Matematický časopis

Anton Dekrét

Note on the Theory of T-Pair of Manifolds in the Projective space P_{n}

Matematický časopis, Vol. 20 (1970), No. 1, 38--48
Persistent URL: http://dml.cz/dmlcz/126961

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1970

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

NOTE ON THE THEORY OF T-PAIR OF MANIFOLDS IN THE PROJECTIVE SPACE P_{n}

ANTON DEKRÉT, Žilina

In paper [l] Mihailescu has discussed thoroughly the transversal map of two surfaces in P_{3}. In this paper we try to find some qualities of a transversal map between manifolds in the real projective space P_{n}

Definition 1. Let V_{k}, V_{k}^{\prime} be two k-dimensional differentiable manifolds in the projective space P_{n}. Let the map $f: V_{k} \rightarrow V_{k}^{\prime \prime}$ be a diffeomorphism. For any $L \in V_{k}$ let tangential spaces $T_{L}\left(V_{k}\right) . T_{f(L)}\left(V_{k}^{\prime}\right)$ have the common ($k \quad 1$)-dimension al lineal subspace β, which is not incident with the line $\{L . f(L)\}$.

Let $H_{1}, H_{2}, \ldots, H_{n: 1}$ be points of a frame in P_{n}.

$$
\begin{equation*}
\mathrm{d} H_{i} \quad \omega_{i}^{j} H_{\jmath}, i, j-1.2, \ldots n+1 \tag{1}
\end{equation*}
$$

are equations of the infenitesimal map of the frame. Pfaff forms ω_{i}^{i} suit struc ture equations of space P_{n} :

$$
\mathrm{d} \omega_{i}^{j}-\sum_{s}^{n} \omega_{1}^{1} \omega_{1}^{s} \wedge \omega_{s}^{j} \quad i, j \quad 1,2, \ldots, n+1 .
$$

Our following considerat ons will be local. We asstime that local co-ordinates of points L and $f(L)$ of manifolds V_{k} and V_{k}^{\prime} are equal. These co-ordinates $w_{1} l l$ be called principal parameters and marked by $u_{1}, u_{2}, \ldots, u_{k}$. Let us confine ourselves to the frame such that $H_{1} \quad L \in V_{k}, H_{2} \quad-f(L)$ and $\left\{H_{3}\right.$, $\left.I_{4}, \ldots, H_{k+2}\right\} \quad \beta$. Then the following relations

$$
\begin{array}{lllllll}
\omega_{1}^{k-3} & \omega_{1}^{k+4} & \ldots & \omega_{1}^{n+1} & 0 & \omega_{1}^{2} & 0 \tag{3}\\
\omega_{2}^{k+3} & \omega_{2}^{2}+ & \cdots & \omega_{2}^{n+1} & 0, & \omega_{2}^{1} & 0
\end{array}
$$

fesult from (1).
The forms $\left(\omega_{1}^{3},\left(\omega_{1}^{4}, \ldots, \sigma_{1}^{k+2}\right.\right.$ are independent and princ, pal. If ω_{t}^{\prime} are prinapal forms, then

$$
\begin{equation*}
\omega_{t}^{i} \sum_{*, 3}^{k+\#} a_{t, s}^{i} \omega_{1}^{*} . \tag{4}
\end{equation*}
$$

For $t \quad \because$ we shall use: $a_{2 . s}^{i} \quad a_{4}^{\prime}$. Let us differentiate externally the relations (4). We get for $t \quad 2$:

$$
\sum_{j 3}^{k}\left(\omega _ { 1 } ^ { j } \wedge \left\{a_{j}^{i}\left(\omega_{1}^{1} \quad \omega_{2}^{2}\right) \quad d a_{j}^{\prime}+\sum_{h 3}^{k+\underline{2}}\left(a_{j}^{h} \omega_{h}^{\prime}-a_{h}^{\prime} \omega_{j}^{h}\right) \quad 0 .\right.\right.
$$

Let us denote by $\tau_{I_{1}}$ (resp. $\tau_{H_{2}}$) a set of tangents of the manifold $V_{k}{ }_{k}$ (resp. V_{k}^{\prime}) at the point H_{1} (resp. H_{2}).
The tangent $t \in \tau_{I_{1}}\left(\right.$ resp. $\dot{f} \in \tau_{H_{0}}$) is determined by

$$
\left.\omega_{1}^{3}: \omega_{1}^{+}: \ldots: \omega_{1}^{k_{1}^{+2}}(\operatorname{resp}) \omega_{2}^{3}: \omega_{2}^{4}: \ldots: \omega_{2}^{k+2}\right) .
$$

