, ..., &?) for every .7-object K and
(&9, ..., &ptl) e Plo+l (B);
is the isomorphism from L% into L? defined as follows:

1. 10 is the identical morphism,
2. EIPHU(E) = (18)I7(E) for every </-object E and & € I%™(E);
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n

is the isomorphism from PI%, into Pl» defined by the relation
(&, ..., EP)KP(E) = (EOI%H), ..., ErIP(R)) for every o7 -object E and
(&9 ..., &7) € PI»(B);

is the isomorphlsm from PI}; into PI” defined by the relation
(&0, &, .. YK*(E) = (&1%F), E1(H), ...) for every .o/-object F and
(50, &, ...) e Pl

is a positive integer;

Hom(&1, ..., En; E) is the right R-module of all polylinear mappings from

E,® ... ® H,into E where K1, ..., B,, F are .o/-objects;

Polimap, is the category defined as follows:

o

mi, ..

[N, .

272

1.X is a Polimapn-object iff X is a polylinear mapping from
B, ® ... ® E,into K where E1y..., B,, Fl are o/-objects,

.for  every Polimap,-objects X e @F,-FE Y-
Fhh®...0F,—>F, Hom (X, Y) is a rlght R-submodule of
Hom(Ey, F1) ® ... ®@Hom(#,, F,) @ Hom(#, F) and

o

(p1, -, @u, ) € Hom(X, Y) iff the diagram
E.o ©F %2 % Lo . §F,
X j ¥
v v
E . r
commutes,
B AP1s s @u )00ty 2y 1) = (ProX1, -5 Quogn, @ o) for
every Polimapy-morphisms (@1, ..., ¢@u, @) : X - ¥,
i, - s ) Y= 2Z;
is a permutation of the set {1, ..., n};

is the functor from Polimap,, into Polimap, defined as follows:

1. for every Polimapn-object X :B1 ® ... @ By —>E, o,(X) is
a polylinear mapping from Fis @ ... @ By into £ and
(&1, ..., En)op(X) = (15, - . -, Enr)X, where 7 =01, for each
(61, .., En)EE1s @ ... @ By,

2. 0 (@1, - oy P, @) = Pig, - - ., Yo, @) for every Polimap,-morphism
(‘pl: saey (Pna ¢)9

-» my are positive integers;

-y X»]X is the composition of the Polimap;-objects X;: Ein @ ... &
® By, —>Ei, it =1, ...,n, with the Polimap,-object X : B, @
® ... 0HE,>E i e [Xi,...,X41X is a Polimapm; +.. .+ my
object and



(El’]’ = 517”"1’ £ En’l: teey ‘Sn,mn) ([Xlz 2oy XW]X) =
= (61,1, .- 5 §1’7"’1)X1’ B B ) X)X

fOI’ ea/ch. (5171: s El)mlg s ey 571/,17 e eay En,mn) S

B,  Chia®. glB..0  SE.a

PART I
1. The functors Lea’,

1.1. Definition. Let X : B, @ ... @ K, — E be a Polimapy-object. By Lex’(X)
we shall denote the polylinear mapping from PU(E.) @ ... @ PI(E,) into
PU(E) defined as follows:

1. Lex'(X) = X,

2. for each (&, ..., &n) EPla‘H(EJ) @ .. @ PlﬁH(En) and ac A e hove
(&1, . . ., En)Leat (X)) =

(L., (&, Lt X))

af(&y, ... G Llexi(X))21! =

n

= e | e a2 )

il
(&n, - - -» 1)) Leay (X)),
where g = 0, ... . ».

1.2. Theorem If (g1, ..., @n, @): X > Y is a Polimapn-morphism, then
(PB(@1), . .., PR(gn), PB(p)) is @ Polimap,-morphism from Lea®(X) into
Leaxti(Y).

Proof. If p =0, the proposition holds. Let it hold for p. Let X : B, @
© ... 0 BB,V iF,® ... FuF Foreach @, ..., &) € PEI(E)®
® ... ® PIETY(B,) and g € A, we have

(ELPE @), . . ., EnPE (pa)) Lot (T )2 =

= (8. ..., ENEE ), - (é‘g, .. o5 ERPU (pn)) X

Lext (Y ) —

= (- 8 -, (@ ., L)X

Pl ()2 =

= (((&1, ..., Ea)LeaBt (X)) PlaY(P))

pHl

AW(EPE @), . . ., &P ga) Do (1)
= (&L, .., BLlilp), -

(@ETA ), - . ., a@HLE ) -
(52112(9971.)7 L 800 ((p”)))LeJ,‘Z(Y))p -
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- 2 (ELY (@), - - - HLE (@), - - -,

