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LEBESGUE DENSITY THEOREM 
IN TOPOLOGICAL SPACES 

BELOSLAV RIEfiAN, Bratislava 

I n this paper we shall prove the Lebesgue density theorem in topological 
spaces. This theorem can be easily deduced from Theorem 6 of paper [5] by 
the special choice f(E) = E. But this choice does not satisfy all assumptions 
required in [5]. The paper contains a theorem and three of its corollaries. 
The results of the present paper are applied in paper [4]. 

Let K be any system of subsets of a topological space X, H be the system 
of all subsets of X, m be a set function defined on H. Let S k a or-algebra, 
SCH. All further notions will refer to fixed K, H, m. 

Let T be a directed set. A system {Et}teT converges to a point x if for any 
neighbourhood U of x there is such a t0, t h a t for every t ^ t0 we have x e 
eEtC U. Let K be any system of subsets of X, m be a set function defined 
on H, positive and finite on K. For x e X and M e H we define 

í m(Et П M) 
-= sup ! ľ DM(%) = sup \lim : Et e K, {Et\ converges to x\. 

[t*T m(Et) J 

( m(Et n M) } 
DM(x) = inf {Km :Et e K, {Et} converges to x), 
- [teT m(Et) J 

If DM(X) -= DM(X), we say that M has in x the density DM(X) = DM(X) — 
= DM(x). 

A system of closed subsets of X covers a set A C X in the Vitali sense if for 
any x e A and any neighbourhood U of x there is E e K such t h a t x e E C U. 

Let a system K cover the space X in the Vitali sense. We say that the Vitali 
Theorem holds for a set function m (with K) if for any set A e H and any 
system LCK covering A in the Vitali sense there is a sequence {Et} of pair-

oo 

wise disjoint sets from L such that m(A — U E%) = 0. 

A set i f e S is m-regular if for any 6 > 0 there are an open set U and 
a closed set F such t h a t UDMDF U,FeS and m(U —F) < d. 
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A set M e H is m-measurable if for every E e H we have m(E) — m(M n 
nE) + m(E —M). 

After these preliminaries we can formulate our main result. 

Theorem. Let X be a topological space, K be a system of closed subsets covering 
X in the Vitali sense. Let m be an outer measure defined on the system H of all 
subsets of X, positive and finite on K and let for m the Vitali theorem hold (with 
K). Let S be a a-algebra, K C S and let for any E e S and E% e K (i = 1,2, . . . ) , 

oo 

Eir\Ej=0 (i # j ) be m(E) > 2 m(E n E*)-
i-l 

Then for any m-measurable and m-regular set M e S there exists m-almost 
everywhere in X the density DM(%) and the equality DM — %M holds m-almost 
everywhere (%M is the characteristic function of the set M). 

Proof . Let M be any m-regular, m-measurable set, d > 0 be a positive 
number. By an assumption there exists a closed set E C M, such that 

(1) m(M —E) < d. 

Put Gt = {s : DM-E(X) > t}. First we shall prove that 

1 

(2) m(Gt) ^~m(M —E). 
V 

Put L = {F eK : m(F n (M —E))/m(F) > t}. Clearly L covers the set Gt 

in the Vitali sense, hence there is a sequence {En} of pairwise disjoint sets 
oo 

from L such that m(Gt — U Fn) = 0. From this it follows that 
n=l 

oo 1 oo J 

m{Gt) ^ 2 m(E«) =̂  — 2 m(E« n (M —E))^~ m(M ~E)> 
n-1 t n=l t 

hence follows (2). 
Let Ht be the set of all x <fc M for which DM(%) > t. Since E is a closed set, 

it is clear tha t HtCGt. Hence by (1) and (2) 

1 d 
m(Ht) ^ m(Gt) ^ — m(M —E) < —. 

t t 

From the last inequality it follows that for any t > 0 we have m(Ht) = 0, i. e. 

(3) DM(X) = DM(X) = 0 for m-almost every x $ M. 

Since the set X — i f is also m-regular, we have by (3) 

(4) DX-M(X) = 0 for m-almost every x e M. 
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Since M is m-measurable, there exists DM(%) m-almost everywhere in X and 

(5) DM(X) = 1 for m-almost every x e M. 

From (3) and (5) the assertion of the Theorem follows. 

Corollary 1. Let X be a locally compact Hausdorff topological space, K be 
a system of compact sets covering X in the Vitali sense. Let m be a Caratheodory 
outer measure defined on the system H of all subsets of X (i. e. an outer measure 
for which m(E U F) = m(E) + m(F) whenever there are open disjoint sets 
U, V such that E C U, F C V). Let m be finite and positive on K and let for 
m the Vitali theorem hold. 

Then for any Baire set M of finite measure there exists m-almost everywhere 
in X the density DM(%) and m-almost everywhere in X we have DM = %M-

Proof. Since m is a Caratheodory outer measure, K is a system of compact 
sets and I is a Hausdorff space, m satisfies all the assumptions of Theorem 
(with S = H). Let M be any Baire set of finite measure. The proof will be 
complete if we prove that M is m-measurable and m-regular. In paper [3] 
it is proved, that all compact Gd sets (and hence also all Bair sets) are m-
measurable. Since m is finite on the system of all compact sets (K covers X 
in the Vitali sense!), m is a Baire measure on the system of all Baire sets, 
hence by the known results from [1], m is a regular measure. 

Corollary 2. Let X be a locally compact Hausdorff topological space, K be 
a system of compact 6r<$ sets covering X in the Vitali sense. Let m be a measure 
on the system S of all Baire sets, finite and positive on K. Denote by m* the outer 
measure induced by m. Let for m* the Vitali theorem with K hold. 

Then for any bounded Baire set M there exists m*-almost everywhere in X the 
density DM(X) and m*-almost everywhere in X we have DM = %M-

Proof . Since M is bounded, there exist Baire sets C, U such that M C 
C C C U, C is compact and U open. Let L be the system of all E e K for which 
E C U, let T be the a-ring of all Baire subsets of U, H be the least hereditary 
a-ring over T, m* be the outer measure on H induced by m. The topological 
space U, the systems L, T, H and the outer measure m* satisfy the assumptions 
of the Theorem. The set M is m*-measurable and m*-regular. Hence for m*-
almost all x e U we have DM(X) = %M(X). (Since U is open, the density defined 
by the help L is on U equal to tha t defined by the help of K.) For x $ U we 
have DM(X) = 0. 

Corollary 3. Let X be a a-compact Hausdorff topological space, K be a system 
of compact subsets of X covering X in the Vitali sense, m be a regular Borel 
measure defined on the o-algebra S of all Borel subsets of X, positive on K, m* 
be the outer measure induced by m and let the Vitali theorem hold for m*. 
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Then for every Borel set M of positive measure there exists m*-almost every­

where the density DM and m*-almost everywhere in X, DM = %M* 

Proof . If in Theorem we take m* besides m, then all the assumptions of 

Theorem are satisfies with the same meaning of K, S, H. 
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