Diffeomorphism f induces a collineation $K: \tau_{H_{1}}>\tau_{H}$, If we denote

$$
K\left(\omega_{1}^{3}: \omega_{1}^{4}: \ldots: \omega_{1}^{k}{ }^{2}\right) \quad\left(\omega_{2}^{3}: \omega_{2}^{4}: \ldots: \omega_{2}^{k}{ }_{2}^{2} .\right.
$$

then equations (4) for $t \quad 2$, i.e.

$$
\omega_{2}^{i} \quad \sum_{s=3}^{k} a_{s}^{\prime} \omega_{1}^{*}, i \quad: 3,+, \ldots, k+\varrho
$$

and the relation (3) det ${ }^{\text {rmmine }}$ the collineation C.
The tangent $t \quad\left(\omega_{1}^{3}: \omega_{1}^{+}: \ldots: \omega_{1}^{k, 2}\right) \in \tau_{H_{1}}$ (resp. $\left.\tilde{f} \quad K(t)\right)$ and the subspace β have the common point $\mathrm{X} \quad h_{3} H_{3}+h_{4} H_{4}+\ldots+h_{k}{ }_{2} H_{k+2}$ (resp. X^{\prime}
$\left.h_{:}^{\prime} H_{33} \quad h_{4}^{\prime} H_{+}+\ldots \quad h_{k+2}^{\prime} H_{k .2}\right)$.
'The collineation K induces an autocollineation $C: \beta \rightarrow \beta$ so that $C(X) \quad X^{\prime}$. That is why the autocolineation is determined by equations:

$$
\begin{equation*}
h_{i}^{\prime} \quad \sum_{s, 3}^{k_{1}^{\prime 2}} a_{s}^{\prime} h_{s} i \quad 3,4, \ldots, k+\Omega . \tag{5}
\end{equation*}
$$

The autocollineation C induces an autocollineation (" of hyperplanes in the subspace β.
The equations
(i)

$$
\left(a_{3}^{3}+\lambda\right) h_{3}+a_{4}^{3} h_{+}+\ldots+a_{k-2}^{3} h_{k!2} \quad 0,
$$

$$
\begin{equation*}
a_{3}^{k+\ddot{ }} h_{3} \quad a_{+}^{k+2} h_{4}+\ldots+\left(a_{k+2}^{k} \stackrel{2}{2}+\lambda\right) h_{k} \underline{2}-0 \tag{6}
\end{equation*}
$$

de termine invariable points of the autocollineation (${ }^{\prime}$.
System (6) has a solution if and only if

$$
\begin{align*}
& a_{3}^{3}+\lambda, a_{4}^{3}, \ldots \quad a_{k}^{3} \underline{2} \\
& \cdots \ldots \ldots \tag{7}\\
& a_{3}^{k+2}, a_{4}^{k+2}, \ldots, a_{k+2}^{k+2}+\lambda
\end{align*}
$$

The lines $\left\{H_{1}, H_{2}\right\}$ determine a l-parametric system of lines in P_{n}, which u, hall denote by G. Let us determine the foci of G sitting on the line $\left\{H_{1}, H_{2}\right\}$.

Definition 2. Let r be a natural number. The point $M \quad h_{1} H_{1}+h_{2} H_{2}$ will be called an ${ }^{r} F$-focus of G if there is $\left(\begin{array}{rl}r & 1)\end{array}\right.$ - parametric system of developables $\sum_{M}^{i} \subset G(i-1,2, \ldots, r)$ so that the point M lies on the edge of regression of \sum_{M}^{i} for $i=1,2, \ldots, r$.

Since
$\mathrm{d} M-H_{3}\left(h_{1} \omega_{1}^{3}+h_{2} \omega_{2}^{3}\right) \quad H_{4}\left(h_{1} \omega_{1}^{4}+h_{2} \omega_{2}^{4}\right)+\ldots+H_{k+2}\left(h_{1} \omega_{1}^{k}{ }^{2}+\omega_{2}^{k}{ }_{2}^{-} h_{2}\right) \perp$ $+0 \bmod \left\{H_{1}, H_{2}\right\}$, the point M is a focus of G if the system

$$
h_{1} \omega_{1}^{i}+h_{2} \omega_{2}^{i}=0, \quad i=3,4, \ldots, k+2
$$

determines a surface Σ_{M}.
Let us arrange this system by using relations (4) :

$$
\begin{align*}
& \omega_{1}^{3}\left(h_{1}+h_{2} a_{3}^{3}\right)+\omega_{1}^{4} h_{2} a_{4}^{3}+\ldots+\omega_{1}^{k+2} h_{2} a_{k+2}^{3} \quad 0, \\
& \omega_{1}^{3} a_{3}^{4} h_{2}+\omega_{1}^{4}\left(h_{1}+h_{2} a_{4}^{4}\right)+\ldots+\omega_{1}^{k+2} h_{2} a_{k+2}^{4} \quad 0, \\
& \ldots \omega_{1}^{k+2}\left(h_{1}+h_{2} a_{k+2}^{k+2}\right) \quad 0 . \tag{8}
\end{align*}
$$

