Matematicko-fyzikálny časopis

Anton Kotzig
 Cycles in a Complete Graph Oriented in Equilibrium

Matematicko-fyzikálny časopis, Vol. 16 (1966), No. 2, 175--182
Persistent URL: http://dml.cz/dmlcz/126906

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1966

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

CYCLES IN A COMPLETE GRAPH ORIENTED IN EQUILIBRIUM

INTON KOTZIV, Bratisava

Th:oughout this paper we shall call a complete graph with m vertiees. orichted in equilibrium, a $g(m)$-graph. (Accordirg to [l] a graph is oriented in equilibrium if for each of its vertices the following holds: the number of atges outgoing from the vertex v is equal to the number of edges incoming at the vertex r.) If we use the terminology introduced by Berge in |ㅇ! a $g(m)$-graph is a complete antisymmetric gra'h wherein each vertex has an equal inward demi-degree and outward demidegree. Since aceording to lefinition a $\underline{g}(m)$-graph is complete and oriented in equibibrium, it musit be a reqular gaph of an cren degree and thus we have $m=1(\bmod 2)$.

Romark 1. It wotild seem that with $\|$ given, all o($2 n-1$-graphe are isomomphi. This is the case only with $n=1$ and $n=-2$. Fig. 1 represents

G_{1}

G_{2}

G_{3}

Fig. 1.
there different kinds of $\underline{0}(7)$ - graphe. W'e can cas ly prove that any o(7)-graph is isonowhic with exactly one of these three graphs. The answer to the following pohlem is not known to the author of the present paper: How many different mutually mon-isomorphic $\varrho(2 n+1)$-graphs do there exist for each given 1 : 3 ?

Let x^{\prime} be any vertex of a $Q\left(2 n\right.$) 1 -graph $\left(\frac{t}{1}\right.$. We shall use the symbol $P\left(x^{*}\right)$ (or $\left(Q_{1}\left(e^{\prime}\right)\right.$ for denoting the sets of those vertices from $(i$ from which in the waph $;$ the edge is incoming at the vertex r (or outgoing from it, respectively): ly $I^{\prime}(x)^{\prime}$ or $Q(x)^{\prime}$ resp we whall denote the number of its elements. It follows
directly from the definition of a $Q(2 n+1)$-graph and the sets $P(x), Q(x)$ that for any vertex x we have: $|P(x)|=|Q(x)|=n$.

Theorem 1. Let (y be any $\varrho(2 n+1)$-graph and h atm! of it., edges. In the graph there exists at least one 3-cycle containing the edge h.

Proof. Let the edge h in G be oriented from its vertex $\|$ into its vertex r. Let W be the set of all vertices of a not belonging into $\{u, r\}$. We obviously have $P(u)<W ; Q(v)<W$ and since $|W|=2 n-1, P(u)=n, Q(c)=n$, then necessarily $P(u) \cap Q(v) \neq 0$.

Then, however, there is at least one vertex $w \in W^{\prime}$ belonging both to $P(u)$ and $Q(v)$. The vertices u, v, w together with the edges joining these vertices form the 3 -cercle of G containing h. This proves the theorem.
 :3-cycles of graph (i. containing v, is exictly $\left(\begin{array}{cc}n & 1 \\ 2\end{array}\right)$.

Proof. Let us denote by P (or Q resp.) the eomplete subgraph of the graph $;$ (ontaining all vertices and only vertices of the set $P(v)$ (or the set $Q(r)$. resp.) and all the edges joining these vertices. Let w be any vertex of the graph X (where $X \in\{(t, P, Q\})$. Let us denote by $\sigma x\left(\rightarrow w^{\prime}\right)$ the number of edges in X incoming at w and by $\sigma_{r}(w \rightarrow)$ the number of edges in X outwing from w. since $|P(v)|=\mid Q(r)=n$ we have: the number of edges of both P and ? is $\binom{\prime \prime}{2}$.