(aEDLSy(@s), . - ., (@2 THIE(@0)), - . .,
(EaLS (@n), - - fgLA(SUn)))LmA Y)r =

=2 (@, -, P, -,

@fl,  af" DPE(p)
( '09 s ooy Eﬁ)Plp ((Pn))LCJfﬁ(Y))p o

Z 5-'~;E71))7"-7(5&51}:"'7a5)2;”1,...,

=1

52, <o E) ey (X)) Ply(@))? =

S, &), ef, . 08y

:[\/;

(& - - -5 ) Lealy (X)) L (p) =

= (@((&1, . . ., En)Lea (X))PH) () =

= a(((€1, .. ., &) Lealy (X)) PHLE () =

= a(((61, . - -, &n) Loy (X))PU (@)1,
where ¢ = 0, ..., p.

1.3. Definition. The Polimapy-morphism (Pl (¢1). . . ., PU(gn), PH(p)) will
be denoted by Lex!i(¢1, ..., ¢n, ).

1.4. Theorem. Lex?, is a functor from Polimap, into Polimap, .
The proof is obvious.

1.5. Definition. Let X : By @ ... @ E, — K be a Polimap,-object. By Lex(X)
will be denoted the polylinear mapping from PIY(E,) ® ... @ PII(E,) inlo
PUY(E) defined as follows:

(&, . Eu(lexi( X)) —

~ e sv) 2 e
where q = 0, 1

1.6. Theorem. If (g1, ..., 90, @): X > Y is a Polimap,-morphism, then
(Pl(@), ..., Pl(pn), PlG(@)) is a Polimapy-morphism from Lex%(X) info
Lex (V)
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Proof. It follows immediately from Theorem 1.2.

1.7. Definition. The Polimap,-morphism (P(p1), . - -, Pl(p,), Pl(e))
will be denoted by Lex%(qr, ..., ¢, @).

1.8. Theorem. Lex’| is a functor from Polimap, into Polimap, .
The proof is obvious.

2. The morphisms P

2.1. Theorem. If X :E, @ ... ® B, > E is a Polimapu-object, then
(I1%(En), . ... 115 (By), IIN(E)) is a Polimapy,-morphism from Lea® ™ (X) anto
Lea®(X).

2.2 Definition. The Polimap,-morphism (II5(Ey), . ... [(#H,), IT%(B)) will
be denoted by P?(X).

2.3. Theorem. P7% is a morphism from Lex","" into Lea”, .
The proof is ovious.
2.4. Note. Lex? can be regarded as the projective limit of the sequence

1] Pl
_ A 2
Len ' . lew . |

3. Coherence of Lex!,
3.1. Theorem. Let X; :Ein @ ... @ E;,,— E; be a Polimap;-object,
i=1,....n Lt X: 1L ® ... ®E,—> E be a Polimapy-object. Then
Fedl ([ Xy, . X,)X) = [Lexfi (Xy), ..., Lerti(Xy)lleali(X).

Proof. If p =0, the proposition holds. Let it hold for p. For each
12, b be & e PENEB D .. QPEE O
® PP (Ep1) @ ... ® PIETYE,,,) and a € A, we have

., 5. S E
A X, .. . X0 -

5y 5, B E L%
((Leay ' (X), . . ., Leaty (Xn)|Lea™ (X))o

a’((&‘lyl, *iminy 5],17“; viieitely én;la woelag §;,,gm,,)><
Lea® i X, ..., XglX))ptl =

bo
-3
St



[
:Z Z 11,.-.,55',1),...,
=1 k=1
(é:lm, e 751m,)9'-~7(117""££1)"'-a
7 ( >
(@zf,,  ,ef4) (8, )

(th ey 1);,1)7 ey (‘Sg,mn’ = & 5;1::”1"))
Leai([X1, ..., XalX))» =

V2 Mg o
= Z Lzl(((&,v sy f,1)’ sy
i=1 k=

0 0
( 1my2 ¢ °2 Eﬁl),mx)! ey ( el ) 521):""5
(a’E‘},k" £ (153”}3 : (51 Mg "t OS¢ mz) trey

2,17 ] ‘5};;,1)7 ey (Ez,mna s sy Ez,mn))
[Leati(Xy), .. ., Leati(Xn)|Leat(X))p —

M

((((6(1),19 s eey 5{1, e o0y

=1

=

.