The surface Σ_{M} is determined by this system (8) if and only if

$$
\begin{array}{l|l}
h_{1}+h_{2} a_{3}^{3}, h_{2} a_{4}^{3}, \ldots, h_{2} a_{k+2}^{3} & \tag{9}\\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots & 0 \\
h_{2} a_{3}^{k+2}, h_{2} a_{4}^{k+2}, \ldots, h_{1}+h_{2} a_{k+2}^{k+2} &
\end{array}
$$

Definition 3. The fundamental tangent $t \in \tau_{I_{1}}$ has this characteristic: Its common point with the subspace β is an invariable point of the autocolineation C The fundamental curve is an integral curve of distribution of fundamental tangents. The focal curve on the manifold V_{k} (resp. V_{k}^{\prime}) is a section $\Sigma_{M} \cap V_{k}\left(\right.$ resp. $\left.\Sigma_{M} \cap V_{k}^{\prime}\right)$ where $\Sigma_{M} \subset G$ is a developable.

From definition 3 it follows that the focal curves are determined by the system (8) if h_{1}, h_{2} are solutions of equation (9). The following assertion results from (6) and (8):

Assertion. Focal curves are fundamental curves, i. e. if the point H_{1} moves along the fundamental curve, the lines $\left\{H_{1}, H_{2}\right\}$ create a developable.

Equations (7) and (9) are identical. Each root of equation (7) determines one and one focus M of G on the line $\left\{H_{1}, H_{2}\right\}$ and also the set of invariable points (resp. invariable hyperplanes in β) of the autocollineation C (resp. C^{\prime}) which we shall denote $\varkappa(M)$ (resp. $\varkappa^{\prime}(M)$).

From the assertion it follows. If $\operatorname{dim} \chi(M)=r-1$ so M is a ${ }^{r} F$-focus We can classify T-pairs of manifulds by types of the collineation C. We always
will assume that we can confine ourselves to the frame such that the matrin of collineation C has the Jordan form.

Notation. The set o hyperplanes that are incident with the ($n \quad p-1$) -dimensional linear subspace \mathscr{L} in P_{n} will be called p-bundle of hyperplatus in P_{n} and the subspace \mathscr{L} will be called the centre of the p-bundle.
Let the collineation C have this quality: the r-multiple real root λ_{1} of equa tion (7) determines the focus M_{1} so that $\operatorname{dim} \chi\left(M_{1}\right)=h+s \quad 1 \quad p$, where h is the number of independent points from $x\left(M_{1}\right)$ sitting in the centre $\mathscr{L}\left(M_{1}\right)$ of the bundle $\varkappa^{\prime}\left(M_{1}\right)$ in β.
Let us confine ourselves to the frame such that the matrix of the collineation (' has the Jordan form. Let the part of this matrix determined by the root λ_{1} have the form:
a) The functions of the principal diagonal are equal, i. e.
(A) $\begin{array}{llllllllll}a_{3}^{3} & a_{4}^{4} & \ldots & a_{m_{1}}^{m} & \ldots & a_{m_{2}}^{m_{2}} & \ldots & a_{m_{n}}^{m_{n}} & \ldots=a_{m_{n}+s}^{m_{n+s}} & \lambda_{1}\end{array}$
b) For the following functions above the principal diagonal of this Jordan matrix we have:
(B) $\quad a_{m_{1}+1}^{m_{1}} \quad a_{m_{2}+1}^{m_{2}} \quad \ldots-a_{m_{n}+1}^{m_{n}} \quad a_{m_{h}+2}^{m_{h}+1}-a_{m_{n}+3}^{m_{h}+2} \quad \ldots \quad a_{m_{n}+\infty}^{m_{n}+1} \quad 0$
and for the others

$$
a_{i+1}^{i} \neq 0, \quad i \leq m_{h}-1
$$

'Then

1. The points $H_{3}, H_{m_{1} 1}, H_{m_{2}+1}, \ldots, H_{m_{n}+1}, H_{m_{n+1}}, H_{m_{n}+2}, \ldots . H_{m_{n} s}$ are invariable points of the collineation C and create base of the subspace $\varkappa\left(M_{1}\right)$. 2 . The invariable by the root λ_{1} determined, hyperplanes of the collineation $C^{\prime \prime}$ create the p-bundle $\varkappa^{\prime}\left(M_{1}\right)$ with this base in β :

$$
h_{m_{1}} \quad 0, h_{m_{2}} \quad 0, \ldots, h_{m_{n}} \quad 0, h_{m_{n}+1}-0, \ldots . h_{m_{n}+s} \quad 0 .
$$

