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Matematický časopis 17 (1967), No. 1 

ON SOME PROPERTIES OF THE EQUATION 
y\x) + f(x)y"(x) = 0, 0 < a < 1 

STEFAN BELOHOREC, Bratislava 

The above equation, denote it by (r), has been studied with f(x) > 0 [4], 
[5]. In this paper two theorems will be proved when f(x) is a continuous not 
necessarily nonnegative function and some theorems in the case of f(x) > 0. 

A solution y(x) of equation (r) will be called oscillatory if it has at least one 
zero in the interval (x, oo) for an arbitrary x. If for every x > x± y(x) -^ 0, 
then the solution will be called nonoscillatory. The number a is assumed to be 
from the interval 0 < a < 1 and „odd", i. e. of the form a = pjq, p and q 
are odd integers. 

Theorem 1. Let the function f(x) be continuous in the interval (xo, oo). Then 
every solution of equation (r) can be extended to the whole interval (xo, oo). 

Proof . Let y(x) be a solution of (r) defined in an interval (x\, xz) (xj ^ xo), 
such that y(x±) = yo, y'(%i) = yi- Then from (r) for x e (x±, x%) we obtain 

X 

y(x) = y0 + yi(x — x1) — j(x — t)f(t)y«(t)dt. 

Wherofrom we have for x — x\ ^ 1 
X 

(1) \y(x)\ ^ (x - Xl) (|y0| + \yi\ + J |/(0I WW dt) • 
Xi 

I n the case x — x\ < 1 we have the following estimate 

X 

\y(x)\SAy*\ + \yi\ + \m)\W)V& 

and we proceed in the same way. From the inequality (1) we have 

l/(*)l \y(*)\a 

(|yol + N + J 1/(01 W)\«dty 
^(X-X!)«\f(x)\. 
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Hence by integration in the interval (x\, x} we have 

X X 

(lyol + \yx\ + J 1/(01 W)\ato)1~a =£ (i-x)j(t-x^\f(t)\ at + 
xx xx 

+ (|yo| + 12/iD1-" 

and finally we receive an inequality 

X 

(2) \y(x)\ ^ ( x - ^){(1 — a) J" (* — .ci)«|/(0|d* + (|?o| + M)1^}™'*-
XX 

Because the right-hand side of the last inequality is defined and continuous 
for every x ^ x±, then the solution y(x) increases more slowly than the function 
on the right-hand side. Since the inequality 

•JU 

\y\x)\ rglž/il+j* |/(0I lž/(0N«, 

is also valid, hence y'(x) is bounded for every x and thus the solution y(x) 
can be extended to the whole interval (x\, oo). A similar consideration is 
possible also in the interval (x2, #i>. The theorem is thus proved. 

R e m a r k . From the inequality (2) the following estimate follows: Provided 
oo 

that xa\f(x)\dx < oo, then for every solution y(x) of the equation (r) there 

exists a constant K, so tha t for every x ^ x± y(x) < Kx is valid. 

Theorem 2. Let the function f(x) be continuous in the interval (XQ , oo) and let 

í xa\f(x)\dx < 

Then for every solution y(x) of equation (r) there exists lim y'(x) = c. Initial 
X—>oo 

conditions can be chosen such that c -7-= 0. If in addition 

00 

f x a + 1 | / ( x ) | d # < o o , 

then any solution of the equation (r) is of the form 

y(x) == c2x + Ci -f o(l), 

where c\ and c2 are suitable constants. 
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Proof. From (r) we have 
X 

(3) y'(x) = y'(x1)-jf(t)y°<(t)dt. 
XX 

By the above remark \y(x)\ < Kx, therefore 
X co 

I jf(t)y«(t)dt\ ^ K« j \f(x)\x«dx < CO. 

0 0 

It follows from this that the integral f(t)ya(t)dt exists and by (3) the lim y'(x) 
xx 

exists. Further we prove that the initial conditions can be chosen such that 
c > 0. But this follows from the next inequality 

X 00 

y'(x) = y'(xx) — j f(t)y«(t)dt ^ y'(xi) — K* j \f(x)\x«dx > 0, 

which is true for a sufficient large x\. The first part of this theorem is thus 
proved. 

oo 

To prove the second part, let us suppose that x<xJt~1\f(x)\dx < oo. Then 

according to the first part for x-> oo, y'(x) has a limit. Denote it by cz. Inte
grating (r) in the interval <x, oo) we get 