If
-

b

@, P2 et (X,
((5.21, . 2 wE, et
&, 2 lel(X)

e, 2 &, 8.
Lexly(Xn))Lealy (X))? =

— Z e, 2 & o o))

i

Lert (X)), z (&, 2

s
(aggfk’ ) “Egﬁ_[ﬁ), - (Ez me? * Szp.m;))
L, @ 2
(‘S::mln’ - Eﬁ,m"))Len‘ﬁ;(Xn))Lexf,;(X))P —

= ;((((5?,1: sy 51 1) = (51371111’ sy 52{.7:“))
Lexk(Xy), .. (Al ., Si,m‘)LexA HX),
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al(er, .. ., &, Leat (Xt ...,

(e 80 (8. . 2, 0

Lea?y(X ) Lea (X)) —

= all(§,, .. &) Leh (X)), ..,

(Epir oo &, Lol (X p) ) LexB (X )21,
where ¢ = 0, ..., p.

3.2. Theorem. The diagram

. exy .
Polimapy, ‘> Polimapy,
G* 6*
N .
Polimaps —> Polimapy,

»
e’

commautes.
The Proof is accomplished by induction.

3.3. Theorem. Let K1 , . . ., B, , E be s/-objects. Then the mapping X — Lex’ (X),
X e Hom(E1, ..., Eq; E), is an s/-morphism from Hom(Ei, . . ., Hn; E) into
Hom(P¥(E.), . .., PUy(Ey); PIE(E)).

The proof by induction.

3.4. Theorem. Lea®,(X) = PI%(X) for every Polimap,-object X : E1 — E.
Proof. If p = 0, the proposition holds. Let it hold for p. For each &, €
€ PI+'(E,) and a € 4, we have

(b Lexy™ (X)) = ((&8, . . ., &) Lealy(X))2 =
= (&), - - -» ENHPE(X)) = (&PI(X))

a(g, Lot (X))PH = ((adl, ..., agd™)Leali(X))? =
= (a8}, ..., e PE(X))? = (@EV)LA(X) =
= (&2 L5(X)) = a(&PITY(X))PH,

where ¢ =0, ..., D

3.5. Theorem. Let X :E1 @ ... @ Ent1—E be a Polimapyii-object. Let
X o . 92 EB,® ... ®Euyn1—E be a Polimapy-object. Suppose that

277



e]' EEJ:j = 17 n+ ]If(él’ e €hy on ey §n+l)X = (517 » "aﬂfiﬁ G éﬂ'f'l):‘(
for each (&1, ..., En1) €E1 @ ... @ By, then

(&1, ., (6,0, ...,0), ..., Epn)lexi(X) =
\—;—)t(:—l—J
= (517 ) Ei: ) 5%+1)Lex?1(X)
f(ﬂ' eack (51, A §n+1) EPlﬁ(El) @D ... (&) Plg(En+1).

The proof by induction.

3.6. Note. It is clear that the foregoing propositions are valid for Lex7,
too.

3.7. Application. If X : ¥ ® E —F is an associative algebra with the

unit ¢, then Lex!,(X) is an associative algebra with the unit (e, 0, ..., 0).
B ———
41

Proof. [X, 1z]X = [1g, X]X, because X is associative. By Theorem 3.1
and Theorem 3.4, we have

[Leay(X), 1ppam) ey (X) = [Leay(X), Lex)y(1x)]Leay(X) =
= Ler | (IX, 1g]X) = Lea' ([1p, X|X) =
— [Lea'y(1p), Lea'y(X)]Lea'y(X) = [1puam), Lealy(X)]Lea!y(X).

By Theorem 3.4 and Theorem 3.5, we have

(e, 0, ...,0), &) Lex (X) = & Lexl;(1g) = &

(&, (e, 0, ..., 0)Lex!,(X) = & Lex'y(1g) = &
for each & € PI)\(E).