Thus

$$
\begin{gathered}
\mathscr{L}\left(M_{1}\right) \quad \begin{array}{c}
\left\{H_{3}, H_{4}, \ldots, H_{m_{1}-1}, H_{m_{1} 1}, \ldots, H_{m_{n 1} 1}, H_{m_{n}+1}, \ldots, H_{m 1}\right. \\
\left.H_{r+3}, H_{r+4}, \ldots, H_{k+2}\right\} \text { is a centre of the } p \text {-bundle } \varkappa^{\prime}\left(M I_{1}\right)
\end{array},
\end{gathered}
$$

Hence it follows that the independent invariale points of the collineation (${ }^{\prime}$ $H_{3}, H_{m_{1}+1}, H_{m_{2}+1}, \ldots, H_{m_{n+1}}$ sit in the centre \mathscr{L} of the p-bundle $\varkappa^{\prime}\left(M_{1}\right)$ We can write the equalities (4') briefly:

$$
\begin{equation*}
\omega_{1}^{3} \wedge \Omega_{3}^{i}+\omega_{1}^{4} \wedge \Omega_{4}^{i}+\ldots+\omega_{1}^{+2} \wedge \Omega_{r+2}^{i}+\ldots+\omega_{1}^{k+2} \wedge \Omega_{k 2}^{\iota} \quad 0 \tag{*}
\end{equation*}
$$

If the matrix of the collineation C has the Jordan form, the Pfaff forms Ω_{k}^{\prime} have these forms:

Hence the following relations
$\Omega^{\prime} \quad 0$ for $i \quad m_{1}, m_{2}, \ldots m_{h} . m_{h} \quad 1, \ldots, m_{h} \quad s$ and

$$
\begin{array}{rl}
j & 3, n_{1}+1, m_{2}+1, \ldots m_{h}+1 . m_{h}+2, \ldots, m_{h}+s \\
\Omega_{\imath}^{\prime} & a_{i}^{\prime}\left(\omega_{1}^{1}\right. \\
\left.\omega_{2}^{2}\right)+d a_{i}^{\prime} \text { for } i \quad m_{h}+1, m_{h}+\varrho \ldots m_{h}
\end{array}
$$

result form (A) and (B).
Now the equalities (*) have for $i \quad m_{h}+1, m_{h}+2 \ldots . m_{h}$, this thape

If we apply the Cartan theorem we get:

Thus if $s>2$, we get

The root $\lambda_{1} \quad a_{3}^{3} \quad a_{i}^{i}\left(i \quad 4, \ldots, m_{h}+s\right)$ determines the focun M_{1}

$$
a_{3}^{3} H_{1} \quad H_{2} .
$$

$$
\mathrm{d} M_{1} \quad \omega_{2}^{2} M_{1}+\left[\mathrm{d} a_{3}^{3}+a_{3}^{3}\left(\omega_{1}^{1} \quad \omega_{2}^{2}\right)\right] I_{1} \quad \omega_{1}^{4} a_{3}^{3} H_{3} \quad \omega_{1}^{5} a_{5}^{4} I_{1} \quad \ldots
$$

$$
+w_{1}^{k+2} B_{k} \stackrel{1}{2} \text {, where } B_{13}, B_{1}+\ldots, B_{k}=
$$

are independent points in the space $\left\{H_{r}, \ldots, H_{k},\right\}$.
From this cons,deration the following theorem results.
Theorem 1. Let λ_{1} be an r-multiple real root of equation (7). Let M_{1} be a focus, dftcrmined b!y the root λ_{1}. Let $\operatorname{dim} \chi\left(M_{1}\right)$ be $h+s \quad 1 \quad p$ where h is the number of independent points from $\varkappa\left(M_{1}\right)$ sitting in the centre $\mathscr{L}\left(M_{1}\right)$ of the p-turdle $\varkappa^{\prime}\left(\mathrm{M}_{1}\right)$. Then the focus M_{1} moves on a j-dimensional manifold V_{j}. which has, the contact of the $1^{\text {st }}$ order with the linear subsprue $\left\{H_{1}, I_{2}, \mathscr{L}\left(M_{1}\right)\right\}$. If $\stackrel{>}{ }$, thon.j $\quad k \quad$ s. If $s \quad 2$, then $k \quad(h+s) \leq j \leq k \quad 1 \quad(h \quad s)$.