CO 

y'(x) = c2 + jf(t)y«(t)dt. 
X 

From this we have by integration in the interval <#i, x) 
CO oo 

y(x) = c2x + y(xi) — c&x + j (t — xi)f(t)y«(t)dt + j (x — t)f(t)y«(t)dt. 
Xx X 

As 
X oo 

< OO, \\(t — xi)f(t)y^\t)dt ^ K* ix<*+i\f(x)\dx 
xx xx 

CO 

valid, then the integral (t — xi)f(t)ya(t)dt exists and 
xx 

o o 

j(x-t)f(t)y«(t)dt = o(l) 

is obvious. 
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If we denote 

y{xi) — c2X! +j(t — x,)f(t)y«(t)dt = a, 
xx 

then we can write 
y(x) = c2x + a + o(l). 

Thus the second part is proved. 
oo 

I n paper [4] it has been proved t h a t provided xf(x)dx < oo, the equation 

(r) has two types of nonoscillatory solutions. Bounded solutions and solutions 
of the type y(x) ~ ex. The following theorem asserts t h a t the equation (r) 
has no other nonoscillatory solutions. 

Theorem 3. Let the function f(x) be nonnegative, continuous in the interval 
(XQ , oo) and such that 

xf(x)dx < 0 0 . 

Then any nonoscillatory solution of equation (r) is either bounded or of the form 
y(x) ~ ex (c 7-- 0). 

Proof . Let y(x) be a nonoscillatory solution of (r), then for a sufficiently 
large x we have y(x) ^ 0. Let y(x) be positive for x > a (likewise for y(x) < 
< 0). From (r) for b > a we have 

X 

y(x) = y(b) + (X — b)y'{x) +j(t _ b)f(t)y«(t)dt. 
b 

Let us suppose that y(x) is not a bounded solution of (r), then for a sufficiently 
large b we have y(x) > 1 and 

X 

y(x) <: y(b) + xy'(x) + y(x) j tf(t)dt. 
b 

From it we have 

y(b) xy'(x) 
(4) 1 ^ ^ - + -^—^ + 

y(x) y(x) 
xf(x)dx. 

Let 8 be an arbitrary positive number, then it is possible to choose a number 
00 

bi >̂ b so that xf(x)dx < e. Thus from (4) we get 

^ У^ . XУ'W 

1 — є < г У(x) y(x) 
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from this it follows that 
xy'(x) 

(5) l iminf — — - ^ 1 — e. 
x~*°° y(x) 

Let us choose e < 1/3, a number b2 ^ bi such that in the interval <b2, oo) 
the inequality xy'(x) ^ (1 — 2s)y(x) is fulfilled. With regard to the inequality 
(5) such a choice is possible. Az y'(x) is a decreasing function we have from (r) 

X 

(1 - 2e)(y'(b2) - y'(x)) = (1 - 2e) jf(t)y«(t)dt rg 

oo oo 

^ J (1 — 2e)y(t)f(t)dt <Z y'(6s) J*/(*)d* < «y'(62). 

From the last inequality if follows that 

1 — 3e 
0 < - - y f ( 6 2 ) < y ' ( a ? ) , 

1 — 2«s 

and by this the lim y'(x) = c > 0, i. e. y(x) ~~ ex. 
£-»oo 

Theorem 4. Ze£ £Aere exist a number fi, 0 < /? ^ 1 SMCA £Aa£ 

CO 

liminf^ f/Wd* = i > 0 
X—>co 

J/(í)dí 

awcZ Ze£ the function f(x) be nonnegative and continuous in the interval <#o, oo). 
Then for any solution y(x) of (r) y(x) -/- 0 m ^ interval <a, oo) (a ^ #o) JAere 
e2ft'8fe a constant c such that for any x ^ a the following inequality holds 

\y(x)\ ^cfr — ayt-Mii-a). 

Proof . We can consider only such a solution y(x) of (r) tha t is positive 
for x ^ a. By integrating (r) in the interval (x, b} and then in <a, x} (b > a) 
we have 

a b 

y(x) = y(a) + (x — a)y'(b) + j(t — a)f(t)y*(t)6t + (x — a) j f(t)y*(t)dt. 
a x 

Because the function f(x) is nonnegative and for any b > a there is y'(b) ^ 0, 
we get the following inequality 

b b 

y(x) ^ (x — a)jf(t)y*(t)dt ^ (x — a)y*(x)jf(t)dt. 
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And thus we have for any b > a 

b 

(y(x))i-"l(x — ay-v ^(x — a)* \f(t)dt. 
X 

Since the function on the left-hand side of the last inequality is bounded from 
below by a positive constant on every finite interval (a, a{), then it follows 
from this and from the assumption of the theorem tha t there exists a constant 
c > 0 so that 

y(x) ^c(x — o)(i-«/d-a). 