3.8. Application. If X : £ @ E — E is a Lie algebra then Lex}(X) is a Lie
algebra.

Proof. We show that (&, &)Lex}(X) = 0 for each & €B Ifr— 0, the pro-
position holds. Let it hold for »r = p. For each £ e ¥/ and a € 4, we have

(5, &)Lexi 1 (X))e = ((§, £)Lex (X)) = 0

a((8, &) Lext ™ (X))rHl = ((af, &)Lex§(X) + (&, af)Lex}(X))? = 0,

where ¢ = 0, ..., p. The proposition evidently holds for » = oo, too.
Let @: {1, 2, 3} — {1, 2, 3} be the cyclic permutation Iz = 2, 2n = 3, 3n = 1.
The Jacobi identity

[lg, XX + @y ([le, X1X) + 74 (g ([1, X]X)) = 0
and Theorems 3.1—3.4 imply the relation

278



[rigm, Lewvy(X)|Lexi(X) 4 m([Lpiym , Lexi(X)]Lexj (X)) +
+ 7, (n*([lpl‘f(m, Lex}(X)]Lex (X)) =
= Lexj([1e, X1X + 7, ([1g, X1X) + (e ([12, X]1X))) = 0.

3.9. Note. Using Theorems 3.1—3.5 we can obtain analogical results for
other algebras.

PART 11
1. Functors Lex’

1.1. Definition. Let X : 1 @ ... @ By — E be a Polimapy-object. By Lex?(X)
we shall denote the polylinear mapping from PIP(E) @ ... ® Plr(E,) into
Plo(E) defined as follows:

1 Lex(X) - X,

2. for each (&1, ..., &) e PPV (E) @ ... @ Plrt\(E,), we have
&, . ., gn)Lele(X))

s 0 0

(&, ... )Lexl'*l(X))i" H —

- <<(s?,...,fa°>, a6 2y

(&), ..., ENlear(X))?
where ¢ = 0, ..., p.

1.2. Theorem. If (g1, .- P, @): X =Y is a Polimap,-morphism, then
(Plo(qn), ..., Plo(gn), Pl?(g)) is @ Polimap,-morphism from Lex?(X) into
Lex?(Y).

Proof. If p = 0, the proposition holds. Let it hold for p. Ler X : E; @
®... 08, >BY:F® .. - ®F,>F Foreach (&, ..., &) e PIPY(E) ®
@ ... ® Plvti(Hy), we have

(EPIH(py), . .., ExPIP(ga)) Lear I (Y))t =
— (&1, - . ., Ea)Lexr 1 (X)) Pt (g))0

((ELPIPH gy, .. -, En P11 (@n)) Lear (Y ))p 11 —
e Z (((Eg(pl’ ey le)(pl), sty (5:(?1,7 e ety 5?-%1(]7@'), .
i=1
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(Eg(p’n’ e 52%7))L€96’”(X))p =

n

=2 (&, ..., EVPI(g1), ..., (Eis - .., ET)PIN(g)s - - -

=1

(&> - - -5 ENPLY(py)) Lear(X))p —

=>qeE 8 @ 2y

1=

s

I
=

(&, ..., &) Lea?(X))Plo(@))® —

Il
.

It
il

T 0 o

(&5, ..., &) Lea?(X))Pp =
= (((&1, - - ., &n)Lexr+1(X))Plo+1 (¢))o+1,
where ¢ = 0, ..., p.

1.3. Definition. The Polimap,-morphism (Ple(gy), - . ., Pl*(a), Pl(@)) will
be denoted by Lex?(p1, ..., gu, @).

1.4. Theorem Lex? is a functor from Polimap, into Polimapy -
The proof is obvious.

1.5. Definition. Let X : B1 @ ... @ B, > E be a Polimapy-object. By Lex™(X)
will be denoted the polylinear mapping from PI°(By) @ ... @ PI*(Ey) into
PI*(E) defined as follows:

(&1, - En)Lea™(X))e = (((&], .-+ &), - . -,
(2: -« -, S Lext(X))e,
whereq =0, 1, .. .,
1.6. Theorem. If (@1, ...,9u,9): X > Y is a Polimapy-morphism, then
(PI°(¢1), . .., Pl®(@n), PI®(¢)) ts a Polimapy-morphism from Lex™(X) into

Lex™(Y).
Proof. It follows immediately from Theorem 1.2.

1.7. Definition. The Polimapn-morphism (PI*(¢1), ..., PI®(g,), PI*(¢))
will be denoted by Lex™ (g1, . . ., Pn, @).

1.8. Theorem. Lex™ is a functor from Polimap, into Polimapy .
The proof is obvious.
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2. Morphisms P?

2.1. Theorem. If X . E1 ® ... ® B, - E is a Polimapy-object, then
(Ip(K), . .. JI7(E,), II?(E)) is a Polimapy,-morphism from Lex?+1(X) into
Lex?(X).