Whence it follows:

$$
\sum_{x \in I^{\prime}} \sigma_{P}(x \rightarrow)=\sum_{r=P} \sigma_{P}(\rightarrow x)=\sum_{x \in Q} \sigma_{Q}(x \rightarrow)=\sum_{r \in Q} \sigma_{Q}(\rightarrow x)=\binom{\prime \prime}{2} .
$$

Besides we have: $\sigma_{G}\left(x^{r} \rightarrow\right)=\sigma_{G}(-x)=11$ for any vertex $r=1$. Thus it follows that:

$$
\sum_{r \in l^{\prime}} \sigma_{G}(\cdots x)=n^{2}
$$

and since there is no edge oriented from the vertex r int., a vertex of $P(x)$, we necessarily have: the number of edges of (i oriented from some vertex of $Q(v)$ at a vertex of $P(v)$, is $n^{2} \cdots\binom{n}{2}=\binom{n+1}{2}$. Wach of these edges and only such an edge together with v and the two edges incident at it form a 3 -r.vele containing v. This proves the theorem.

The subsequent corollary follows directly from Theorem - :
Corollary 1. In an! $o(2 n+1)-g r a t h$ the number of different 3 -e!gete is I $(2 n+1)(n+1) n$.
6

Remark 2 . We obtain the result ${ }_{+}^{1}(2 n+1)(n+1) n$ so that the number of the 3 -cycles containing the chosen vertex, ..e. the number $\binom{n+1}{2}$ is multiplied by the number of vertices and divided by three. Berge in [2$]$, 1. 14\%. Theorem 3 gives a more general formula for computing the number of 3 -croles no orientation in equilibrium is required. In the special case of the $0(\underline{Z} \| \quad \mid$-graph its formula acquires the form given in Corollary 1.

Remark 3. While the number of 3 -ceyeles in an $0(2 n+1)$-graph is not dependent with n given - on the choice of the $g(2 n+1)$-graph. this does mot hold for 4 -cecles. Thus in the graphs A_{1}, A_{2}, Giz given in Fig. I the number of 4 -थcles is $2.5,28,21$, though each of these three graphs is a $g(7)$-graph.

Let (: be any cyele of the $g(2 n+1)$-graph $(\mathbb{C}$. By the symboi $S(C)$ denote the set of vertices defined as follows: the vertex $x \in G$ belongs to $S(C)$ if ant only if it does not belong to C and when in the graph ${ }_{i}$ there exist two such dedes that one of them is oriented from a vertex of ($'$ into x and the other from x into a vertex of ('. By the symbol $P(C)$ (or $Q\left(C^{\prime}\right)$, resp.). denote the set of the vertices from ($\$$ that do not belong $t=C$ and have the property: any edge from (i joining a vertex from $P(C)$ (or a vertex from $Q(C)$, resp.) with the vertex of (' is incoming at (or outooing from) the vertex of r^{\prime}.

Lemma 1. Let ('be any r-cycle of " $g(2 n+1)$-graph (i where $r<2 n \leq 1$ and let w be anis certex from $S\left(C^{\prime}\right)$. In the graph G there is at least one (r... 1)rycle (" containing both the vertex w amb all vertices from C.

Proof. According to the definition of $S(C)$ there is in $(f$ an edge (denote it b, h) oriented from a vertex v_{1} of $('$ into w. Denote the other vertices of (' $b_{1} r_{2} r_{3} \ldots \ldots v_{r}$ in the order in which We pass through them by proceeding along the cycle (' in the direction of the orientation of its edges, starting from v_{1}. From the definition of $S(C)$ it also follows that among the vertices $v_{2}, v_{3} \ldots \ldots v_{r}$ there exists such a vertex that the edge joining it with w is outgoing from w. Let i s be the one from among such vertices that has with the given notation the smallest index. Then we necessarily have: there exists an edge of G

Fig. . .

 we replace the edge oriented from r_{s} into r_{s} by the adges f. g and by the vertex \because. we get a $(r+1)$-cede (" of $(;$ having the required properties bee Fig. 2 the edges from (" are acrentuated).