Thus the theorem is proved. 
In the following two theorems we shall state conditions under which equa

tion (r) has nontrivial oscillatory solutions together with nonoscillatory solu
tions and conditions under which all solutions of (r) are nonoscillatory. 

Theorem 5. Let the function f(x) be positive and continuous in the interval 
<.ro, oo) (xo > 0). Besides let the function 

f(x)x®+<$l2 

be nonincreasing and bounded from below with a positive constant Jc. Then equation 
(r) has both nontrivial oscillatory nad nonoscillatory solutions. 

Proof . 1. We shall prove the existence of an oscillatory solution of (r). 
The change of variables lg x = t, y = x^2u transforms (r) into 

(6) u(t) — u(t)l± + f(x)x&+aV2u«(t) = 0 

/ du \ 

Let us find a solution of equation (6) with the initial conditions 

(7) u(a) = 0, 0 < u2(a) < (4k)d+«)/a-«)k(l — a)/(l + a). 

We shall show that this solution is oscillatory. Multiply (6) by 2u(t) and inte
grate it in the interval (a, ty, we have 

t 

u2(t) — u2(t)j± + 2 ff(&)eV+«)*l2u«(v)u(v)dv = u2(a). 
a 

If we use the second mean value theorem for integrals after an arrangement 
we obtain 

(8) ii2(t) — u2(t)/4: + 2/(a + l)/(e*)e<3+«)«/%«+i(0 ^ u2(a). 
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The solution with initial conditions (7) remains for t > a in the region 

(9) — (4&)i/(i-«) < u(t) < (4£)i/U-«). 

In the opposite case the point to > a would exist such tha t u(to) = (4k)i/(i-<*). 
Then from (8) it follows 

u2(to) ^ u2(a) + (4k)(i+«)/d-«){fc— 2/(1 + a)/(e'°)e(3+a)'o/2} ^ ^2(«) — 

— (4fc)(i+a>/<i-«)&(l — a)/(l + a) < 0, 

but this is a contradiction. If u(t) is a solution of (6), then —u(t) is also a solu
tion of (6) and thus we can consider only u(t) ^ 0. Hence inequality (9) it 
true. 

We shall show further that this solution u(t) has no last zero. Let the poin-
t > a be the last zero of u(t) and for t > t u(t) > 0. From (6) it is evident thas 
for any t > t u(t) < 0. In the opposite case a num. berti > t would exist such 
that il(h) ^ 0, i. e. 

u(h) = uPihW-tih)/* — 2/(a + l ) / ^ 1 ) ^ 3 4 - ^ 2 } > 0. 

Hence we have 

^i-«(fi)/4 > 2/(a + l)/(e^)e(3+a)<l/2 > k 

and finally w(£i) > (4k)i/d-«), which contradicts (9). 
Thus u(t) is concave in the interval <t, oo) and since it is a positive function, 
there exists the lim u(t) =-= c > 0. From (6) we obtain for £-> oo 

£->oo 

0 = —c/4 + lim f(e*)e<3+«)'/2 c« > c«(—c1"«/4 + &). 

Hence we have c ^ (4i)i/d-«). The case c > (4k)i/d~«) contradicts (9). If 
c = (4&)i/(i-a), then from (8)we obtain 

—(l/4)(4k)2/<i-«> + 2/(a + 1) £(4&)<i+«>/<i-«) ^ a2(a), 

and hence after an arrangement 

(4k)d+«)/(i-«)k(l — a)/(l + a) rg u2(a). 

But this contradits (7). Thus the solution u(t) has no last zero and by the above 
transformation y(x) is oscillatory. 

2. We shall prove the existence of a nonoscillatory solution. Since the func
tion f(x)x(3+a)/2 is nonincreasing, there exists a constant K such that for any 
XG(XO, oo) the following inequality holds f(x)xa < Kx^'3^2. From this it 
follows that for an arbitrary positive number s < 1, we can find a number 

CO 

a > xo such that I f(x)xadx < £ < 1. Consider the initial value problem of 
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(r) y(a) = 0, y'(a) ^ 1. This solution y(x) has no zero in the interval (a, oo). 
In the opposite case a number b > a would exist such that y(b) = 0 and y(x) > 0 
in the interval (a, b). The solution y(x) satisfies the following inequality 

(10) y(x)^y'(a)(x-a) 

for all x in the interval (a, b). Integrating (r) and by (10) we obtain 

< y'(a) ^ y'(x) + jf(t)y'»(a)(t — a)«dt =g y'(x) + y'(a) f f(t)t«dt 
a a 

^ y'(x) + y'(a)e. 

