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ON DECOMPOSITION OF A TREE INTO THE MINIMAL NUMBER 
OF PATHS 

ANTON KOTZIG, Bratislava 

Throughout the paper we mean by a graph a non-oriented finite graph. 
The object of our investigation will be trees i. e. connected graphs not con
taining any circle ( = Kreis [1]). Our considerations are necessarily based 
on some known lemmas, that is why we shall have to mention them (without 
proofs). 

Lemma 1. ([1], p . 49.) Any tree ivith at least one edge contains at least two 
vertices the first degree. 

Lemma 2. ([1], p . 21.) The number of vertices of odd degree is in each graph 
even. 

Lemma 3. ([1], p . 22.) Let G be any connected graph and let 2n (where n > 0) 
be the number of its vertices of odd degree, then there exists a decomposition of 
the graph G into n open moves (move = Kantenzug [1]) and any decomposition 
of the graph G into open moves contains at least n moves. 

Apart from the above, we have: 

Lemma 4. Let G be any tree, then there does not exist in G any closed move 
with at least one edge and every open move in G is a path (== Weg [1]). 

Proof . The validity of the lemma is evident from the fact tha t any tree 
does not contain a circle. 

Lemma 5. Let G be any tree and let 2n (n > 0) be the number of its vertices 
of odd degree, then G may be decomposed into n paths and any decomposition 
of the graph G into paths contains at least n paths. 

Proof . From Lemma 1 it follows tha t n ^ 1. Hence it follows from Lemma 
3 tha t G may be decomposed into n open moves and from Lemma 4 it follows 
that each such open move is a path. From the above the validity of the first 
assertion of the lemma is evident. From Lemma 3 and from the fact tha t 
n > 0 it follows tha t each decomposition of the graph G into paths contains 
at least n paths. The proof lemma is accomplished. 

Let us now put the following question: How many different decompositions 
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of the given tree into the minimal number of paths do there exist? The fol
lowing theorem solves the problem: 

Theorem. Let G be any tree with at least one edge and let d(i) be the number 
of its vertices of i-th degree. Let 2n be the number of the vertices from G that are 
of odd degree (i. e. 2n = d(\) + d(3) + .. .) and let r be the number of different 
decompositions of G into n paths, then we have 

r = f[gW», 
i=l 

where for every natural i we put g(2i —1) = g(2i) = 1 . 3 . 5 (2i —1) . 
Proof . Let V = {v ±, v2, • • •, vm} be the set of vertices of G. By Hi we denote 

the set of all edges from G incident at v% (i = 1 , 2 , . . . , m). Let Ri be any de
composition of the set Hi with following property: if \H%\ = 0 (mod 2), then 
each class from Ri has exactly two elements and if \H%\ = 1 (mod 2), then one 
of the classes of Ri contains an only edge (it will be called the significant 
edge with respect to Ri; if Hi contains an odd number of edges then none of 
its edges is significant to Ri) and the other classes of the decomposition con
tain two elements each. 

With regard to the system R = {i?i, R2, ..., Rm} of decompositions with 
the above property the following evidently holds: each vertex and only vertex 
of odd degree vj is incident at such an edge and only at one such an edge that 
is significant with respect to Rj e R. 

Let us travel along the elements of G according to the following rules: 
(1) If in a travel we arrive along an edge / at is end ( = vertex vx), then we 

proceed along that edge which with / forms a 2-element class of Rx e R. 
If, however, the edge / is significant with respect to Rx, we finish our travel
ling in vx. 

(2) We start each of our travels in a vertex vu of odd degree along such 
an edge from Hu that is significant with respect to Ru e R. 

I t is evident that the elements covered at any of these travels form a path 
of G, whereby the starting (as well as the final) vertex is a vertex of the 
odd degree. 

Any edge from G belongs evidently to one of the n paths describing all 
such travels (if, of course, we do not take into consideration in which of the 
two possible directions we travel). 

Hence: To each system R = {R±, R2, ..., Rm} of decompositions with the 
required property there corresponds (uniquely) a decomposition of the graph 
G into n paths. To the different systems there correspond different decompo
sitions of G into n paths. I t follows that r is equal to the number of different 
systems R with the required property. Then the validity of the theorem be-
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comes evident from the fact that g(s) is the number of the different decompo
sitions of the set of all edges incident at the given vertex of 5-th degree with 
the required property as well as from the fact that the decomposition of such 
a set may be chosen for the individual vertices quite independently. 

R E F E R E N C E 

[1] K ó n i g D., Theorie der endlichen und unendlichen Graphen, Leipzig 1936. 

Received April 2, 1966. 
Katedra mimerickej matematiky a matematickej statistiky 

Přírodovědecké] fakulty 
Univerzity Komenského, Bratislava 

78 


		webmaster@dml.cz
	2012-07-31T16:12:56+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




