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MATK-MATK'KO-KVZIICALNV CASOIMS SAV. H>. 2. liXUJ 

CYCLES IN A COMPLETE GRAPH ORIENTED 
IN EQUILIBRIUM 

A N T O N KOTZ1O, Brat is a v a 

Throughout this paper we shall call a complete graph with m vert ices, 

oriented in equil ibr ium, a o(>/!)-graph. (According to [1] a graph is oriented 

in equil ibrium if for each of its vert ices the following ho lds : the n u m b e r of 

edges outgoing from the vertex v is equal to the n u m b e r of edges incoming 

at the \o r t ex v.) If we use the terminology in t roduced by B e r g e in \2\, 

a o(//l)-gra|)h is a complete an t i symmet r i c gra )h wherein each vertex lias 

an equal inward demi-degree and ou tward demidegree. Since according to 

definition a o(D/)-graph is complete and or iented in equi l ibr ium, it must be 

a regular graph of an even degree and t h u s we have m I (mod 2). 

R e m a r k I. It wot.Id seem t h a t with n given, all o(2n -\- l ) -graphs are 

isomorphic. This is the case only with n I and n — 2. Fig. I re])resents 
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throe different kinds of O(7)-graphs. We can eas.ly prove t h a t any o(7)-graph 

is isomorphic with exact ly one of these three graphs . T h e answer to t h e follow

ing problem is not known to t h e a u t h o r of t h e present p a p e r : How m a n y 

different mutua l ly non-isomorphio o(2n -j l)-grTphs do t h e r e exist for each 

li'ivon n 
Let x be any vertex of a o(2n -\ l)-graph (7. We shall use t h e symbol P(x) 

(or Q(x)) for denot ing t h e sots of those vertices from (J from which in t h e 

graph (i the edge is incoming a t t h e vertex x (or outgoing from it, respect ively) : 

by F(r) or Q(x)] resp. we shall denote the n u m b e r of its e lements . It follows 



direct ly from the definition of a o(2n -f l ) -graph a n d the sets P(x). Q(x) t ha t 
for a n y ver tex x we have : \P(x)\ — \Q(x)\ = n. 

Theorem 1 . Let G he any o(2n | I)-graph and h anj of its edges. In the graph 

there exists at least one Wcycle containing the edge h. 

Proof . Let t he edge h in G be oriented from its ver tex u in to its ver tex r. 

Let W be t he set of all vertices of G not belonging into \u, r). We obviously 

have P(u) < W; Q(v) < W and since | IV! =2n—l. P(uf = n, Q(r) ----//, 

then necessarily P(u) n Q(v) / 0. 

Then , however, there is at least one vertex ir e W belonging both to P(u) 

and Q(v). The vert ices u, v, w together with the edges joining these vertices 

form the 3-eyele of G containing h. This proves the theorem. 

Theorem 2. Let v he any vertex of a o(2n + \)-graj)h G. The nuinher of diff rent 

W-cycles of graph G. containing v, is exactly ( ' 0 I 

P r o o f . Let us denote by P (or Q resp.) the complete subgraph of the g r aph G 

containing all vertices and only vertices of the set P(v) (or the sot Q(v). resp.) 

and all the edges joining these vertices. Let w be any vertex of the graph X 

(whore X e {G, P,Q}). Let us denote by Gx( > ^) the number of edges in 

X incoming at w and by <7x(iv ->) the number of edges in .V outgoing from w. 

S i n c e \P(v)\ — ]Q(*')] " < v v o h ave : the number of edges of both P and Q 

< » : . . 
\ \ hence it follows : 

2 M * ->) ---1 M-+ -0 ---- V <JQ(X - ) - 2 *Q(-* .r) = ( ! , ' ) • 
xeP reP .reQ reQ ' - ' 

Besides we h a v e : o>;(.r->) — o(;( ^ x) ~n for any vortex x-G. T h u s 
it follows t h a t : 

V r/6<( -~x) -n1 

xeP 

and since there is no edge oriented from the vertex v into a ver tex of P(v), 

we necessarily h a v e : the number of edges of G or iented from some ver tex 

of Q(v) a t a ver tex of P(v), is n* - ( A = ( " T * ) ' Kach of tlies. 

only such an edge together with v and the two edges incident at it form a 3-eyele 
conta ining v. This j)roves the t l ieorem. 

