Matematicko-fyzikálny časopis

Beloslav Riečan

Note on Ergodicity

Matematicko-fyzikálny časopis, Vol. 16 (1966), No. 4, 320--323
Persistent URL: http://dml.cz/dmlcz/126988

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1966

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

NOTE ON ERGODICITY

BELOSLAV RIEČAN, Bratislava

A measurable transformation T on a measure space (X, S, m) is croodic. iff for any almost invariant set $E \in S^{\prime}$ (i. e. such set E that $m\left(T^{\prime-1} E _E\right)$ - ${ }^{1}$) it is $m(E)=0$ or $m(X-E)=0$. (We do not suppose that T is measure preserving.)

Our note deals with a criterion of ergodicity from paper $[2]$. We shall prove that in the criterion the assumption that T is meawure preserving can be replaced by the weaker assumption that T is incompressible.

First we shall formulate our propositions algebraically. We shall suppose that a Boolean σ-algebra S and a σ-isomorphism T ' of this algebra are given Further a σ-ideal $N \subset S$ is given and $T N:=N$.

A transformation T of S into S will be called incompressible, iff fron the relation $T^{-1} E \subset E$ it follows that $E \cdots T^{1} E=N$. $\quad \sigma$-isomorphism T is incompressible iff from the relation $T^{-1} E \cdots E \in N$ it follows that $E-T$ i $E \in N$ or else iff from the relation $E-T^{\prime} E \in N$ it follows that $T-1 E-E=N$ If T is an incompressible transformation. then $E-\bigcup_{1} T / E \in N$ (see |:3|)

Let (X, S, m) be a measure space, s a $\begin{gathered}\text { r-algetra. } T \text { an invertible transforma }\end{gathered}$ tion X into X (i.e. T is one-to-one. onto and the transformations T. T are measurable). If in addition T is non singular (i. e. $m(E) \ldots 10$ iff $m\left(T^{-1} E\right.$)
$=0)$ then all the assumptions of our algebraie formulation are satisfied. Wi, have $T E=\{T x: x E\}$. Besides, if T is incompressible and invertible, then T is also non singular.

Theorem 1. Let T' be an incompressible o-isomorphism of "Booleten or alyedra
 $E_{n}=E \cap\left(T-n E \cdots T^{\prime \cdots} E\right)(n=2,3 . \ldots)$.
$P=\left\{T^{i} E_{j}: 1 \quad i<j, j>1\right\}, \quad G=E \cup \cup ; L: L \in P_{1}, F=\left(i^{\prime} .{ }^{1}\right)$
Then the set $R=\left\{E_{i}\right\} \cup P \cup\{F\}$ is upertition of the greatest element .1 of
(1) (i^{\prime} is the complement of the element $(i$.
the Boolean σ-algebra s' and the dements (r, F are almost invariant under T (i.e. $T{ }^{1}\left(: \quad\left(i \in N, T{ }^{1} F \therefore F \in N\right)\right.$.

Proof. Evidently $E \cap \bigcup_{1} T^{-n} E=\bigcup_{1} E_{n}$. Since T is incompressible, it is $E-\cup E_{n} \in N$. Notice that E_{n} are pairwise disjoint. Besides, for $i<j$ we have $T^{\prime} E_{j} \subset E^{\prime}$, but $T^{j} E_{j} \subset E$. Hence $E \cap D=\left(1\right.$ for all $D \in I^{\prime}$. Let $T^{i} E_{j}$
I^{\prime}. $T^{k} E_{n} \in P^{\prime}$ and $(i, j) \div(k, n)$. If $i=k$, then $T^{i} E_{j} \cap T^{k} E_{n}=T^{i}\left(E_{j} \cap\right.$ $\left.\cap E_{n}\right)=T^{i} O=0$. If $i=k$, hence e. g. $i<k$, then $T^{i} E_{j} \cap T^{k} E_{n}=T^{i}\left(E_{j} \cap\right.$ $\left.\cap T^{k-i} E_{n}\right)$. But $k-i<n$, hence $T^{k-i} E_{n} \subset E^{\prime}$, while $E_{j} \subset E$. Hence any two elements from the set P are disjoint.

It remains to be proved that the elements F and G are almost invariant. Clearly $\quad\left(i=C \cup \cup_{i=1} E_{i} \cup \cup_{i} T^{i} E_{j}\right.$, where $C \in N^{*}$. Prove that $T G_{i} \subset D \cup E \cup$ $\cup \cup T^{i} E_{j}$, where $D \in N$. First of all $T^{\prime} \in N$. Further

$$
T \bigcup_{i=1}^{\infty} E_{i}=\left(T \bigcup_{i}^{\infty} E_{i} \cap E\right) \cup\left(T \bigcup_{i=1}^{\infty} E_{i}-E\right) \subset E \cup\left(T \bigcup_{i=1}^{\infty} E_{i}-E\right)
$$

But $T \cup_{1} E_{i}-E=\bigcup_{k=2}\left(T E_{k}-E\right)$, since $T E_{1}-E=T\left(E \cap T^{-1} E\right)-E$
$T E \cap E-E=0$. From this it follows

$$
T \bigcup_{i=1} E_{i}-E \subset \bigcup_{k} T E_{k} \subset \bigcup_{i} T^{i} E_{j}
$$

Finall!

$$
T^{\prime}\left(\cup T^{i} E_{j}\right) \subset \cup T^{i} E_{j} \cup \bigcup T_{j=2}^{j} E_{j} \subset E \cup \bigcup T^{i} E_{j}
$$

We have proved that $T: \subset I) \cup C_{i}$, where $\left.I\right) \in N$, hence $A_{i}-T^{1 \quad 1}(i \in N$. Nince T is incompressible, we have $T^{1 \rightarrow 1}\left(i-\operatorname{l} \in X\right.$, hence $\theta_{i} T^{1}(i \in N$ and A_{i} is almost invariant. Now it is obvious that F is almost invariant too.