$$
\begin{aligned}
& a_{i}^{\prime}\left(\omega_{1}^{1} \quad\left(\omega_{2}^{2}\right)+d a_{i}^{i} \quad 0 \bmod \left(\omega_{1}^{4}, \omega_{1}^{j}, \ldots,\left(\omega_{1}^{m m_{1}}, \omega_{1}^{m_{1}}{ }^{2}, \ldots, \omega_{1}^{\left(m^{\prime \prime}\right)},\right.\right.\right. \\
& \omega_{1}^{\prime \prime \prime 2}{ }^{2}, \ldots,\left(\omega_{1}^{m,}, \omega_{1}^{\prime}{ }^{3}, \ldots, \omega_{1}^{k}{ }^{2}\right) \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& Q_{i}^{i} \quad a_{1}^{\prime}\left(\omega_{1}^{1} \quad \omega_{2}^{2}\right)+d a_{i}^{i} \quad 0 \bmod \left(\omega_{1}^{4}, \omega_{1}^{5} \ldots \ldots \omega_{1}^{\prime \prime \prime \prime}, \omega_{1}^{\prime \prime \prime}{ }^{2} .\right. \\
& \ldots, \omega_{1}^{\prime \prime \prime 2}, \omega_{1}^{m m_{2}}{ }^{2}, \ldots,()_{1}^{\prime \prime \prime},\left(\omega_{1}^{r}{ }^{3}, \ldots,\left(\omega_{1}^{k}{ }^{2}, \omega_{i}^{i}\right) .\right.
\end{aligned}
$$

$$
\begin{aligned}
& \omega_{1}^{+} \wedge \Omega_{+}^{i} \quad \cdots \quad \omega_{1}^{\prime m_{1}} \wedge \Omega_{m_{1}}^{\prime}+\omega_{1}^{m_{1}+2} \wedge \Omega_{m_{1}}^{\prime}+\ldots \quad \omega_{1}^{m \prime \prime} \wedge \Omega_{m_{1}}^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& +\omega_{i}^{i} \wedge \Omega_{i}^{i}-0 .
\end{aligned}
$$

$$
\begin{aligned}
& \Omega_{i}^{\prime} \quad a_{i}^{\prime}\left(\omega_{1}^{1} \quad \omega_{2}^{2}\right)+d a_{i}^{\prime}+a_{i}^{\prime}{ }^{1} \omega_{1}^{\prime}, \quad a_{i}^{\prime} 1^{\left(\omega_{1}^{\prime}\right.}{ }^{1} .
\end{aligned}
$$

$$
\begin{aligned}
& \Omega_{j}^{\prime} \quad a_{j}^{j}{ }^{1} \omega_{j}^{\prime}+\omega_{j}^{i}\left(a_{j}^{i} \quad a_{i}^{\prime}\right) \quad a_{i}^{\prime} 1^{1}{ }^{\prime}{ }_{j}^{1}{ }^{1} \cdot j \quad i, i+1 .
\end{aligned}
$$

Note. If the collineation C is an identity. equation (7) has a k-multiple toot, $p \quad k \quad$ l.s $\quad k$. Hence the map f is a centric projection of the manfold V_{h}^{\prime} on V_{h}^{\prime}.

The T'pair (V_{k}, V_{k}^{\prime}, f) determines some distributions on the manifold V_{h}, reヶp. V_{h}^{\prime}. Every focus M of G determines the linear subspace $\chi(M)$ of invariable points of the collineation C. Let us denote by ${ }^{M} \nabla\left(V_{k}\right)$, resp. ${ }^{M} \Gamma\left(V_{k}^{\prime}\right)$ the fol lowing distributions on the man,fold V_{k}, resp. V_{k}^{\prime} :

$$
\begin{aligned}
& M \nabla\left(V_{k}\right): H_{1} \rightarrow\left\{H_{1}, \varkappa(M)\right\}, \\
& M \nabla\left(V_{k}^{\prime}\right): H_{2} \rightarrow\left\{H_{2}, \varkappa(M)\right\} .
\end{aligned}
$$

Let the collineation C have the following quality:
Its Jordan matrix is diagonal, i. e. for any focus M of G the subspaces $\approx(M)$ und $\mathscr{L}(M)$ are not incident when $\mathscr{P}(M)$ is the common subspace of hyperplanes from $\varkappa^{\prime}(M)$. Now let us confine ourselv es to the frame such that the matris of the collineation (' has the Jordan form. Then $r_{i}^{j} \quad 0$ for $i \neq j ; i, j \quad 3,4, \ldots k \quad 2$. The r-multiple root λ_{1} of equation (7) determines the focus λ_{1}. Then $\tau\left(M_{1}\right)$ is an (r I)-dimensional subspace. We can assume that

$$
\varkappa\left(M_{1}\right) \quad\left\{H_{3}, H_{1}, \ldots I_{r}\right\} .
$$

The distribution

$$
{ }^{M_{1}} \Gamma\left(\mathrm{~V}_{k}\right): H_{1}-\left\{H_{1}, \nsim\left(M_{1}\right)\right\} \quad\left\{H_{1}, H_{3}, \ldots H_{1},{ }_{2}\right\}
$$

is determined by the equations:

$$
\begin{equation*}
\mapsto_{1}^{q} \quad 0, q \quad r+3, r+4 \ldots, k+\cdots . \tag{I}
\end{equation*}
$$

Let us denote by Ω the set of the quadratic external forms which we can wite as follows:

$$
\sum_{r+3}^{k} \omega_{1}^{v} \wedge \alpha_{s} .
$$

Let us differentiate externally the forms on the left-hand side of equations (I).

