Matematický časopis

Miroslav Fiedler

A Minimaximin Formula and its Application to Doubly Stochastic Matrices

Matematický časopis, Vol. 25 (1975), No. 2, 139--144
Persistent URL: http://dml.cz/dmlcz/126949

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1975

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

A MINIMAXIMIN FORMULA AND ITS APPLICATION TO DOUBLY STOCHASTIC MATRICES

MIROSLAV FIEDLER

1. Introduction. In this note, we intend to prove the formula

$$
\begin{equation*}
\min _{\substack{0 \neq z=\left(z_{i}\right) \in R_{n} \\ i \in N}} \max _{\substack{M \subset N \\ i \in c_{i}=0}} \min _{\substack{i \in M \\ j \in M}} \frac{z_{i}-z_{k}}{\sum_{j \neq M} z_{j}}=2\left(1-\cos \frac{\pi}{n}\right) \tag{1}
\end{equation*}
$$

where $R_{\boldsymbol{n}}$ denotes the real n-dimensional space of column vectors and $N=$ $=\{1, \ldots, n\}$.

Then we shall show that an inequality for eigenvalues of doubly stochastic matrices proved in [1] by another method follows easily from (1).
2. Proof of (1). Define

$$
X_{0}=\left\{\boldsymbol{z}=\left(z_{i}\right) \in R_{n} \mid \boldsymbol{z} \neq \boldsymbol{0}, \sum_{i \in \boldsymbol{N}} z_{i}=0\right\}
$$

and for $\boldsymbol{z}=\left(z_{i}\right) \in X_{0}$ let

$$
\begin{equation*}
m(\boldsymbol{z})=\max _{\substack{M \subset N \\ \sum_{j \in M} z_{j} \neq 0}} \min _{\substack{i \in M \\ k \notin M}} \frac{z_{i}-z_{k}}{\sum_{j \in M} z_{j}} \tag{2}
\end{equation*}
$$

Lemma 2.1. Let $\boldsymbol{z}=\left(z_{i}\right) \in X_{0}$ satisfy

$$
\begin{equation*}
z_{1} \geqq z_{2} \geqq \ldots \geqq z_{n} \tag{3}
\end{equation*}
$$

Then

$$
\sum_{j=1}^{s} z_{j}>0 \quad \text { for } \quad s=1, \ldots, n-1
$$

and

$$
\begin{equation*}
m(\boldsymbol{z})=\max _{s=1, \ldots, n-1} \frac{z_{s}-z_{s+1}}{\sum_{j=1}^{s} z_{j}} \tag{4}
\end{equation*}
$$

Proof. Denote, for $s=1, \ldots, n-1, M_{s}=\{1,2, \ldots, s\}$. Let $z=\left(z_{i}\right) \in X_{0}$ satisfy (3). Then clearly

$$
\begin{equation*}
z_{1}>0, \quad z_{n}<0 \tag{5}
\end{equation*}
$$

Assume first that for some $t \in M_{n-1}$,

$$
\sum_{j \in M_{t}} z_{j} \leqq 0
$$

Then $z_{t}<0$ and $\sum_{j=t+1}^{n} z_{j}<0$ so that

$$
0=\sum_{i \in N} z_{i}=\sum_{j \in M_{t}} z_{j}+\sum_{j=t+1}^{n} z_{j}<0
$$

a contradiction.
Let now $s \in M_{n-1}$. Then clearly

$$
\min _{\substack{i \in M_{s} \\ k \notin M_{s}}} \frac{z_{i}-z_{k}}{\sum_{j \in M_{s}} z_{j}}=\frac{z_{s}-z_{s+1}}{\sum_{j \in M_{s}} z_{j}}
$$

Thus,

$$
\begin{equation*}
m(z) \geqq \max _{s \in M_{n-1}} \frac{z_{s}-z_{s+1}}{\sum_{j \in M_{s}} z_{j}} \tag{6}
\end{equation*}
$$

and also

$$
\begin{equation*}
m(\boldsymbol{z})>0, \tag{7}
\end{equation*}
$$

since the coordinates z_{i} are not all equal.
Let now M_{0} be that (non-void proper) subset of N for which the maximum in (2) is attained:

$$
m(\boldsymbol{z})=\min _{\substack{i \in M_{0} \\ k \neq M_{0}}} \frac{z_{i}-z_{k}}{\sum_{j \in M_{0}} z_{j}} .
$$