The subsequent corollary follows direct ly from Theorem 2: 

Corollary 1. In any o(2n j \)-(jraph the nutnher of different W-cycle* is 
1 

(2n + \)(n -f !)/>. 
() 
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R e m a r k We obta in t h e result (2n 
4 

\) (n -j- \)n so t h a t the n u m b e r 

)f the 3-eyeles containing the chosen vertex. ;..e. the n u m b e r nv 
multiplied by the n u m b e r of vertices a n d divided by three . Berge in [2J, 

p. LIT). Theorem 3 gives a more general formula for c o m p u t i n g the n u m b e r 

of 3-cyeles no or ientat ion in equi l ibr ium is required. In t h e special case of t h e 

o(2n | l )-graph its formula acquires the form given in Corollary L 

R e m a r k 3. While t h e n u m b e r of 3-eyeles in an n(2n -f- I)-gi'aph is not 

dep(Mulent with n given — on t h e choice of t h e o(2n -f- l)-gra])h, this does 

not hold for 4-eyeles. T h u s in t h e graphs G\, Go, G% given in Fig. 1 t h e n u m b e r 

of 4-eyeles is 2f>. 28, 21, t h o u g h each of these t h r e e g raphs is a o(7)-graph. 

Let (' be any cycle of t h e o(2n 4 l)-graph G. B y t h e symbol S(G) d e n o t e 

the set of vertices defined as follows: t h e vertex x e G belongs to S(C) if a n t 

only if it does not belong to C a n d when in t h e g r a p h G there exist two such 

edges t h a t one of t h e m is or iented from a ver tex of C into x a n d t h e o ther 

from .v into a vertex of (\ B y t h e symbol P(C) (or Q((J), resp.). d e n o t e t h e 

set of t h e vertices from G t h a t do n o t belong to C a n d have t h e p r o p e r t y : 

any cd<ic from G joining a v e r t e x from P(C) (or a vertex from Q((J), resp.) 

with the ver tex of (' is incoming a t (or outgoing from) the ver tex of C. 

Lemma, 1. Let C be any r-cycle of a o(2n f \)-qraph G where r i 

!)-

'*-* 

and let ir be any vertex front S(C). In the graph G there is at least one (r 

cycle C containing both the vertex w and all vertices from (J. 

P r o o f . According t o t h e definition of S((J) t h e r e is in G an edge (denot< 

it by h) or iented from a ver tex V\ of C in to iv. Denote t h e o t h e r vertices of ( 

by v>, l'3 vr in t h e order in which 

wo pass t h r o u g h t h e m by proceeding 

along t h e cycle C in t h e direct ion of t h e ••• * 

or ientat ion of its edges, s ta r t ing from v\ . •* 

From t h e definition of S(C) it also follows • 

t h a t a m o n g t h e vertices v2, v% vr • 

tluM'e (\\ists such a vertex t h a t t h e edge • 

joining it with w is outgoing from w. I 

Let vs be t h e one from a m o n g such ver- • 

tices t h a t has with t h e given n o t a t i o n *m 

flu4 smallest index. Then we necessa- • 

rilv h a v e : there exists a n edge of G • 

FІK- -'• 
v г 
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oriented from vs \ into tr and an edge a of C or iented from //• into rs. If in (' 

w e ro])laoe the edge oriented from ?\s. i into vs by the (ulges /'. // and by the 

vortex tr. we get a (r -}- l)-cyele C" of C having the required propert ies (see 

Fig. 2 the edges from (/' are accentua ted) . 

Befinition. We shaft sajj that the ctjcle C' from Lcnnna 1 arose /)// <i /.-exfn,sinn 

of the cjjctc C through the vertex ir. 