$$
d()_{1}^{\prime \prime} \sum_{s=3}^{\prime} \omega_{1}^{2} \wedge\left(\omega_{s}^{\prime \prime}+0 \bmod \Omega, \text { where } 0 \bmod \Omega(\Omega .\right.
$$

As $a_{j}^{\prime} \quad 0$ for $i+j$ the equalities (4^{\prime}) have for $i \quad q \quad r+3 . r \quad 4 \ldots, k \quad \because$ this shape:

$$
\begin{equation*}
\sum_{s=3}^{\prime} \omega_{1}^{*} \omega_{1}^{s} \wedge\left(\omega_{s}^{\prime \prime}\left(\theta_{s}^{*} \quad a_{4}^{\prime}\right) \quad 0 \bmod \Omega \quad 0\right. \tag{E}
\end{equation*}
$$

I, λ_{1} is an 1 -multiple root of (7) and $\varkappa\left(M_{1}\right) \quad\left\{H_{3}, \ldots, I_{r}\right.$, ${ }_{2}$ we have a ?

$$
u_{4}^{+} \quad \ldots \quad u_{r}^{\prime} \underset{2}{2} \neq u_{u}^{\prime \prime} .
$$

And now we get from (E):

$$
\sum_{s=3}^{++2} \omega_{1}^{x} \wedge \omega_{s}^{q}=0 \bmod \Omega .
$$

Hence $\mathrm{d} \omega_{1}^{q}=0 \bmod \Omega, q \quad r+3, r \dashv 4, \ldots, k+2$. Thus the system (1)) is integrable (the Frobenius theorem; see [2| p. 92). From this consideration the following theorem results.

Theorem 2. Let the collineation C have the following quality: For any focus M of G the subspaces $\chi(M)$ and $\mathscr{L}(M)$ are not incident, where $\mathscr{L}(M)$ is the common subspace of all hyperplanes in β belonged to $\varkappa^{\prime}(M)$. Then the distribution ${ }^{M} \nabla\left(V_{k}\right)$ is integrable.

Now we shall study the T-pair ($V_{n 2}, V_{n}^{\prime}, f$) which we shall call the T-pair of K-manifolds. Let us confine ourselses to the frame such that

$$
H_{1} \quad L \in V_{n 2}, H_{n} \quad f(L) \text { and } \beta \quad\left\{H_{2}, H_{3}, \ldots H_{n}\right\} .
$$

Then

$$
\omega_{1}^{\prime \prime}=0, \omega_{1}^{n+1}=0, \omega_{n}^{1} \quad 0, \omega_{n}^{n+1} \quad 0
$$

Let us differentiate these equations by the external way. We get:

$$
\begin{aligned}
& \sum_{i=2}^{n} \omega_{1}^{i} \wedge \omega_{i}^{\mathrm{p}}-0, \quad p-n, n+1 \\
& \sum_{i=2}^{n} \omega_{n}^{1} \wedge \omega_{i}^{d}=0, \quad d-1, n+1
\end{aligned}
$$

If we apply the Cartan theorem, we get:

$$
\begin{gather*}
\omega_{i}^{n}=\sum_{j=2}^{n} a_{i, j}^{n} \omega_{1}^{j} \tag{10}\\
\omega_{i}^{n+1}-\sum_{j=1}^{n} a_{i, j}^{n+1} \omega_{1}^{j} \\
\omega_{i}^{1}=\sum_{j=2}^{n} A_{i, j}^{1} \omega_{n}^{j} \\
\omega_{i}^{n+1}-\sum_{j=2}^{n 1} A_{i, j}^{n+1} \omega_{n}^{j}, i-2,3, \ldots, n-\quad 1
\end{gather*}
$$

The lower indices of the coefficients in (10) are symmetric. As the forms $\omega_{1}^{2}, \omega_{1}^{3}, \ldots, \omega_{1}^{n}{ }^{1}$ are independent, we can write :

$$
\begin{equation*}
\omega_{n}^{j} \quad \sum_{k 2}^{n} a_{n, k}^{j} \omega_{1}^{k}, \quad j-2,3, \ldots, n-\quad 1 . \tag{11}
\end{equation*}
$$

Let us substitute the relations (11) and the 2 nd relations from (10) into the
last relations from (10). We get

$$
\sum_{j=2}^{n} a_{i, j}^{n+1} \omega_{1}^{j}-\sum_{j \geq 2}^{n}\left(\sum_{k=2}^{n} A_{i, k}^{n+1} a_{n, j}^{k}\right) \omega_{1}^{j} .
$$

