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GRAPHS AND BETWEENESS* 

MILAN SEKANINA 

1. In this paper, a graph (G, Q) is always connected, undirected, without 
loops and multiple edges, G #= 0. Thus, if a, b are vertices of (G, Q), {a, b} e Q 
exactly when a, b are connected by an edge. We often write G instead of 
(G, Q). If (G, Q) is a graph and M <=- G, then (M, QJ3I) means a full subgraph 
of (G, Q), i.e. a,be 31, {a, b} e Q/M just if {a, b} e Q. Often Q is used instead of 
QJ3L Let (M, Q) be a full subgraph of (G, Q). Then J f (ilf) means the decompo­
sition of (31, Q) into connected components, JLC means the usual metric in 
(G, Q), i.e. ii(a, b) is the number of edges in a shortest path connecting the 
vertices a and b. S(G, Q) is the system of all 2-components of the graph (G, Q). 
Here a 2-component is a maximal full subgraph of (G, Q) containing for any 
two distinct vertices a, b belonging to it a t least one circle in which a and 
b are lying. By [G], § 15 one easily sees that the following assertion is true. 

Proposition. If X, Ye£(G,Q), X * Y, then card (X n Y) ^ 1. If X e 
e 6(G, Q) and Y eC/F(G — X), there is exactly one y e X such that ft(y, Y) = 1. 
We shall call y the projection of Y in X. 

We shall say that a vertex b of (G, Q) lies between vertices a and c when b 
belongs to any path connecting a with c. We write [a, b, c] in this case. 

1.1. a) For x,y eG we have [x, x, x], [x, x, y], [x, y, y]. 
b) For x,y,z eGwe have 

[x, z, y] => [y, z, x]. 

1.2. Let (31, QI) be a connected subgraph of a graph (G, Q), a,b,ce 31, 
[a, b, c] in (G, Q). Then [a, b, c] in (31, Q±). 

1.3. Let (G,Q), (GI,QI) be two graphs, f:G->G± a map such that 

[x, z, y] in (G, Q) => [f(x), f(z), f(y)] in (G± ,QX). 

T h e n / i s called a b-mapping. 

The main results of this paper were presented at the Scientific Colloquium of the 
Technical High School, Ilmenau, October 1973. 
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] .4. Let / : (G, p) -> (G±, pi), g : (G±, pi) -> (G2, o2) be b-mappings. Then 
•gf is a b-mapping, too. 

] .5. Graphs ((?, p) together with the class of all b-mappings form a category. 
This category will be denoted by ^ . 

1.5 is evident by 1.4 and the fact that identity mappings are b-mappings. 
1.0. Notions of the category theory will be used in the sense of reference [3]. 

Especially, for a category %\ [a, b\e is the set of all morphisms from a to b. 
The following assertion is clear. 
1.7. In a 2-connected graph (G, p) [a,b,c] holds only in cases described 

by 1.1 .a. Therefore [((?, p), (G, p)]^ =. GG (the set of all mappings of G in G). 
1.8. Let X e i(G, p), Y eJf(G - X), y the projection of Y in X. L e t / : G -> 

-> G be defined as follows: 

f(x) = y for x G Y, 

f(x) = x otherwise. 

T h e n / i s a b-mapping. 
P r o o f . Let [a, b, c] in (G, p). 

1. If {a, b,c}nY = 0, then clearly [f(a), f(b), f(c)\. 
2. Let card {a,b,c}r\ Y ^ 1. If {a, c} <= Y, then by connectivity of Y 
ŵ e have b e Y and hence [f(a), f(b), f(c)] for card {a, b,c] C\ Y ^ 2 in general, 
therefore [f(a),f(b),f(c)]. For the connectivity of X we cannot have a, c e X, 
6 e Y. Hence let a e Y, b, c e X (the case a, b e X, c e Y is dual). Then f(a) = 
= V> /(&) = ^ f(c) — c- ^ e t y = ci, c2, . . ., c, y = di,d2, . . . 0%, a be some 
paths in (6?, p). Then a, 0%, . .., d2,y, c2, . . . , c is a path from a to c. As 
rfs, . . .,d2e Y,b must be an element of {y,c2, . . ., c}. Therefore [f(a),f(b), 

f(o)l 
LO. Let Xe<f(O , p). Let ^ be a system of some Yt eJf(G — X). Let yt 

be always the projection of Y\ in X. Define / : ( ? - > 67 so that 

/(:r) -= yf for x e Yi (for a l i i ) , 

f(x) = x otherwise. 