2.2. Definition. The Polimap,-morphism (IIP(E:), ..., II?(E,), ITP(E)) will
be denoted by Pr(X).

2.3. Theorem. P? is a morphism from Lex?+! into Lex?.
The proof is obvious.
2.4. Note. Lex™ can be regarded as the projective limit of the sequence

0 PO 1 1)1
Led? Lol

3. Coherence of Lex"

Analogical results as in 1.3 can be obtained for Lex", too. The proofs are
similar.

PART III

1. Symmetry of Lex)
1.1. Theorem Let X : E1 @ ... ® E, — E be a Polimapy-object (%1, ..., &) e
e PEYA(E) @ ... ® PIB*(E,) and v, w e A. Then
vw((&1, ..., En)Leah T3 (X))p42 =
— DU ) bl el
i<j
(we, . wElth, (&, P Eer(X) -
+ [ (1)7 8 (w‘f}: ceey w§?+1), ciey
e, .. e&'h, (82, . EpLerl(X))p |
+kz e, 2, . (el vl
=1

(Ens - - -5 ER))Lex}(X))p.

The proof is clear

1.2. Theorem. Let X :E1 @ ... @ By —>E be a Polimapn-object. If &€
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eL{E:)® ... ®sLYE),i =1, ...,m, then (&, ..., &) Lex%(X) e sL)(E) ®
® ... ®@LYE).

Proof. If p = 0, 1, the proposition holds. Let it hold for p, p - 1. The
validity of the proposition for p + 1, p + 2 follows immediately from The-
orem 1.1.

1.3. Theorem. Let X : By @ ... @ Ho—FE be an anlisymmetric Polimap,-
-Obj@d‘t. If& (S “LX(EQ) @ ... D “Lﬁ(E()),’i =1  athen (&1, ..., En)Lexﬁ(X)
esLNE) @ ... ®*LYE).

The proof is analogous.

1.4. Note. It is clear that the foregoing propositions are valid for Lex?, too.

2. Isomorphisms A"

21. Theorem. If X :HE, ® ... ®E.—E is a Polimap,-object then
(K'(Eh), ..., K'(Hy), K'(E)) is a Polimapy-isomorphism from Lex (X) into
Lear(X).

Proof. If » = 0, the proposition holds. Let it hold for » = p. For each
(61, ..., &) e P YE) @ ... @ P, (Ba), we have

(&L K2 Y(H,), . . ., ELK2 Y (B,)) Lex?(X))! =
= (((5(1)10(E1)7 svey (S%_)IP(E]_)), o ) ((fglO(En), e v ey
EWIP(By)))Lexr(X))? =
= (&, ... . Eell), .., (&), .., EVEAE,) X
Lexp(X))? =
= (&, ..., &), ... (& ..., &) Lex}(X))KP(E)) =
= (&), .. &), ., (&0 . ., ED)) Lexf(X))UUE) =
= (((&1, - - -, En)Lexh™ (X)) K1)
(&L K2 Y(EL), . .., E,KP+(E,,)) Lex?™(X))PH =
- 2 (ErE) 2rEy, Bl
=1
EPHLPANEY), . . ., (EI%Ey), . . ., ELIP(En))) Lexr(X))P =
== % ((E0E). | 2FE)), . (UsHhDE), .
=1

(e OIE)), . (G1E)
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EN"(Br))) Lear(X))P =

= i((( S, HEnE) . (15, 12OAEy

i=1

(52, sy Eﬁ)Kp(En))Lexp(X))p s

e 2 (F | 1gv

"

i
oy

(&2, ..., &) Lex}(X))Kr(E))» =

- %(((5‘1’, .8 aE . 1y,
=1

(&, ..., &) Lexh(X))rIr(B) =

= (1{(&1 .. -, En)Leal Y X)) I2(E) =

= ((&1, ..., &n)Leal (X)) Ip+Y(E) =

= (((&1, ..., En)Lea Y (X)) K2t (B))2H,

where ¢ = 0, ..., p. Since K»41(H), ..., K»*1(En), K»*+(E) are isomorphisms,
(Krt\(Ky), ..., K»*(B,), KP+\(E)) is a Polimapa-isomorphism.
The proposition evidently holds for » = oo, t00.

2.2. Definition. The Polimapy,-isomorphism (K'(H,), ..., K"(E,), K'(E))
will be denoted by A7(X). '

2.3. Theorem. A" is an isomorphism from Lexy into Lexr and the diagram

P &
Lexd<« — B Lexh<«———...
s a
v ¥
0 pi
Lead «- Lea! «
commutes.
The proof is obvious.
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