Definition. We shall say that the cygle (" from Lemmal I aicown b! "i-extravion of the eycle (through the wertex or.
 ir be any vertex from (': let ir be any vertex from the set $\left.I^{\prime}\left(e^{\prime}\right) \cup()^{\prime}\right)$. In tith it is at least one $(r+2)$-cycle ("' comtaming 14 and all vertices from (' and in (; there exists a (r I)-cycle (* containing ${ }^{\prime \prime}$ amd all certires fiom (' exep) the pertere or.

Proof. benote the vertiees of the evele (- others than the vertex re b the symbols r_{i}, where $i \in\{1.2 \ldots .$, - $\}$ so that we proceed abong the corle ${ }^{\prime}$ in the direction of the orientation of its edges through its vertices in the following order: $c_{1} . e_{2}, \ldots . v_{r 1}, v_{r}$. Let h_{i} be the edge from \boldsymbol{c}_{i} joining the
 containing the edge h_{i}. Let x_{i} be the third vertex of such a corle, hence let i; be the vertex for which the following holds: $w: r_{i} ; r_{i}$.

According to the assumption ${ }^{16}$ belongs to $P^{\prime}\left(\left(^{\prime}\right) \cup Q\left(\left(^{\prime}\right)\right.\right.$. All edges $h_{1}, h_{2} \ldots . . h_{r}$ therefore are incoming at the vertex π_{0} or the y are outgoing from the vertex u. Hence for all $i \in\{1,2, \ldots$.$\} we have: x ;$ does not belong
 the order in which we pass through the vertices of a $(r$: -2$)$-cycle ('" if we proeced along it in the direstion of the orientation of its edges. The sequence " $, e_{1} \ldots \ldots v_{1}, x_{r}$ determines in the given way a $(r$ l)-corle ('*. The (.ycles ('", (${ }^{*}$ obviously have the required properties. If w belongs to ($\mathrm{l}^{\left(C^{\prime}\right)}$ then the required cycle $\left(C^{\prime \prime}\right.$ is given by the sequence $u_{0}, x_{1}, r_{1} \ldots \ldots r_{r}$ and the rycle ('* by the sequence $u_{,}, x_{1}, v_{1} \ldots, v_{r}$ (see Fig. 3). Hence the creles ('" and C * with the required properties exist. Q.E.I).

Fig. 3.

Definition. We say that the cycle ("" from Lemma 2 arose from the cycle (' by " 1 -extension through the vertex w, and we say that the cycle C^{*} from the same Ifemma arose from C' through a v-extension through the vertex " with a simultaneous. ieplacement of the verter v_{r}.

Theorem 3. Let $x . y$ be any two vertices of a $o(2 n+1)$-graph (i and let k be at!! mumber from the set $\{3,4, \ldots .2 n+1\}$. In a there is at least one k-cyede containing both vertices x and y.

Proof. Aceording to Theorem 1 there is in a^{\prime} a 3 -cycle containing an edge joining the vertices $x . y$. Hence for $k=3$ the theorem holds. Let us prove the following: If the theorem holds for $k \quad r$ (where r is a natural number. $3 \quad i=2 n$), then it holds also for $k=r \quad 1$. Suppose that in $(i r$ there is an r-role ('containing the vertices x, y. If $S\left(C^{\prime}\right)$ is a non-empty set, then. aceording to Lemma I we shall obtain by a hextension of the evele (' through any its bertex an (r | -revele containing the vertices x, y. Let $S\left(C^{\prime}\right)=C$ and w be any vertex of the set $P\left(C^{\prime}\right) \cup\left(\mathcal{C}\left(C^{\prime}\right)\right.$. Since $r \gg 2$, we have in (' a vertex (denote it $\mathrm{S}_{\boldsymbol{r}} r_{r}$) for which x or $\neq y$. Acoording to Lemma 2 we get by a v-extension of the corle (' through the vertex w with a replacement of the vertex v_{r} an (, : i)-cole ('* containing the vertices x, y. Hence if the theorem holds for $k \quad r$. it holds also for $k=r+1 \leq 2 n+1$. Thus the theorem holds for k. 3. hence it also holds for all $k \in\{3,4, \ldots 2 n+1\}$.