T h e n / i s a b-mapping. 
The proof follows from 1.8. by composing suitable b-mappings. 
1J0 . Let a,b e (G, p). Then there exists such a b-mapping / : G -> G for 

which f(G) = {a, b}, f(a) = a, f(b) = b. 
Proof . If there exists a 2-component of (G, p) containing both a and b, 

we get 1.10 immediately by 1.2, 1.7, 1.8. 
Suppose aeXe S(G, q),b$X,beY e X(G — X). For x e Y define f(x) = 

= b ,f(x) = a otherwise. Let [x, y, z] in (G, p). Everything will be proved if 
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f(x) —f(z) ">f(x) =f(y)- Suppose we have f(x) = f(z) 4= f(y). We have to 
distinguish two cases. 

1) f(x) = f(z) = a> f(y) = 6. Then #, 2 e C7 — Y, y e Y, a contradiction 
with the connectivity of C7 — F . 

The second case 

-) f(x) = f(z) = b> f(y) = a is similar. 
L l l . (Corollary). Let I7 be a two-vertex tree with vertices a1,b1. Let a, b e 

e (C7, Q), a 4= b. There exists such a b-mapping f: G->T for which 

f(a) = al9 /(b) = bi. 

1.12. Let a,b, a1,b1e (G, Q), a 4= b- Then there exists such a b-mapping 
J:G-+G such that /(<?) = {ai, bi}, /(a) = a i , /(b) = bi. 

2. A tree is a graph (G, Q) without circles (i.e. (G, Q) has only one-element 
2-components). Thus, one-vertex trees are considered, too. 

2.L Let (G, Q) be a tree, a 9- b -7- c 7^ a are vertices of Cr, [a, b, c] in (67, Q). 
Then there exists a b-mapping f : G-> G such that /((?) = {a, b, c}, f(a) — 

^ /(b) = b, /(c) = c 
P roof . Let a = ao, a i , . . ., ai = b, . . ., a5 = c be the path connecting a 

with c. If x e X eJ>T(G — {ao, . . ., as}) and //(K, at) — 1, we put f(x) = a^. 
Let/(aj) at for i = 0, 1, . . ., s. Similarly as in 1.8. one sees t h a t / i s a b-mapp­
ing. Let g : {a0, . . ., as} -> {a0, at-, as} be defined byr a(a0) = g(a^) = . . . 

a(a;,_i) = a0 , gr(a<) = a^, g(ai+1) = . . . = a(as) = as . g is a b-mapping 
of ({a0, ...,as},Q) into itself and gf is a demanded mapping. 

2.2. (Corollary). Let T' be a three-vertex tree with the vertices a1,b1,c1 

for which [a1, bi, Ci] in T'. Let (G, Q) be a tree, a,b, c e G, a + b + c 4=a 
and [a, b, c] in (C7, Q). There exists a b -mapp ing / from (G, Q) to T ' such tha t 
f(a) a1, /(b) = bi, /(c) = ci. 

2.3. (Corollary). Let [a, b, c], [a', V, c'] in a tree (G, D), a 4= b 4= c 4= a, 
rr' 4= b' 4= c' 4= a'. There exists such a b - m a p p i n g / : G-> G for which/(Cr) = 

{a', b', c'} and f(a) = a', /(b) = b', /(c) = c;. 
In [4] the following two propositions have been proved. 
2.4. Let (G, Q) be a tree, a,b, c e G. Then there exists exactly one d e G 

such that [a, d, b], [b, d, c], [a, d, c]. We write co(a, b, c) = d and the ternary 
operation co is called the intersection operation. 

2.5. Let (G, Q) be a tree. Then 

1) [a, b, c] o to(a, b, c) = b. 

2) ro(a, a, b) = co(a, b, a) — Oj(b, a, a) = a. 