Lemma 2. Let C he aittj r-cjjclc of a o(2H r \)-(/raph trJtcre r <; 2// ami let 

rr he anj/ vertex front C \ let tr be anjj vertex front the set P((1) ĵ Q(C')- l >> C th< r< 

is at least one (r -\- 2)-cj/cle C" containing ir and all vertices front C <nt<l in C 

there exists a (r ! \)-cj/c!e C* containing tr and all rertires from C exce/J tin 

vertex vr. 

P r o o f . Denote the vertices of the cycle C o thers t han the ver tex rr by 

the symbols v,, where ?' e: \\. '2 /• — I ) so t h a t we proceed along the cycle (' 

in the direction of the orientat ion of its edges th rough its vortices in the 

following order : t\ . r*...... vr i , vr. Let //,• be the edge from C joining the 

vertices tr and •?:,-. Aeeording to Theorem I there is in C at least one 3-eycle 

conta in ing the edge //,-. Let x-, be the th i rd vertex of sueh a cycle, hence lot x; 

be the vertex for which the following holds: //' / .r, / !'/• 

According to the assumpt ion tr belongs to P(C) u Q(C). All edges 

//] ,//2 hr therefore are incoming a t the ver tex tr or t hey are outgoing 

from the ver tex tr. Hence for all i e [1. 2 /} we h a v e : x; does not belong 

to C. If tr belongs to P{C) then the sequence u\vr.v\ rr \.xr \ gives 

the order in which we pass th rough the vertices of a (/• r 2)-eyele (/" if we 

proceed along it in the direction of the or ienta t ion of its edges. The sequence 

tr, t\ vr \, xr i de termines in the given way a (/ < l)-cycle C*. 'The 

cycles C", C/* obviously have the requi red propert ies . If tr belongs to Q(C) 

then the required cycle C" is given by the sequence tr. x\, t\ /> and the 

cycle C* by the sequence u\ x\, V\. . . . , vr (see Fig. 3). Hence t h e oyeles C" 

and (7* with the required propert ies exist . Q.E.I) . 

Fig. 3. 
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Definition. We say that the cycle C" from Lemma 2 arose from the cycle C 

by a y-extension through the vertex w. and ire say that the cycle C* from the same 

lemmu arose from C through a v-extension through the vertex ir with a simultaneous 

replacement of the vertex vr. 

Theorem 3 . Let .v. y be any two vertices of a g(2n -f- 1)-graph (! and let k In 

any number from the set {3, 4. . . . . 2H -f- 1 }. in G there is ut least one k-cycle 

containing both vertices x and y. 

Proo f . According to Theorem 1 there is in G a 3-cycle containing an ed^ 

joining the vortices ,\\ y. Hence for k 3 tlie theorem holds. Let us prove 

the following: If the theorem holds for k r (where r is a na tura l number . 

3 /• 2//), then it holds also for k r \- 1. Suppose t h a t in G the re is an 

/•-cycle C containing the vertices x, y. If S((1) is a non-empty set. then , according 

to Lemma 1 we shall obta in by a ^-extension of the cycle (1 t h rough a n y its 

vertex an (/' ! l)-eycle conta in ing the vortices x, y. Let *Sy(C) ~ C and w be 

any vei'tex of the set P((1) ^ Q((?)- Since r > 2, we have in C a vertex (denote 

it by rr) for which x / vr / //. Aeeording to L e m m a 2 we get by a r-extension 

of the cycle C th rough the ver tex w with a replacement of the ver tex vr an 

(/• l)-cyclo C* containing the vertices x, y. Hence if t he theorem holds for 

k /'. it holds also for k r -\- 1 > 2n -j- L. Thus t h e theorem holds for 

k 3. hence it also holds for all k e: | 3 . 4, . . . . 2/I -f 1} . 

The following corollary is a direct consequence of Theorem 2: 

Corollary 2. Luch o(2n + \)-gruph with any wi+ural n con^Cni* a H'uuil^mun 

cycle. 