Note 1 . From Theorem 1 the recurrence-partition theorem from article $\lfloor\because \mid$ easily follows. That theorem can result from Theorem 1 by the special choice of $S^{\prime}, T^{\prime}, ~ N$ introdnced above. In $|\geqslant|$ it is assumed besides that X has a finite measure and T is measure preserving.

For an algebraic formulation of the next theorem we need to modify the notion of ergodic transformation. An isomorphism T of the algebra S onto S is creodic iff from the relation $T^{\prime} E: E \in N$ it follows that $E \in N$ or $E^{\prime} \in N$. We want to define another notion. An element $I \in S$ has a recurrent part iff there is $I)\left(I, D \notin N\right.$ and a positive integer k such that $T^{k} D \ldots I \in N$.

Theorem 2. Let under the assumptions of Theorem 1 be $F \in N$. A sufficient condition that T be ergodic is that E contains no element $H \subset E, E-H \in \mathcal{N}$ with a recurrent part. $\left(^{(2)}\right.$

Proof. If T is not ergodic, then there are $H_{1}, H_{2} \in S$ such that $G=H_{1} \cup$ $\cup H_{2}, H_{1}, H_{2}$ are almost invariant, $H_{1} \cap H_{2} \in N, H_{1} \notin N, H_{2} \notin N$. If $H_{1} \cap$ $\cap E \in N$, then $T^{i} H_{j}=N_{1} \cup N_{2}$, where $N_{1} \in N, N_{2} \subset H_{2}$. Then also (i:$=N_{1} \cup N_{2}$, where $N_{1} \in N, N_{2} \subset H_{2}$, but it is in contradiction to the assumption. Hence $H_{1} \cap E \notin N$ and also $H_{2} \cap E \notin N$.

Put $H=H_{1} \cap E$. From the above $H \notin N, E-H \notin N$. Since $H=N_{1} \cup$ $\cup \cup^{\infty}\left(H \cap E_{n}\right)$, where $N_{1} \in N$ and N is a σ-ideal, there is such an n that $H \cap E_{n} \notin N$. But then H has a recurrent part $D=H \cap E_{n}$, since $T^{n}(H \cap$ $\left.\cap E_{n}\right) \subset T^{n} E_{n} \subset E$.

Theorem 3. Let (X, S, m) be a measure space with a completely finit., measurt. T be an incompressible and invertible transformation on X. Let $E \in \mathbb{S}$. Denot"by E_{i} the sot of all $x \in E$ for which $T^{i} x \in E$, but $T^{j} x \notin E$ for $i>j$. Let $m(X-E \cup$ $\left.\cup \cup\left\{T^{i} E_{j}: i<j, j>1\right\}\right)=0$.

A suffitient condition that T be ergodic is that E contains no proper subsets with recurrent parts (i. e. that there do not exist sets, $D, H \in S, I)(H \subset E$, $m(E)>m(H)>0, T^{n} D \subset E$ for some $\left.n\right)$.

Proof. S is a Boolean σ-algebra, T a σ-isomorphism. If we put $N=\{E$: $: m(E)=0\}$, then all assumptions of Theorem 2 are satisfied.

Note 2. From Theorem 3 the ergodicity theorem from article [2] follows. In [2] it is supposed in addition that T is measure preserving. But we know an example of a space (X, S, m) and an incompressible and invertible transformation T such that there is no invariant measure equivalent to $m .\left({ }^{3}\right)$

Theorem 3 can be formulated also in another way. A set B is called the least almost invariant set over E, if $B \supset E, B$ is almost invariant and for any almost. invariant set $C \supset E$ we have $B-C \in N$.

Theorem 4. Let (X, S, m) be a measure space with a completely finite meastrre, T be an incompressible and invertible transformation on X. Let $E \in S$ be an arbitru$r y$ set and X be the least almost invariant set over E. If E contains no proper subsets with recurrent parts then T is ergodic.

Proof. If X is the least almost invariant set over E, then, since $E \cup$ $\cup \cup\left\{T^{i} E_{j}: i<j, j>1\right\}$ is almost invariant, we have $m\left(X \cdots E \cup \cup\left\{T^{i} E_{j}:\right.\right.$ $: i<j, j>1\})=0$, hence we can use Theorem 3.
${ }^{(2)} E$ is an arbitrary but fixed element.
(3) hee e. g. |1|, p. IIt of the Ruswian transtation.

REFERENCES

|I| Halmos P. R., Lectures on Ergodic Theory, Tokyo 1956. (. Іенчุии по оргодической теории, Москва 1959.)
$|\because|$ Preisendorfer R. W., Roos B. W., Recurrence-partitions of finite measure spaces with applications to ergodic theory, Trans. Amer. Math. Soc. 99 (1961), 91-101.
 Mat.-fyz. časop. 15 (1965), 116-125.
$1+\mid$ Wright F. B., The converse of the indiridual ergodic theorem, Proc. Amer. Math. Boc. II (1960), 415-420.

Received June 23, 1965.
Katedra matematiky a deskriptívnej geometrie Stavebnej fakulty
Slovenskej rysokej školy technickej,
Bratislana