The following corollary is a direct consequence of Theorem 2 :
Corollary 2. Each g(2n+1)-graph with any watural n containc a IImiltonian rycle.

Lemma 3. Let $r . n . s$ be natural numbers. where $2<x<r<2 n$ and let $r_{1}, r_{2} \ldots . r_{s}$ be mutually different vertices of ${ }^{\prime} \varrho(2 n+1)$-gicaph a. If there is in ": "reycle containing all vertices of the set $V=\left\{v_{1}, v_{2} \ldots \ldots, v_{s}\right\}$ then for wach $k=r: 1 . r \quad \geq . . .2 n+1$, there i.s $i n$ also a k-cycle containing all mertices from I.

Proof. Let there be in graph G_{i} a p-cycle C_{0} containing all vertices of the set 1 . The erele (C_{0} may be successively extended by λ-extensions and v-extensions through suitably chosen vertices into the cycles $C_{1}, C_{2} \ldots, C_{2 n+1}$, . where ('is the $(p+i)$-eycle containing all vertices from V. This can be done so that in case of $S\left(C_{i}\right)=0$ at the v-extension of cycle C_{i} into cycle $C_{i 11}$ through a certain vertex with the replacement of the vertex v_{r} from C_{i}, we must chose for v_{r} where ($r=p+i$) always such a vertex from C_{i} that does not belong to V. Since such a cycle always exists with $r+i>s$, the lemma evidently holds.

Remark 4. In Fig. 4 we have a $o(9)$-graph with the following property: In the graph there does not exist a 4-eycle containing the vertices u, v, w though
there is in the samie graph a 3 -eycle with such vertiees. Whence it follows that the condition $x<r$ must not be omitted from Lemma 3 .

Fig. 4.

 graph C containing all vertices of a set V. then for (11!! $k=-2 p=1.2 p- \pm \ldots$ $-2+1$ there is in a_{x} a k-cycle containing all vertices of the set I^{2}.

Proof. The cyele C contains aceording to the assumption an even number of vertices, therefore necessarily $S(C) \neq 0$ (in the reverse case we would have $|P(C)|=|Q(C)|=\underset{2}{2}(2 n+1-2 p)$, which is impossible as $P(C)$ must be an integer). But then it is possible to extend the cycle (${ }^{4}$ by a i-extension through a vertex from $S(C)$ into a $(2 p+1)$-cycle containing all vertices from l^{\prime}. If we put $r=2 p+1, s=|V|$, then $s<r$ and the validity of Lemma is follows from Lemma 3 .

Remark 5. The difference between Lemma 3 and Lemma 4 is that in the case of an even s we may have $r=s$, hence in the case of an even V, V may be the set of all vertices of the cycle $($. .
 let V be the set of all vertices of the cycle C. Let k be con!y mumber from the st
$\because-p: 3.2 p+4 \ldots, 2 n+1\}$. then there exists in graph G such a k-cycle that contains all vertices from V.

Proof. If $S(C)$ is a non-empty set. then the cole (may be extended by a i-extension through a vertex of $S^{\prime}(C)$ into a $(2 p+2)$-cycle C^{\prime} which, apart from all vertices of the set V contains only one other vertex from $S(C)$. From the existence of the evcle (${ }^{\prime}$ there follows aceording to Lemma 3 the existence of a k-crele containing all vertices of the set V also for all $k \in\{2 p+3$. $\left.\because p: 1, \ldots . \ddot{z}_{n}+1\right\}$.

If $S(C) \quad C$ then there is in G^{\prime} at least one vertex u belonging to $P(C) \cap Q\left(C^{\prime}\right)$ and we get by a μ-extension of the cycle C through the vertex u according to Lemma 2 a $(2 p+3)$-cycle $C^{\prime \prime}$ containing all vertices from V.

