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A MINIMAXIMIN FORMULA AND ITS APPLICATION 
TO DOUBLY STOCHASTIC MATRICES 

MIROSLAV FIEDLER 

1. Introduction. I n this note, we intend to prove the formula 

Zi — Zjc I 11 \ 

(1) min max min = 211 — cos — I 
0^z=(Zi)eRn MCN ieM Y Zj \ n I 

£ ^ = 0 2 zj-tO MM J€M
 x ' 

ieN jeM 

where Rn denotes the real ^-dimensional space of column vectors and N = 
= { l , . . . , n } . 

Then we shall show tha t an inequality for eigenvalues of doubly stochastic 
matrices proved in [1] by another method follows easily from (1). 

2. P r o o f of (1). Define 

X0 = {z = (zt) e Rn | z ^ 0, 2 Zi = 0} 
ieN 

and for z = (z^ e X0 let 

Zi Zfr 

(2) m(z) = max min—— . 
MCN ieM T Zi 

S 2j^0 MM £M 
jeM 

Lemma 2.1. Let z = (zi) e Xo satisfy 

(3) zi ^ z2 ^ . . . ^ zn. 

Then 

2 2; > 0 for s — 1 » • • • > n — 1 
І - l 

and 

Zs Zs+l 

(4) m(z) = max . 
S = l , . . . , n - 1 .̂r-A 

ZZ3 
3=1 

Proof . Denote, for 5 = 1 , ..., n — 1, Ms = {1, 2, ..., 5}. Let z = (z^ e X0 

satisfy (3). Then clearly 
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(5) z\>0, zn<0. 

Assume first that for some I e Mn-\, 

2 *i ̂  °-
jeMt 

n 
Then zt< 0 and 2 s ; ' < 0 so that 

j= t+i 
n 

o = 2 z« = 2 gt+ 2 z><°> 
ieJV jeMt j= t+l 

a contradiction. 

Let now s e Mn-\. Then clearly 

Zi — Zjc Zs — Zs+\ 

min = . 
ieMs 2 Z1 2 ^1 

k*M* j*M, jeMs 

Thus, 
^s — Zs+\ 

(6) m(z) ^ max 9 
seMn-i 2 z3 

jeM, 

and also 
(7) m(z) > 0 , 

since the coordinates z% are not all equal. 
Let now Mo be that (non-void proper) subset of N for which the maximum 

in (2) is attained: 

Zi Zlr 

m(z) — min . 
ieMo 2 Z3 ktMo jeMo 

Since Mo = N \ Mo also satisfies 

Zi — Zjc 

m(z) = min—— , 
ieMo £ zj 

k$Mo jeMo 

we can assume that 1 e Mo. Let us show that Mo = Mv-\, where p is the least 
index in Mo. 

By (7), 
Z\ — zp 

0 < m(z) <; 

2 zt 
jeMo 

so that 
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2>>o. 
jeMo 

Suppose that there is an element q e Mo such that q >p> Then 

Zn — Znn 

0 < m(z) < 
cq — &p 

jeMo 

so that 

Zą Ü> Zp , 

a contradiction with (3). Thus Mo = Mv-\ and the proof is complete. 

Lemma 2.2. The n X n matrix 

An — 

1 
— 1 

— 1 2 
— 1 

has eigenvalues 2(1 — cos (kjijn)), k = 0, 1, ..., n — 1, corresponding to the 
eigenvectors u^ = (cos (kjt/2n), cos (3kjt/2n), ..., cos ((2n — l)kjz/2n))T, k = 
= 0, ...,n — 1. 

Proof . I t follows by direct computation that 

AnUje — 2(1 — cos (k7tjn))uic . 