Finally we have the inequality 

0 < y ' ( a ) ( l — e)<Sy'(x). 

We see that y(x) is an increasing function in the interval (a, b) and thus we 
have a contradiction. Hence the solution has no zero in the interval (a, oo) 
and thus is nonoscillatory. 

I t is obvious that in both cases there exists an infinite number of such solu
tions and this proves the theorem. 

Theorem 6. Let the function f(x) be positive and continuous in the interval 
<#o, oo) (xo > 0). Let there exist a number f$, 0 < ft < (1 — a)/2 such that the 
function 

f(x)x&+rtl2+P 

is nondecreasing and bounded from above by a positive constant k. Then all 
solutions of (r), besides the trivial one, are nonoscillatory. 

Proof . Let there be 6 = 1/2 + /?/(a— 1). The change of variables lg x = 
t, y = x6u transforms (r) into 

(11) u(t) + (26 — \)u(t) + 6(6 — l)u(t) + /(^)x<«+3)/2+%«(0 = 0 

I du \ 

[* = -^,** = f 
where 26 — 1 < 0, 6(6 — 1) < 0. 

If we multiply (11) by 2u(t), integrate in the interval <£o, t} and use the second 
mean value theorem for integrals we obtain 

t 

(12) u2(t) + 2(26 — 1) [ii2(v)dv + 6(6 — l)u2(t) + 

to 

t 

+ 2/(e')e<<3+«)/2+^ [ u«(v)ii(v)dv = u2(t0) + 6(6 — l)u2(t0) (k ̂  I ^ t). 
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Since f(x)x@+0l)/2+P < Jc for all x of the interval (xo, oo), then after an arrange
ment from (12) it follows 

(13) u2(t) + 6(6 — l)u2(t) + 2/(a + l)ku^+1(t) > u2(t0) + 6(6 — l)u2(t0). 

Let us suppose that the equation (11) has an oscillatory solution u(t) \~ 0. 
If we denote by {tn}n=0 the sequence of zeros of the solution u(t) and by 
{CKT=o ̂ n e sequence of zeros of ii(t), then from (13) we can see that {|w(£n)|}^ 0 

increase. Besides, u(t) satisfies the inequality 

—{2fc/((a + 1)6(1 — 6))Y^-a) ^ u(t) ^ {2fc/((a + 1)<5(1 — d ) ) } 1 / ^ ) , 

since in the opposite case the point tk would exist such tha t the following holds 

u(t'k) > {2fc/((a + 1)6(1 - <5))}i/a-«>, u(t'k) = 0. 
Hence 

6(6 — l )^ -«(4) < —2k/(l + a ) < — Jc < _ / ( e ^ ) e ( ( 3 + a ) / 2 f - ^ . 

Then from (11) we obtain 

n(t'k) = -u«(t'k){d(d-l)ui-«(t'k) + / ( ^ ) e « * + 3 > / 2 + ^ } > 0, 

i. e. the solution u(t) at a neighbourhood of the point tk is a convex function, 
but this is a contradiction. 

As {|^(^)|} increases, then either lim \u(tn)\ = oo. or lim \u(tn)\ = L > 
n—>oo n—xx> 

> |ti(£i)| > 0. If in the first case we put £o = fa and t = tk so tha t \u(tk) is 
sufficiently large we obtain from (13) 

6{S — l)u2(tk) + 2/(a + 1) ku^(tk) > ii2(fa). 

But this contradicts the boundedness of u(t). In the second case u(t) is bounded. 
This follows from (11) since u(t) and u(t) are bounded for every oscillatory 

oo 

solution. Besides, it is evident from (12) tha t u2(v)dv < oo. Hence it follows 
to 

that lim u(t) = 0 (cf. [3] p. 185), but this is a contradiction. We have thus 
£-»oo 

proved that the solution u(t) =|= 0 of the equation (11) cannot be oscillatory. 
Thus any nontrivial solution of (r) is nonoscillatory. This proves the theorem. 
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