Since $\bar{M}_{0}=N \backslash M_{0}$ also satisfies

$$
m(\boldsymbol{z})=\min _{\substack{i \in \bar{M}_{0} \\ k \notin \bar{M}_{0}}} \frac{z_{i}-z_{k}}{\sum_{j \in \bar{M}_{0}} z_{j}}
$$

we can assume that $1 \in M_{0}$. Let us show that $M_{0}=M_{p-1}$, where p is the least index in \bar{M}_{0}.

By (7),

$$
0<m(z) \leqq \frac{z_{1}-z_{p}}{\sum_{j \in M_{0}} z_{j}}
$$

so that

$$
\sum_{j \in M_{0}} z_{j}>0
$$

Suppose that there is an element $q \in M_{0}$ such that $q>p$. Then

$$
0<m(\boldsymbol{z}) \leqq \frac{z_{q}-z_{p}}{\sum_{j \in M_{0}} z_{j}}
$$

so that

$$
z_{q}>z_{p}
$$

a contradiction with (3). Thus $M_{0}=M_{p-1}$ and the proof is complete.

Lemma 2.2. The $n \times n$ matrix

$$
\boldsymbol{A}_{n}=\left\{\begin{array}{rrrrrrr}
1 & -1 & & & & & \\
-1 & 2 & -1 & & & & \\
& -1 & 2 & . & & & \\
& & \cdot & . & . & & \\
& & & \cdot & . & . & \\
& & & & -1 & 2 & -1 \\
& & & & & -1 & 1
\end{array}\right\}
$$

has eigenvalues $2(1-\cos (k \pi / n)), k=0,1, \ldots, n-1$, corresponding to the eigenvectors $u_{k}=(\cos (k \pi / 2 n), \cos (3 k \pi / 2 n), \ldots, \cos ((2 n-1) k \pi / 2 n))^{T}, k=$ $=0, \ldots, n-1$.

Proof. It follows by direct computation that

$$
\boldsymbol{A}_{n} \boldsymbol{u}_{k}=2(1-\cos (k \pi / n)) \boldsymbol{u}_{k}
$$

We are now able to prove the main result (1), which can be written as

$$
\min _{z \in X_{0}} m(z)=2\left(1-\cos \frac{\pi}{n}\right) .
$$

Let $\boldsymbol{z} \in X_{0}$. Since for any permutation matrix \boldsymbol{P}

$$
m(\boldsymbol{P} \boldsymbol{z})=m(\boldsymbol{z}),
$$

we can assume that $\boldsymbol{z}=\left(z_{j}\right)$ satisfies (3). According to Lemma 2.1,

$$
\begin{aligned}
& z_{1}-z_{2} \leqq m(\boldsymbol{z}) z_{1}, \\
& z_{2}-z_{3} \leqq m(\boldsymbol{z})\left(z_{1}+z_{2}\right), \\
& \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
& z_{n-1}-z_{n} \leqq m(\boldsymbol{z})\left(z_{1}+\ldots+z_{n-1}\right), \\
& 0=m(\boldsymbol{z})\left(z_{1}+\ldots+z_{n}\right) .
\end{aligned}
$$

Let us multiply the first inequality by $z_{1}-z_{2}$, the second by $z_{2}-z_{3}$ etc., the last by z_{n} and add. By Abel's summation formula,

$$
\begin{equation*}
\sum_{i=1}^{n-1}\left(z_{i}-z_{i+1}\right)^{2} \leqq m(\boldsymbol{z}) \sum_{i=1}^{n} z_{1}^{2} . \tag{8}
\end{equation*}
$$