The validity of Lemma 5 then is evident from Lemma 3 .
Lemma 6. Let (i be a $Q(2 n+1)$-graph and let V be the set of certain of its. r wrtices, where $2<r<2 n+1$. Let p be any natural number for which we have $1<p<r$. If there is in G such a cycle (${ }^{\prime}$ that contains apart from certain p rertices from V at least one vertex not belonging to V, then there is in (i also "c!grle ('comaining at least $p+1$ vertices from V and besides at loast one vertex mot belonging to V .

Proof. Let (' be a cycle containing p vertices from V and at most one vertex not belonging to V. We shall consider the following three possible raves:

1. $I \cap S\left(C^{\prime}\right): r^{\prime}$
$\because . I^{\prime} \cap S^{\prime}\left(C^{\prime}\right)=C^{\prime}$, containing only vertices from V^{\prime}.
2. $V^{\prime} \cap \mathfrak{N}(C)=0$, (Containing one vertex - denote it by $v_{p, 1}$ - mot belonging to ${ }^{\prime}$.

In the first case we get a λ-extension of the cycle C through any vertex from $\mathfrak{l}^{\circ} \cap \mathbb{S}\left(C^{\prime}\right)$ a cycle with the required properties; in the second case we get such a cercle by a μ-extension of the cycie C through any vertex from the set $.1 / \quad I^{\prime} \cap\left(P^{\prime}\left(C^{\prime}\right) \cap()(C)\right)$ and in the third case by a v-extension of the cocle ('through a vertex from M uith the replacement of the vertex v_{p+1}. This proves the lemma.

Theorem 4. Let (i be any $Q(2 n+1)$ graph and let V be the set of certain r verlices of $(:-2<r<2 n+1)$. If there is not in $\boldsymbol{G}^{(}$an r-cycle containing all vertices from 1 , then there exists in (i an $(r+1)$-cycle containing all vertices from V.

Proof. Let there not be in (r an r-cycle containing all vertices from V and let x : ! be any vertices from V. According to Theorem 1 there is in A_{i} a 3 -cycle (' containing the vertices x, y. Hence there is in G a cycle (${ }^{\prime}$ which, with the exception of certain p vertices from $V(p \in\{2,3\})$ contains at most one vertex
not belonging to V. But then. according to Lemma 6. in case when p; r. there is in (i a cycle \bar{C} containing at least $p+1$ vertices from V and at most one vertex not belonging to V. According to Lemma is the crele (' can be suceessively extended through the vertices from V so that the number of vertices of the cycle not belonging to V never exceeds one. After a finite number of steps we shall find such a cycle that contains all vertices from 1 . and besides at most one vertex not belonging to V. Such crete according to the assumption must be an $(r+1)-\mathrm{c} \cdot \mathrm{y}$ le. The Lemma follows.

The following corollary is a direct consequence of Lemma 1.
Corollary 3. Let (i be "in! oten + 1)-ggaph and let V be the set of cortain if artices from \& where $2<r<2 n$. If there is not in G an (r I)-cycle containin! all vertices from V then there is in Z_{i} an recyele containing all rertices from I^{\prime}.
 any! $0(2 n+1)$-graph. Let $R=\{r, r+1, \ldots .2 n+1\}$ and lat 1 be at!! wit of' 1 vertices from (a. In a^{i} there is a cyge containing all eretices from 1 rithri for all $k \in R$, all for all $k \in R$ with the exception of $k \quad r$. or for $k \in R$ with the exception of $k=-r+1$.

Proof. If in (i there are both an r-rycle and an ($;$: 1)-erele contamine
 taining all vertices from V for evar $l: \in R$.

If there is in (i no ($r+3$)-rede containing all vertices from l then (wer Corollary 3) there is in (8 an r - yole contaning all vertiees from l and aromeling to Lemmas 4 and 5 there exists such a k-erole alon for mery $k, r d$. $k \cdots 2 n+1$.

Finally: If there is not in (i an revele contaning all rertices from I . then.
 from l. According to Lemma 3 such a evele exists for all $k: B$ with one exception only: $k ; r$. This proves the theorem.

REFERENOES

 (1959), 31 45.
$|2|$ Berge ('., The theor! of graphes and its applications. Landon New Vork 19tio.
Received Mareh 6, 1965.