Lemma 3. Let r. n. s be natural numbers, where 2 < s < r < 2// and let 

c\ . r-i vs In mutually different vertices of a o(2n | \)-graph (!. If there 

is iii (1 a r-cycle containing all vertices of the set V = {Ti, E2 <\s] then for 

each k - r j 1. /" '?-• 2. . . . . 2n f 1, there is in (! also a k-cycle containing all 

rerfices from V. 

P r o o f . Let there be in graph G a p-eycle CQ conta ining all vert ices of t he 

set P. The cycle Co m a y be successively ex tended b y A-extensions and r-exten-

sions th rough sui tably chosen vert ices in to the cycles Ci , (7o. . . . , ('2>n\ v-

where C; is the (p -{- i)-cycle containing all vert ices from V. This can be done 

so t h a t in case of S(d) =0 a t t he v-extension of cycle 6\- in to cycle Of, i 

th rough a certain ver tex wi th the rep lacement of t h e ve r t ex vr from C%, 

wo mus t chose for vr where (r = p ~\- i) a lways such a ver tex from C% t h a t 

does not belong to V. Since such a cycle a lways exists wi th r -f i > s, t h e 

lemma evident ly holds. 

R e m a r k 4. In Fig. 4 we have a o(9)-graph wi th t he following p r o p e r t y : 

I n the graph there does no t exist a 4-cycle containi ig t he vert ices u, v, w t hough 
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there is in the same graph a 3-cycle with such vertices. Whence it Follows t h a t 

the condition v < r must not be omit ted from Lemma 3. 

Fig. 4. 

Lemma 4. Let n, p be natural numbers and let C be the 2p-ct/cte of the n(2n I )-

graph C containing all vertices of a set V, then for any k 2p \. 2p — 2 
2n + 1 there is in (} a k-cycle containing all vertices of the set V. 

P r o o f . The eycle C contains according to the assumpt ion an even n u m b e r 

of vertices, therefore necessarily S(C) < 0 (in the reverse case we would have 

\1'(V)\ =\Q{C)\ - - l ( 2 n + 1 — 2p), which is impossible as \P(C) must be 

an integer) . B u t then it is possible to ex tend the cycle i1 by a / -extension 

th rough a ve r tex from S(C) in to a (2p + l)-eyele containing all vertices from V. 

If we pu t r — 2p + 1, s -~ \V\, t hen s < /• and the val idi ty of L e m m a ."> 

follows from Lemma 3. 

R e m a r k 5. The difference between Lemma 3 and Lemma 4 is t h a t in the 

ease of an even -s* we m a y have r —- s, hence in the ease of an even ' V\ , V m a y 

be the set of all vertices of the cycle C. 

Lemma 5. Let C be any (2p + 1)-cycle of a o(2it -|- \)-graph C (p < tt) and 

let V be the set of all vertices of the cycle C. Let k be any number from th< set 

180 



\2p ; 3, 2p f 4 , 2n ;- 1} . then there exists in graph G such et k-cycle 

tliui contains all vertices from V. 

Proo f . If S((^) is a non -empty set, then the cycle C m a y be ex tended by 

a / -ex tension through a ver tex of S((1) in to a (2p -f 2)-cycle C which. a()art 

from all vertices of the set V conta ins only one o ther ver tex from S(C). From 

the existence of the cycle C the re follows according to L e m m a 3 the existence 

of a- /r-cycle containing all vortices of the set V also for all k E [2p -f 3, 

2/> ! 1 2n -f 1 }. 

U' S(C) C then there is in G a t least one vertex: w be longing to P(C) n Q(C) 

and wo get by a /^-extension of the cycle C through the ver tex ?r according 

to Lemma 2 a (2p -f 3)-eycle C" con tain ing all vert ices from V. 

The validity of Lemma 5 then is ev ident from L e m m a 3. 