Denoting by $(\boldsymbol{y}, \boldsymbol{z})$ the inner product $\sum_{i=1}^{n} y_{i} z_{i}$ of the vectors $\boldsymbol{y}=\left(y_{i}\right), \boldsymbol{z}=\left(z_{i}\right)$, (8) can be written as

$$
m(\boldsymbol{z}) \geqq \frac{\left(\boldsymbol{A}_{n} \boldsymbol{z}, \boldsymbol{z}\right)}{(\boldsymbol{z}, \boldsymbol{z})}
$$

where \boldsymbol{A}_{n} is the matrix from Lemma 2, 2. Thus,

$$
\min _{\boldsymbol{z} \in X_{0}} m(\boldsymbol{z}) \geqq \min _{z \in X_{0}} \frac{\left(\boldsymbol{A}_{n} \boldsymbol{z}, \boldsymbol{z}\right)}{(\boldsymbol{z}, \boldsymbol{z})}
$$

Since $\boldsymbol{e}=(1, \ldots, 1)^{T}$ is the eigenvector \boldsymbol{u}_{0} of \boldsymbol{A}_{n} corresponding to the smallest eigenvalue, the right-hand side is, according to the well-known CourantFischer principle, equal to the second smallest eigenvalue of the matrix $\boldsymbol{A}_{\boldsymbol{n}}$, which is by Lemma 2,2 equal to $2(1-\cos (\pi / n))$. Thus,

$$
\begin{equation*}
\min _{z \in X_{0}} m(\boldsymbol{z}) \geqq 2\left(1-\cos \frac{\pi}{n}\right) \tag{9}
\end{equation*}
$$

An easy computation shows that for the vector \boldsymbol{u}_{1} from Lemma 2,2,

$$
m\left(\boldsymbol{u}_{1}\right)=2\left(1-\cos \frac{\pi}{n}\right)
$$

and, since $\boldsymbol{u}_{1} \in X_{0}$, equality in (9) holds. The proof is complete.
3. An application. Let us recall that an $n \times n$ matrix $\boldsymbol{A}=\left(a_{i k}\right)$ is doubly stochastic iff $\boldsymbol{A} \geqq \mathbf{0}$ and $\sum_{k=1}^{n} a_{i k}=\sum_{k=1}^{n} a_{k i}=1$ for all $i \in N$. For such a matrix \boldsymbol{A}, the so called measure of irreducibility $\mu(\boldsymbol{A})$ was defined in [1] by

$$
\mu(\boldsymbol{A})=\min _{\varnothing \neq \boldsymbol{M} \neq \boldsymbol{N}} \sum_{\substack{i \in M \\ k \neq M}} a_{i k}
$$

It was proved in [l] that if \boldsymbol{A} is symmetric, doubly stochastic with eigenvalues $1=\lambda_{1} \geqq \lambda_{2} \geqq \ldots \geqq \lambda_{n}$, then

$$
\begin{equation*}
\lambda_{1}-\lambda_{2} \geqq 2(1-\cos (\pi / n)) \mu(\boldsymbol{A}) \tag{10}
\end{equation*}
$$

and, as an easy consequence, that if \boldsymbol{A} is doubly stochastic, then any eigenvalue $\lambda \neq 1$ satisfies

$$
\begin{equation*}
|1-\lambda| \geqq 2(1-\cos (\pi / n)) \mu(A) \tag{11}
\end{equation*}
$$

We shall show that (10), and thus (11), follows easily from the formula (1). The same idea was used in [2] for obtaining similar results for general nonnegative matrices.

Let \boldsymbol{A} be a symmetric doubly stochastic matrix with eigenvalues $1=\lambda_{1} \geqq$ $\geqq \lambda_{2} \geqq \ldots \geqq \lambda_{n}$.

Then $\boldsymbol{e}=(1, \ldots, 1)^{T}$ is an eigenvector of \boldsymbol{A} corresponding to the eigenvalue $\lambda_{1}=1$. Let $\boldsymbol{z}=\left(z_{1}, \ldots, z_{n}\right)^{T}$ be an eigenvector corresponding to λ_{2}. If $\lambda_{1}=\lambda_{2}$, we choose \boldsymbol{z} orthogonal to \boldsymbol{e}. The well-known orthogonality property ensures then $\boldsymbol{z} \in X_{0}$. Let M_{0} be that subset of N for which the maximum in (2) is attained:

$$
m(\boldsymbol{z})=\min _{\substack{i \in M_{0} \\ k \notin M_{0}}} \frac{z_{i}-z_{k}}{\sum_{j \in M_{0}} z_{j}}
$$

(thus $\left.\sum_{j \in M_{0}} z_{j} \neq 0\right)$.
Without loss of generality, we can assume that $M_{0}=\{1, \ldots, m\}$, where $\mathrm{l} \leqq m \leqq n-\mathrm{l}$.