Since our considerations are local, why we get by comparing:

$$
\begin{gather*}
a_{i, j}^{n+1}-\sum_{k=2}^{n} A_{i, k}^{n+1} a_{n, j}^{k}, \quad i, j \quad 2,3, \ldots, n-1 . \tag{12}\\
\mathrm{d} H_{1} \quad \omega_{1}^{1} H_{1}+\omega_{1}^{2} H_{2}+\ldots+\omega_{1}^{n} H_{n 1}, \\
\mathrm{~d}^{2} H_{1} \quad H_{n+1}\left\{\sum_{i-2}^{n} \omega_{1}^{i} \omega_{i}^{n+1}\right\}+0 \bmod \left\{H_{1}, H_{2}, \ldots, H_{n}\right\} .
\end{gather*}
$$

Hence the following equation

$$
\begin{gathered}
\sum_{i \geq 2}^{n} \omega_{1}^{i} \omega_{i}^{n+1}=0, \text { or -after arrangement- } \\
\sum_{i \geq 2}^{n} \omega_{1}^{i} \sum_{j=2}^{n-1} a_{i, j}^{n+1} \omega_{1}^{j}=0
\end{gathered}
$$

is an equation of the curves on the manifold V_{n-2} which have the contact of the $2^{\text {nd }}$ order with the hyperplane $\left\{T_{I_{1}}\left(V_{n-2}\right), H_{n}\right\}$. The tangents of these curves at H_{1} create conic hypersurface in the space $T_{H_{1}}\left(V_{n}{ }_{2}\right)$. The cut of this conic hypersurface with the subspace β is the following hyperquadric in β :

$$
\begin{equation*}
\sum_{i=2}^{n} h_{i} \sum_{j=2}^{n} a_{i, j}^{n+1} h_{j}=0 . \tag{13}
\end{equation*}
$$

We get likewise:

$$
\sum_{i \geq 2}^{n} \omega_{n}^{i} \sum_{j \geq 2}^{n-1} A_{i, j}^{n+1} \omega_{n}^{j}=0,
$$

an equation of the curves on the manifold $V_{n 2}^{\prime}$, which have the contact of the $2^{\text {nd }}$ order with the hyperplane $\left\{H_{n}, H_{1}, \beta\right\}$. The tangents at the H_{n} of these curves create a conic hypersurface in the space $T_{H_{n}}\left(V_{n_{2}}^{\prime}\right)$. The cut of this conic hypersurface with the subspace β is the following hyperquadric in β :

$$
\begin{equation*}
\sum_{i 2}^{n} h_{i} \sum_{j=2}^{n} A_{i, j}^{n+1} h_{j}=0 . \tag{14}
\end{equation*}
$$

It results from the relation (10) that the hyperquadric (14) is regular if and only if the hyperquadric (13) is regular, too.

Now we shall study a case of the regular hyperquadric (13). The collineation C is determined by the following equations:

$$
\begin{equation*}
h_{j}^{\prime} \quad \sum_{k 2}^{n} a_{n, k}^{j} h_{j}, \quad j \quad 2,3, \ldots, n--1 \tag{15}
\end{equation*}
$$

Hyperquadries (13) and (14) are identical if and only if such a ϱ exists tha

$$
a_{i, j}^{n} \quad \varrho .1_{i, j}^{\prime \prime}, \quad i, j \quad 2,3 \ldots \ldots n \quad 1 .
$$

It results from (12) that these relations are correct if and only if

$$
\begin{aligned}
& a_{n, k}^{j} \quad 0 \text { for } j \neq k \text { and } \\
& a_{n, 2}^{2} \quad a_{n, 3}^{3} \quad \ldots \quad a_{n, n=1}^{n, 1}, \text { i. e. }
\end{aligned}
$$

if and only if the collineation C is the identit. .
Let the collineation C be not an identity. Then the hyperquadrics (13) and (14 determine a bundle of hyperquadrics in β. The name of this bundle will be the ,, K_{f}-bundle". Any hyperquadric from the K_{f}-bundle has the following equation

$$
\begin{equation*}
\sum_{i=2}^{n} h_{i} \sum_{j=2}^{n} h_{j}\left(a_{i . j}^{n+1} \quad \lambda A_{i, j}^{n}{ }^{1}\right) \quad 0 . \tag{16}
\end{equation*}
$$

Let us confine ourselves to the case that H_{2} is an invariable point of the auto collineation C. Then the following relations result from (15).

$$
a_{n, 2}^{i} \quad 0, \quad j \quad 3,4, \ldots, n-\quad 1 .
$$

If we substitute these relations into (12), we get

$$
\begin{equation*}
a_{i, 2}^{n}{ }^{1} \quad A_{1,2}^{n+1} a_{n, 2}^{2}, \quad i-2,3, \ldots, n \quad 1 . \tag{17}
\end{equation*}
$$