Lemma (>. Let G be a o(2n -f \)-graph evnd let V be the set of certain of its 

r vertices, where 2 < r < 2H -f 1. Lei p be any natural number for which we 

have 1 < p < r. If there is in G such a cycle C that contains apart from certain 

p vertices from V at least one vertex not belonging to V, then there is in G also 

a cycle C containing ut least p -f 1 vertices from V and besides at least one vertex 

not belonging to V. 

P r o o f . Let (1 be a cycle containing p vertices from V and a t mos t one 

veil ex not belonging to V. We shall consider t he following th ree possible 

cases: 

1. i ' n S(C) / f . 

2. P n S(C) -.-- f . C containing only vertices from V. 

3. V n S(C) —- 0 , C conta in ing one ver tex — deno te it by vP]\ — no t 

belonging to V. 

In the first ease we ge t a / -ex tension of the cycle C t h rough any ver tex 

from V n S(C) a cycle wi th the required proper t ies ; in the second case wo 

got such a cycle by a //-extension of the cycle C t h rough a n y ver tex from the 

sot M V n (P(C) r\Q(C)) and in the third case by a ^-extension of the 

cycle C th rough a ver tex from M with the rep lacement of the vertex vp\.\. 

This proves tin4 lemma. 

Theorem 4. Let G be any Q(2H f i)-gruph and let V be the set of certain r ver

tices of G (2 < r < 2n -f 1). If there is not in G cm r-cycle containing all vertices 

from L, I hen there exists in G an (r -f \)-cycle containing all vertices from V. 

P roo f . Let there no t be in G an /'-cycle con taining all ver t ices from V and 

lot x : y be any vertices from V. According to Theorem I then? is in G a 3-eyelo 

C containing the vertices x, //. Hence there is in G a cycle C1 which, with t h e 

exception of certain p vertices from V(p t {2, 3]) contains a t m o 4 one ver tex 
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n o t belonging t o V. But t h e n , according to L e m m a h. in case when p r. 
there is in (i a cycle < containing a t least p -\- 1 vertices from V and at most 
one vertex not belonging to V. According t o L e m m a l> t h e cycle C can be 
successively ex tended t h r o u g h t h e vertices from V so t h a t t h e n u m b e r of 
vertices of t h e cycle not be longing to V never exceeds one. After a Unite 
n u m b e r of s teps we shall find such a cycle t h a t conta ins all vortices from V 
a n d besides a t most one vertex n o t belonging to V. Such cycle according 
to t h e a s sumpt ion m u s t he an (r I l)-eyele. T h e L e m m a follows. 

T h e following corollary is a direct consequence of L e m m a 1. 

Corollary 3 . Let (i he anj o[2n < \)-<jrapli <tnd let V he the .set of c<rtain r r< r-
tices from (i where 2 < r < 2n. If there is not in (J an (r \ \)-cjclc co)>tainin</ 
all vertices from V then there is in d an r-cjclc containing <dl rertices from V. 

Theorem 5. Let n, r he natural numbers 2 < /•< 2//, n - 1 and let d h< 
<tnj a(2n I \)-graph. Let II --- jr, r < 1, 2// < 1] and let V he anj .«t 

of r vertices from (i. In 0 there is a ejele containing all cert ices from V cither 
for all k e It, all for all k e 7? icith the exception of k r. or for k - Ii frith th< 
exception of k --- r \ 1. 

P r o o f , i f in (i there are both an /'-cycle and an (r > 1 )-cycle conta ining 
all vertices from V, then there is. according to Lemma 3 in (i a /.-cycle con 
tab l ing all vertices From V for every kt it. 

If there is in (i no (r -\- I )-cycle containing all vertices from V then (see 
Corollary 3) there is in (i an /'-cycle containing all vertices from V and according 
to Lemmas 4 and 5 there exists such a k-eyelo also for e\ cry k - r • 1. 
k • In ] 1. 

Final ly : If there is not in (i an r-cycle containing all vertices from V. t h e n . 
according to t h e theorem, there is in d an (/• l)-cycle conta ining all vertices 
from V. According to L e m m a 3 such a cycle exists for all k = II with one 
exception only : k / r. This proves t h e theorem. 
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