3) co is a symmetrical operation. 

Similarly as in 2.1. the following can be proved. 
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2.0. Le t (C7, Q) be a t ree . Let a,b,ceG a n d co(a, b, c) <fi {a, b, c}. T h e r e 

exists such a b -mapp ing / : G -» G for which f(G) = {a,b, c, co(a, b, c)}, f(a) 

= a, f(b) = b, f(c) = c, f(co(a, b, c)) = co(a, b, c). 

2.7. (Corollary) . Le t (G, Q) be a t ree , a, b, c, a±, 61, ci e G, co(a, b, c) ^ {a, b, c}y 

co(ai, bi, Ci) $ {a i , bi, ci}. There exists a b - m a p p i n g / : G -> G such t h a t f(G) 

= {ai,bi,ci, co(ai,bi,Ci)}, f(a) = ai, f(b) = 6 1 , /(c) = a, f(co(a,b,c)) 

-= co(ai, 61, ci). 

3. T h e no t ions from t h e theory of un iversa l a lgebras a re t a k e n from [2]. 

The ca tegory of all a lgebras w i t h one fundamen ta l ope ra t ion of a fixed a r i t y 

(generally deno ted b y a) will be denoted b y s/a. I n considera t ions on morphisms-

of s/oL (and of $, as well) we identify these mapp ings w i t h t h e ca r ry ing m a p p ­

ings of t h e suppor t s of re levan t s t ruc tu re s . 

3 .1 . Let (G, Q), (G, 01) be t rees , co denote (for b o t h of t h e m ) t h e in t e r sec t ion 

opera t ion . Then 

[(G,C0),(Gl,C^a-[(G,Q), (Gl,Qi)]y. 

P r o o f . Let fe[(G,co), (Gi, oj)]s/a a n d [a,b,c] in (G, Q). co(a,b,c) = b 

therefore f(b) = co(f(a), f(b), / (c)) , a n d so [f(a),f(b),/(c)] in (GI,QI). 

Let fe[(G, Q), (GI,QI)]$ a n d co(a, b, c) = d in (G,co). We h a v e [a, d, b], 

[b,d,c], [a,d,c], hence [f(a),f(d),f(b)], [f(b),f(d),f(c)], [f(a),f(d),f(c)] a n d 

therefore co(f(a),f(b),f(c)) =f(d). 

3.2. Le t [(G, Q), (G, Q)\S <=• [(G, a), (C7, a ) ] ^ a . T h e n a is a n i d e m p o t e n t ope­

r a t i on . 

Th is follows from t h e fact t h a t [(C7, Q), (G, Q)]9 con ta ins all c o n s t a n t m a p p ­

ings . 

3.3. L e t [(CT, 0), (G, Q)]9 <= [(C7, a) , (G, a ) ] ^ a , where a is a binary^ o p e r a t i o n . 

T h e n a is a pro jec t ion . 

P r o o f . L e t {a, b} <= G, a ^ b. B y 1.10. {a, b} is a suba lgebra in (G, a). 

Let, e.g. a(a, b) = a. Le t a i , bi e G. B y 1.12 / ( a ) = a±,f(b) = bi for c e r t a in 

fe [(CT, Q), (CT, Q)]$ . Therefore a ( a i , bi) = a i a n d so a is a pro jec t ion . 

3.4. L e t (G, Q) be a t ree , a essentially t e r n a r y on CT, a n d [(CT, Q), (G, Q)]9 ^ 

c: [(G, a) , (CT, a ) ] ^ a . I f card G = 2, t h e n (G, a) is a P o s t a lgeb ra , if card G > 

> 2, we h a v e oc = co. I n b o t h cases, 

[(G,Q),(G,Q)]V = [(G,*),(G,OC)]^. 