Notation. The singular points of the K_{f}-bundle are singular points of some hyperquadratic from the K_{f}-bundle.
It results from (16) that singular points of the K_{f}-bundle are determmed bs the following system:

$$
\sum_{j-2}^{n} h_{j}\left(a_{i . j}^{n}{ }^{1}+\lambda A_{i . j}^{n+1}\right) \quad 0 . \quad i \quad 2,3 \ldots n-\quad 1 .
$$

Then it results from (17) that the point H_{2} is a singular point of the K_{f}-bundle Let H_{2} be a singular point of K_{f}-bundle. Then λ exists such that

$$
a_{i, j}^{n+1} \quad \lambda A_{\imath, 2}^{n+1}, \quad i \quad \varrho, 3, \ldots, n-\quad 1 .
$$

If we substract these equalities from (12) for $j \quad 2$, we get the followi 1 g system:

$$
\begin{align*}
& A_{2,2}^{n+1}\left(a_{n, 2}^{2}+\lambda\right)+A_{2}^{n+1} a_{n, 2}^{3}+\ldots+A_{2, n 1}^{n}{ }_{1}^{1} a_{n, 2}^{n}{ }^{1} \quad 0, \tag{18}\\
& \cdots A_{n 1, n 1}^{\cdots+1} a_{n, 2}^{n, 1}=0 .
\end{align*}
$$

Since the hy perquadratic (12) is regular. $\operatorname{det}\left(A_{i j}^{n+1}\right) \neq 0$. Then the system (1)
has only a zero solution, i. e.

$$
a_{n, 2}^{2} \quad \lambda, \quad a_{n, 2}^{k} \quad 0 . \quad k \quad 3.4, \quad ., n \quad 1 .
$$

Hence $I I_{2}$ is an invariable point of the collineation C^{C}. From this consideration the following theorem results:

Theorem 3. Any invariable point of the collineation (${ }^{(}$is a singular pont of the K_{f}-bundle. If the hyperquadric (13) is regular, any singular point of thr κ_{t} bundle is an invariable point of the collineation C.

Now let the hyperquadric (13) be not regular. Its singular points ane deter mined by the system

$$
\begin{equation*}
\sum_{i=2}^{1} a_{i, j}^{n} h_{i} \quad 0, \quad i \quad 2,3, \ldots n \quad 1 . \tag{19}
\end{equation*}
$$

Let the rank of the system (19) be $p(0<p<n-2)$. Then the singular points of the hyperquadric (13) create a ($\begin{array}{lll}\mathrm{n} & 3 & p\end{array}$)-dimensional subspace X Let us confine ourselves to the frame such that

$$
X \quad\left\{H_{2}, H_{3}, \ldots H_{n \perp p}\right\}
$$

Then from (19) the following relations result:

$$
a_{1,}^{\prime \prime} \quad 0, j \quad 2,3, \ldots, n-1 \quad p ; i \quad 2,3, \ldots, n \quad \text { I }
$$

Thus $\omega_{1}^{n}{ }^{1} \quad 0, j \quad 2,3, \ldots, n \quad 1 \quad p$. Then

$$
A_{i, j}^{n} \quad 0, \quad j \quad 2,3, \ldots, n \quad 1 \quad p: i \quad 2,3, \ldots, n \quad 1 .
$$

Hence the subspace X is a subspace of singular points of the hyperquadric (14), too. Equalities (12) have for $j \quad 2,3, \ldots, n \quad 1 \quad p ; i \quad n \quad p, n$
$p \quad$ I. .. $n-\quad$ I the following forms.

$$
\sum_{k}^{n} A_{p}^{n} A_{i, k}^{n} a_{n, j}^{k}-0 .
$$

There is for every fixed $j \quad 2,3, ., n \quad 1 \quad p$ an algebraic system for the unknowns $a_{n, j}^{k}$. The rank of this system is p. Thus

$$
a_{n}, \quad 0 \quad k \quad n \quad p . n \quad p+1, \ldots, n \quad 1 ; j-2,3, \ldots, n \quad 1 \quad p
$$

Hence already the following relation.

$$
C(X) \quad X
$$

results from (15). From this consider tion the following theorem cosults
Theorem 4. If the hyperquadric (13) is not regular, evely singular point
of it is a singular point of the hyperquadric (14) and the subspace $X \subset \beta$ of singular points is invariant under the collineation C.

Note: If relations $\omega_{j}^{n+1}=0, j=2,3, \ldots, n-1$ are equalities on some neighbourhood, the manifolds $V_{n 2}, V_{n 2}^{\prime}$ lie in a hyperplane in P_{n}.

REFERENCES

[1] Mihailescu T., Geometrie diferentiala proiectiva. Teoria corespodentei, ARPR, Bucarest 1963.
[2] Favard J., Kurs lokalnoj differencialnoj geometrii, I. I. L., Moskva, 1960.
Received April 25, 1968.
Katedra matematiky a deskriptivnej geometrie Vysokej školy dopravnej Źilina