Let $\boldsymbol{z}_{1}=\left(z_{1}, \ldots, z_{m}\right)^{T}, \boldsymbol{z}_{2}=\left(z_{m+1}, \ldots, z_{n}\right)^{T}$. We can write, in the partitioned form,

$$
\boldsymbol{e}=\binom{\boldsymbol{e}_{1}}{\boldsymbol{e}_{2}}, \quad \boldsymbol{z}=\binom{\boldsymbol{z}_{1}}{\boldsymbol{z}_{2}}, \quad \boldsymbol{A}=\binom{\boldsymbol{A}_{11}, \boldsymbol{A}_{12}}{\boldsymbol{A}_{12}^{T}, \boldsymbol{A}_{22}},
$$

where \boldsymbol{e}_{1} has m rows and \boldsymbol{A}_{11} is $m \times m$. Since

$$
\begin{aligned}
& \boldsymbol{A} \boldsymbol{e}=\boldsymbol{e} \\
& \boldsymbol{A} \boldsymbol{z}=\lambda_{2} \boldsymbol{z}
\end{aligned}
$$

we obtain

$$
\begin{aligned}
& \boldsymbol{A}_{11} \boldsymbol{e}_{1}+\boldsymbol{A}_{12} \boldsymbol{e}_{2}=\boldsymbol{e}_{1} \\
& \boldsymbol{A}_{11} \boldsymbol{z}_{1}+\boldsymbol{A}_{12} \boldsymbol{z}_{2}=\lambda_{1} \boldsymbol{z}_{1}
\end{aligned}
$$

If we multiply the first equality from the left by \boldsymbol{z}_{1}^{T}, the second by \boldsymbol{e}_{1}^{T} and subtract, we have, by symmetry of \boldsymbol{A}_{11},

$$
\boldsymbol{z}_{1}^{T} \boldsymbol{A}_{12} \boldsymbol{e}_{2}-\boldsymbol{e}_{1}^{T} \boldsymbol{A}_{12} \boldsymbol{z}_{2}=\left(1-\lambda_{2}\right) \boldsymbol{e}_{1}^{T} \boldsymbol{z}_{1}
$$

This can be written in the form

$$
\sum_{\substack{i \in M_{0} \\ k \notin M_{0}}} a_{i k}\left(z_{i}-z_{k}\right)=\left(1-\lambda_{2}\right) \sum_{j \in M_{0}} z_{j}
$$

Thus, by (1) and the definition of $\mu(\boldsymbol{A})$,

$$
\begin{aligned}
& \lambda_{1}-\lambda_{2}=1-\lambda_{2}=\sum_{\substack{i \in M_{0} \\
k \notin M_{0}}} a_{i k} \frac{z_{i}-z_{k}}{\sum_{j \in M_{0}} z_{j}} \geqq\left(\sum_{\substack{i \in M_{0} \\
k \notin M_{0}}} a_{i k}\right) m(\boldsymbol{z}) \geqq \\
& \geqq 2\left(1-\cos \frac{\pi}{n}\right) \sum_{\substack{i \in M_{0} \\
k \notin M_{0}}} a_{i k} \geqq 2\left(1-\cos \frac{\pi}{n}\right) \mu(\boldsymbol{A}) .
\end{aligned}
$$

The proof of (10) is complete.

REFERENCES

[1] FIEDLER, M.: Bounds for Eigenvalues of Doubly Stochastic Matrices. Linear Algebra and Its Appl. 5, 1972, 299-310.
[2] FIEDLER, M.: A Quantitative Extension of the Perron-Frobenius Theorem. Linear and Multilinear Algebra 1, 1973, 81-88.

Received July 9, 1973
Matematický ústav ČSAV Žitná 25
11567 Praha 1