P r o o f . I f card G = 2, [(G, Q), (G, Q)]<# = G^ a n d t h i s implies b y [2], § 0 

t h a t (CT, a) is a P o s t a lgebra. Le t card C 7 > 2 , a,b, c eG, a 4= b 4= c 4= a 

[a, b, c] in (G, Q). B y 2.1. {a, b, c} is a suba lgebra in (G, a ) . Suppose a(a , b, c) — 

= a. I n t h e sequel, we use 1.12 a n d 2.3 w i t h o u t a n y fur ther reference. E.g.,, 

a(a, b,c) = a b y 1.12 implies a(a, b, b) = a, oc(a, a, c) = a. As oc(x, y, y), 

oc(x, x, y) a re project ions , we have a(.r, y, y) = x, a(x. x y) = x. 
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By 2.3. we have a(c b, a) = c. 
I. Suppose oc(b, a, c) = a, whence oc(x, y, x) 

1. If oc(a, c, b) = a, then oc(x, y, x) = x, a contradiction. 
2. If oc(a, c, b) = b, then oc(x, y, y) = y, a contradiction. 
3. If oc(a, c, b) = c, then oc(x, y,y)=y again. 

Suppose oc(b, a, c) = c. Then oc(x, x, y) = y, a contradiction. Therefore 
a(b, a, c) = b, hence oc(b, c, a) = b and oc(x, y, x) = x, therefore a(c, a, b) 
can be c or b, but oc(x, y, y) = x implies a(c, a, b) = c. Therefore, if xi, yi, 
zie{a,b,c}, we have oc(x1,yi,zi) = xi. By 2.3 this is simultaneously 
true for all triples a', b', c' with [a', b', c']. 

Let now a', V, c' e G, co(a , b', c') $ {a', b', c'}. By 2.0 {a', b', c', co(a', V, c')} 
is a subalgebra. Suppose oc(a', b', c') = b'. Then (e.g., by 1.8) oc(a', co(a', V, c'), 
c') — co(a', V, c'), which is a contradiction, because [a', co(a', V, c'), c'\ In 
the same way it turns out that oc(a!, b', c) = co(a', b', c'), oc(a', b', c') = c' 
are contradictory, too. Therefore oc(a', b', c') = a', and so oc(x, y, z) = x, 
which is a contradiction to the supposition on oc. 

Similarly for oc(a, b,c) = c and for 

oc(a, b, c) = b, a(b, a, c) = a. 

Suppose oc(a, b, c) = b, oc(b, a, c) = c. oc(a, b, c) = b implies oc(x, x, y) = x, 
a(b, a, c) = c implies oc(x, x, y) = y, a contradiction. 

Therefore we must have cx(a, b, c) = a(&, a, c) = b. Then oc(x, x, y) = 
= oc(y, x, x) = oc(x, y, x) = x and this implies oc(a, c, b) = b. Thus for xi,yi, 
z\ E {a, b, c} we have oc(x\, yi, z±) = co(xi, yi, Z\) and this holds for all triples 
a', b', c' with [a', b', c'] and by upper arguments for all triples in general. 

3./>. If (G, Q) is not a tree, oc a ternary operation on G and [(G, Q), (G, Q)]$ <-= 
<= [(G, oc), (G, oc)]^a, then oc is a projection. 

P r o o f . Let XES(G,Q), card X ^ 3 . Let / : G -> X from 1.0 for <& = 
= JT(G - X). By 1.2. and 1.7. [(X, Q), (X, Q)]9 = X*. Therefore X is a sub-
algebra in (G, a) and oc restricted to X (notation ocjX) is a projection. 

Let, e.g. oc/X be the projection to the first coordinate, i.e. for a,b, c e X 
we have oc(a, b,c) = a. Therefore oc(x, x, y) = a(x, y, x) = oc(x, y, y) = x on X. 
But as card X ^ 3 and oc(x, x, y), oc(x, y, x), oc(x, y, y) are projections on the 
whole G by 3.3., the mentioned equalities hold on G. Suppose we have a,b, c e 
e G so that a =£ oc(a, b, c). Let / be a b-mapping from 1.10. for which oc(a, b, c) 
stands for b. 

I t is cc(a, b, c) =f(cx(a, b, c)) = oc(f(a),f(b),f(c)) = oc(a,f(b),f(c)). But card {a, 
f(b),f(c)} ^ 2 and therefore oc(a,f(b),f(c))=a, a contradiction. 