We are now able to prove the main result (1), which can be written as 

/ 
mm m(z) = 211 — cos — 
zeXo \ n 

Let Z G J o . Since for any permutation matrix P 

m(Pz) = m(z), 

we can assume that z = (zj) satisfies (3). According to Lemma 2.1, 

zi — 22 ^ m(z)z±, 
Z2 — zz ^ m(z)(z\ + z 2), 

zn-i — zn ѓ m(*)(zi + ... + zn-i), 
0 = m(z)(zľ + . . . + zn). 
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Let us multiply the first inequality by z\ — z<i, the second by Z<L — 23 etc., 
the last by zn and add. By Abel's summation formula, 

n-l n 

(8) 2 (*« - z<+i)2 ^ »»(*) 2 2i • 
i=i i=i 

Denoting by (3;, z) the inner product ]? y%z% of the vectors y = (yi), z = (zt), 
i=l 

(8) can be written as 
(Anz, z) 

m(z) ^ , 
(*>*) 

where An is the matrix from Lemma 2, 2. Thus, 

(-4„z, z) 
min m(z) ^ min 
zeXo zeXo (.sr, JST) 

Since e = (I, . . . , 1)T is the eigenvector UQ of An corresponding to the smallest 
eigenvalue, the right-hand side is, according to the well-known Courant — 
Fischer principle, equal to the second smallest eigenvalue of the matrix An, 
which is by Lemma 2,2 equal to 2(1 — cos (n/n)). Thus, 

/ n\ 
(9) min m(z) ^ 2 1 1 — cos — . 

zeXo \ n J 

An easy computation shows that for the vector u\ from Lemma 2,2, 

/ n 
m(u\) = 211 — cos — 

\ n 

and, since U\ e l o , equality in (9) holds. The proof is complete. 

3. An application. Let us recall that an n x n matrix A = (a^) is doubly 
n n 

stochastic iff A ^ 0 and 2 aiic = 2 au = * ̂ o r a n * e ^' ^ o r s u c n a matrix Ay 
k=l k=l 

the so called measure of irreducibility ft(A) was defined in [1] by 
JLI(A) = min ]T a** • 

0^M^N ieM 
HM 

I t was proved in [1] that if A is symmetric, doubly stochastic with eigenvalues 
1 = h ^ h ^ . . . ^ An, then 
(10) Ai - A2 ^ 2(1 - cos (n\n))p(A) 
and, as an easy consequence, that if _4 is doubly stochastic, then any eigenvalue 
A =7-= 1 satisfies 
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(11) |1 - X\ ^ 2(1 - cos (7iln))ju(A) . 

We shall show that (10), and thus (11), follows easily from the formula (1).. 
The same idea was used in [2] for obtaining similar results for general non-
negative matrices. 

Let A be a symmetric doubly stochastic matrix with eigenvalues 1 = fa ^ 
^ fa ^ . . . ^ fa-

Then e = (1, .. . , l)T is an eigenvector of A corresponding to the eigenvalue 
fa = 1. Let z = (z\, . . . , zn)

T be an eigenvector corresponding to fa. If fa = fa, 
we choose z orthogonal to e. The well-known orthogonality property ensures, 
then z G Xo. Let M0 be that subset of N for which the maximum in (2) is 
attained: 

Z% Zjc 

m(z) = min—— 
ieMo 2 Z3 
UMo j e M o 

(thus 2 zi ^ °)-
jeMo 

Without loss of generality, we can assume that ilfo = {1, .. •, m}, where 
1 ^ m ^ n — 1. 

Let zi = (z\, ..., zm)T, z2 = (zm+i, ..., zn)
T. We can write, in the partitioned 

form, 

€ ~ \e2) ' * ~" \z2) ' ~ \AT
2, A22) ' 

where e\ has m rows and A\\ is m X m. Since 

_4e = e, 

Az = faz, 

we obtain 

A\\e\ + -4i2^2 = e\, 

ilnari + A±2z2 = fazi. 

If we multiply the first equality from the left by zT, the second by eT and 
subtract, we have, by symmetry of An, 

zTA12e2 — eTA\2z2 = (1 — fa)eTz\. 

This can be written in the form 

2 aik{zt — Zk) = (1 — fa) 2 zi-
ieMo jeMo 
UMo 
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Thus, by (1) and the definition of /u(A), 

Zi — zk h — h= 1 — h = У aîk —^—- ^ J \ aìk m(z) ^ 
2 z1 

ieMo jeMo ieMo 
UMo HMo 

3I-
ieMo 
UMo 

^ 2 (1 — cos — | y aik ^ 2 (1 — cos — \ju (A) 
n t 

The proof of (10) is complete. 
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