3.0. Let (G, Q) be a graph and a be an essentially n-ary operation on G for 
some n ^ 3 such that oc(xi, . . ., xn) = xi, whenever card {x±, . . ., xn} < n. 
Then there cannot hold 



[ ( G , e M G . e ) ] * c [(G,oc),(G,oc)]s,a. 

P r o o f . Suppose the upper inclusion to be true. As a is essentially n-ary, 
a is not a projection and there exist a1, . . .,aneG such that tx(a1, . . ., an) •=£. 
=7-- a1. Let / be a b-mapping from U 0, where a(ai , . . .,an) stands for b. 
\Vehavea(/(ai), . . .,f(an)) =f(oc(a1, . . ., an)) = cx(a1, . . ., an). But card {/(eti), 
. . . , f(an)} <; 2, i.e. cx(f(a1), . . . , /(a„)) = /(ai) = a1, a contradiction. 

By 3.L—-3.0, taking in account Lemma 20 from [5] we get the final result 
of this section. 

3.7. Let [(G, Q), (G, Q)]9 c [(G, a), (G, <x)]J,a, card G ^ 3, where a is an 
operation on G. Then 

1) if (G, Q) is a tree and a is essentially w-ary for certain w ^ 2, co is an 
algebraic operation in the algebra (G, a) and [(G, Q), (G, Q)]^ == [((?, a), (C7, a)]^ . 

2) if (G, Q) is not a tree, then a is a projection. 
4. Let &~ be the full subcategory of ^ consisting of all trees. Let F be the 

embedding of ZT in stfa where a is ternary given by F[(G, Q)] = (G, co) and 
F(f) = f for mappings. Let now (G, Q) be an arbitrary graph from <&. Let 
F'(G, Q) be the algebra from s/a generated by the set G which is equal to G 
if (G, Q) is a tree and to G X {(G, Q)} in other cases (we write x instead of x or 
(x, (G, O)> in the sequel) with the following defining relations 

a(x, y, z) = v iff x,y, z, v є G and 

[x,v,y], [y,v,z], [x,v,z] in (G,Q) (*) 

4.1. If (G,Q) is a tree, F'(G,Q) = (G,a>). Clear. 
4.2. For w EF'(G, Q) we have OL(W,W,W) = w iff iv e G (the equality is 

meant as an equality of elements in F'(G, Q) not an identity of terms). 
P r o o f . (*) and 1.1 imply a(x, x, x) = x iovxeG. Let w be atermfromF '(Cr, Q) 

having the minimal length among all terms which are equivalent to w. I f 
this length is not 1, then terms equivalent to a ^ 3 w, w) are of the form a^vi, 
Wz,ws), where ^ 1 , ^ 2 , ^ 3 are terms equivalent to w, therefore of a length 
greater or equal to the length of w and so the length of oc(W]_, w-2, ^3) is greater 
than the length of w. Therefore cx(w, w,w)^w. 

4.3. Let fe[F'(G,Q),F'(G1,Q1)]^a. Then /(G) c Gi . 
The proof follows immediately by 4.2. 
4.4. Let fe[F'(G,Q),F'(G1,Q1)]^a. Define f':G-*G1 by 

f'(x) = y=f(*) = V. Then / ' e [(G, Q), (G, Ql)]9. 

P r o o f . Let [x, y, z] in (G, Q). Then a(x, y, z) = y and so a(/(x),/(y),/(z)) = 
= /(y) in F'((?i,oi). Hence [f'(x),f'(y),f'(z)] in (GuQl). 

4.5. Let /1 G [(G, Q), (G1, Ql)]9. Then there exists exactly one fe[F'(G, 0), 
F'(Gl9 Ql)]^a such that / ' = /1 (notation as in 4.4). 
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P r o o f . Let f*(x) = y iff fi(x) = y. By (*) and by the definition of the 

b-mapping / * preserves all defining relations. Therefore there exists exactly 

one / with the demanded properties. 

/ from 4.5, will be denoted by F'(f±). An immediate consequence of 4.4 

and 4.5 is 

4.0. The functor F' : & -> stf^, is a full embedding, which extends F : 3" -> 

- > S&ai-

4.7. I t can be easily proved that F' is the left Kan extension of F (see [1], 

chapter X). 
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